用牛顿运动定律解决问题(二)完美版

合集下载

4.7用牛顿运动定律解决问题(二)

4.7用牛顿运动定律解决问题(二)

物 理 选修1
第四章
牛顿运动定律
研读材料· 自主学习 课堂互动· 考点探究 随堂演练· 当堂达标
心得感悟 ________________________________________________________________ ________________________________________________________________
物 理 选修1
第四章
牛顿运动定律
研读材料· 自主学习 课堂互动· 考点探究 随堂演练· 当堂达标
课堂互动·考点探究
物 理 选修1
第四章
牛顿运动定律
研读材料· 自主学习 课堂互动· 考点探究 随堂演练· 当堂达标
考点一 [问题探究] 如图所示:
共点力平衡条件的应用
(1)著名景点——黄山飞来石独自静止于悬崖之上,它受哪些力作用?这些力 大小、方向有何关系?它们的合力有何特点? (2)高速列车在水平轨道上匀速前进,它受哪些力作用?这些力大小、方向有 何关系?它们的合力有何特点? (3)图中的两个物体的运动状态在物理学上叫做什么状态?
物 理 选修1
第四章
牛顿运动定律
研读材料· 自主学习 课堂互动· 考点探究 随堂演练· 当堂达标
[归纳总结] 1.两种平衡情形 (1)物体在共点力作用下处于静止状态。 (2)物体在共点力作用下处于匀速直线运动状态。 2.两种平衡条件的表达式 (1)F 合=0。
Fx合=0 (2) Fy合=0
答案: F=mgtan θ
物 理 选修1
第四章
牛顿运动定律
研读材料· 自主学习 课堂互动· 考点探究 随堂演练· 当堂达标
[变式训练] (2017· 嘉峪关高一检测)如图所示,在倾角为 θ 的光滑斜面上,重为 G 的物体 受到水平推力 F 的作用,物体静止不动,则物体对斜面的压力大小为( A.Gsin θ C.Gcos θ+Fsin θ B.Gcos θ D.Gcos θ+Fcos θ )

高中物理必修Ⅰ人教版4.7用牛顿运动定律解决问题(二)

高中物理必修Ⅰ人教版4.7用牛顿运动定律解决问题(二)

视重:物体对 悬挂物的拉力 或者对支持物 的压力
F1
G 实重:物 体实际的 重力
【视察与思考】
把物体挂在弹簧测力计下,用手带动弹簧秤和物体
一起:
1.静止 2.向上加速运动 3.向下加速运动
——根据二力平衡拉力等于重力 ——拉力大于重力(视重大于实重)
视察弹簧测力计的示—数如—何拉变力化小?于重力(视重小于实重)
A → B →C 全过程综合考虑,匀减速运动,
s= v0 t -
1gt2=20×5-
2
1×10×25
2
=-25m
v0 A A1
负号表示5s末物体的位置C在A点下方25m
vt= v0 -gt=20-10×5=-30m/s
负号表示方向向下。
C
vt
一、共点力的平衡条件:物体所受协力为0。 二、超重和失重: 物体具有竖直向上的加速度时为超重状态。 物体具有竖直向下的加速度时为失重状态 。 超重还是失重由加速度方向决定,与速度方向无关。 三、从动力学看自由落体运动
一、共点力的平衡条件 1.平衡状态:如果一个物体在力的作用下,保持静 止或匀速直线运动状态,我们就说这个物体处于平 衡状态。 2.共点力作用下物体的平衡条件是协力为0。
3.平衡条件的四个推论 (1)若物体在两个力同时作用下处于平衡状态,则这 两个力大小相等、方向相反,且作用在同一直线上, 其协力为零,这就是初中学过的二力平衡。 (2)物体在三个共点力作用下处于平衡状态,任意两 个力的协力与第三个力等大、反向。
二、超重现象
以一个站在升降机里的体重计上的人为例分析:
设人的质量为m,升降机以加速度a加速上升。
分析:对人和升降机受力分析如图
F合 = N - G F合 = N - G = m a 故:N = G + m a

第7节 用牛顿运动定律解决问题(二) 瞬时性问题

第7节 用牛顿运动定律解决问题(二) 瞬时性问题

(练习)如图所示,物体甲、乙质量均为m。弹簧和悬线的质量可 以忽略不计。当悬线被烧断的瞬间,甲、乙的加速度数值应是 下列哪一种情况: A.甲是0,乙是g B.甲是g,乙是g C.甲是0,乙是0运动定律
6
用牛顿运动定律解决问题(二)
——瞬时性问题
瞬时性问题:
(1)物体运动的加速度a与其所受的合外力 F有瞬时对应关 系. 每一瞬时的加速度只取决于这一瞬时的合外力,而与 这一瞬时之前或之后的力无关,不等于零的合外力作用 在物体上,物体立即产生加速度;若合外力的大小或方 向改变,加速度的大小或方向也立即(同时)改变;若合外 力变为零,加速度也立即变为零 (物体运动的加速度可以 突变)。
如图,四个质量均为m的小球,分别用三条轻绳和一根轻弹 簧连接,处于平衡状态,现突然迅速剪断轻绳A1、B1,让小球 下落。在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用 a1、 a2 、a3 、a4表示,则他们那分别等于多少:
a1 a2 g a3 2g
FT ' 2mg
FT ' 2mg
瞬时性问题:
两类模型的区别:
1、绳和支撑面: 是一种不发生明显形变就可产生弹力的物体,若剪断(或脱 离 ) 后,其弹力立即消失,不需要形变恢复时间,一般题目中所 给的细线和接触面在不加特殊说明时,均可按此模型处理。“突 变性”(外界条件发生变化时,力瞬间变化) 2、弹簧和橡皮筋: 当弹簧的两端与物体相连(即两端为固定端)时,由于物体具 有惯性,弹簧的长度不会发生突变,即形变恢复需要较长时间, 所以在瞬时问题中,其弹力的大小往往可以看成不变,即此时弹 簧的弹力不突变。“渐变性”(外界条件发生变化,力逐渐变化)
❸.不可伸长:即无论绳所受拉力多大,绳子的长度不 变,即绳子中的张力可以突变.

人教版高中物理必修一 用牛顿运动定律解决问题(二)1 PPT课件

人教版高中物理必修一 用牛顿运动定律解决问题(二)1 PPT课件
F
F O F3 G
B
F2
例题2:如右图所示,重力为G的电灯通过两根细绳OB与OA悬挂于 两墙之间,细绳OB的一端固定于左墙B点,且OB沿水平方向,细 绳OA挂于右墙的A点。 1.当细绳OA与竖直方向成θ角时,两细绳 OA、OB的拉力FA、FB分别是多大? 分析与解: 根据题意,选择电灯受力分析,它分别受 到重力G,两细绳OA、OB的拉力FA、FB ,可 画出其受力图,由于电灯处于平衡状态,则 两细绳OA、OB的拉力FA、FB 的合力F与重力 大小相等,方向相反,构成一对平衡力。 可得:
4.7用牛顿运动定律 解决问题(二)
课程标准实验教科书 物理1 第四章
我来做一做!
用细棉线将一钩码轻轻提起。
1、钩码静止时,棉线受到的拉力为多少? 说出根据。 2、手拿棉线将钩码突然向上提升,棉线有 何变化?
用牛顿运动定律解决问题(二)
一、共点力的平衡条件
二、超重和失重
学习目标:
• (1)知识与技能 • ①知道什么是物体处于平衡状态及在共点力作用下物体的平衡条件。 • ②知道超重和失重现象的含义,能通过牛顿运动定律对它们进行定量分析, 并能说明一些简单的相关问题。 • ③ 能解答以自由落体为基础的竖直方向的运动学问题。 • (2)过程与方法 • ①通过学生亲手实验,培养其观察能力和分析推理能力。 • ②通过学生自主探究、合作探究,让学生真正参与到知识的形成过程中,让 学生学会学习。 • (3)情感态度与价值观 • ①借助课堂小实验、多媒体课件和丰富的网上资料,激发学生的兴趣,感受 物理与生活、社会与科学技术的相关性,培养学生热爱物理、热爱科学的情感。 • ②搭建学生自我展示的舞台,鼓励学生建立自信,敢于探索、 勇于质疑,学会交流与合作,以达到“我学习,我快乐”的 目的。

高一物理必修一 牛顿运动定律解决问题二(超重和失重)

高一物理必修一 牛顿运动定律解决问题二(超重和失重)

超重和失重1.站在电梯上的人,当电梯竖直减速下降时,下面说法中正确的是( )A .电梯对人的支持力小于人对电梯的压力B .电梯对人的支持力大于人对电梯的压力C .电梯对人的支持力等于人对电梯的压力D .电梯对人的支持力大于人的重力 2.下列几种情况中,升降机绳索拉力最大的是( ) A .以很大速度匀速上升 B .以很小速度匀速下降C .上升时以很大的加速度减速D .下降时以很大的加速度减速 3.在一个封闭系统中,用一弹簧秤称一物体的重量,如果( ) A .读数偏大,则系统一定是向上做加速运动B .读数偏小,则系统可能做加速运动,也可能做减速运动C .读数准确,则系统一定处于平衡状态D .读数时大时小,系统一定是上下往复运动4.把一个质量为0.5kg 的物体挂在弹簧秤下,在电梯中看到弹簧秤的示数是3N ,g 取 210m/s ,则可知电梯的运动情况可能是( )A .以24m/s 的加速度加速上升 B .以24m/s 的加速度减速上升C .以4InlsZ 的加速度加速下降D .以24m/s 的加速度减速下降 5.关于超重和失重,下列说法中正确的是( ) A .超重就是物体受的重力增加了 B .失重就是物体受的重力减少了 C .完全失重就是物体一点重力都不受了D .不论超重或失重甚至完全失重,物体所受重力是不变的6、一物体挂在弹簧秤下,弹簧秤的上端固定在电梯的天花板上,在下列哪种情况下弹簧秤的读数最小( )A .电梯匀加速上升,且B .电梯匀加速下降,且C .电梯匀减速上升,且D .电梯匀减速下降,且7.如图所示,1m 和2m 两木块叠在一起以v 为初速度被斜向上抛出去,不考虑空气阻力,抛出后2m 的受力情况是( ) A .只受重力作用B .受重力和1m 的压力作用C .受重力、1m 的压力和摩擦力的作用D .所受合力的方向与初速度的方向一致8.用一根细绳索将一重物吊在电梯的天花板上,在下列几种情况中,绳的拉力最大是( ) A .匀速上升 B .电梯匀速下降 C .电梯加速上升 D .电梯加速下降9.在升降机内,一人站在磅秤上,发现自己的体重减少了20%,于是他做出了下列判断,你认为正确的是( )A .升降机以0.8速度加速上升B .升降机以0.2速度加速下降C .升降机以0.2g 的加速度减速上升D .升降机以0.8g 的加速度减速下降10.某钢绳所能承受的最大拉力是4104⨯N ,如果用这条钢绳使3.5t 的货物匀加速上升,则物体在7s 内发生的速度改变不能超过______m/s .(210m/s =g )11.质量为1kg 的降落伞下面挂一质量不计的弹簧秤,弹簧秤下再挂一质量为4kg 的物块.在下降过程中,已知降落伞受到空气阻力为30N ,则弹簧秤读数为______N .(物体所受阻力不计).12.一人手提5kg 的物体乘电梯上楼,该电梯从一楼出发,其运动的速度v 与时间t 的关系如图所示.求:(1)这个人登上楼层的高度?(2)用t F -图象表示出电梯上升时,手提重物的力F 随时间t的变化关系.(210m/s =g )13.一个质量是50 kg 的人站在升降机的地板上,升降机的顶部悬挂了一个弹簧秤,弹簧秤下面挂着一个质量为m=5 kg 的物体A ,当升降机向上运动时,他看到弹簧秤的示数为40 N , g 取10 m/s 2,求此时人对地板的压力。

4-7-1用牛顿运动定律解决问题(二)共点力的平衡条件

4-7-1用牛顿运动定律解决问题(二)共点力的平衡条件


例3搬运工用砖卡搬砖头时,砖卡对砖头的水 平作用力为F,如右图所示,每块砖的质量为 m,设所有接触面间的动摩擦因数均为μ,则 第二块砖对第三块砖的摩擦力大小为 ( )
mg A. 2 C.μF
μF B. 5 D.2mg
解析:先整体分析,将5块砖作为一个整体,可得: 砖块1的左侧面和砖块5的右侧面所受摩擦力大小相等, 5 均为 mg,方向均为竖直向上.然后将砖块1、2作为一 2 个小整体隔离出来,则它们受三个力的作用:重力 5 2mg、砖卡对它们向上的摩擦力 mg、砖块3对它们的摩 2 擦力.物体在三个力作用下处于平衡状态,因此第2块砖 mg 和第3块砖之间的摩擦力为 ,故答案应选A项. 2
3.正交分解法 将不在坐标轴上的各力分别分解到x轴上和y轴上, F 合=0 x 运用两坐标轴上的合力等于零的条件 解题, Fy合=0 多用于三个以上共点力作用下的物体的平衡.值得注 意的是:对x、y方向选择时,尽可能使落在x、y轴上的 力最多;被分解的力尽可能是已知力,不宜分解待求 力.
第一课时
共点力的平衡条件


知识与技能 1.理解共点力的平衡条件. 2.能应用共点力的平衡条件解决平衡问题. 过程与方法 学会应用共点力平衡条件求解平衡问题的基 本方法. 情感、态度与价值观 学会由牛顿定律推导物体的平衡条件.

你看过走钢丝的杂技表演吗?你玩过不倒翁 吗?(见下图)你想探究一下什么是平衡和平衡 条件吗?

1.平衡状态 一个物体在共点力作用下,保持静止状态或 匀速直线运动状态,则这个物体处于平衡状 态.例如沿水平路面匀速行驶的汽车、悬挂 在房顶的吊灯、工厂里耸立的大烟囱、宏伟 的跨海大桥等等,都处于平衡状态.

特别提醒: 静止与v=0是两个不同的概念.v=0且a=0同 时满足时为静止,仅有v=0但a≠0,不是静止, 例如小球上抛运动到最高点v=0但a=g,不是 静止状态,自然也不是平衡状态.

用牛顿运动定律解决问题(二)

用牛顿运动定律解决问题(二)
第四章 第7节
第27页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
(五)类题训练巩固提升 如图所示,质量为m的物体,在水平力F的作用下,沿倾角 为α的粗糙斜面向上做匀速运动,求水平推力的大小.
第四章 第7节
第28页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
第四章 第7节
第31页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
2.超重、失重的分析
第四章 第7节
第32页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
第四章 第7节
第33页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
[例1]
共研经典 如图所示,在一细绳C点系住一重物P,细绳两端
A、B分别固定在墙上,使AC保持水平,BC与水平方向成30° 角,已知细绳最多只能承受200 N的拉力,那么C点悬挂重物的 重力最多为多少?这时细绳的哪一段即将拉断?
第四章 第7节
第23页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
课前新知预习 课堂师生共研 课后提升考能
(一)授你破题锦囊 由物体的重力大于钢丝的最大拉力,明确物体所处的状 态.
合力为零 2.平衡条件:__________.
第四章 第7节
第5页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
当物体的速度为零时,是否一定处在平衡状态?
提示:不一定,如物体竖直上抛到最高点时,速度为零, 但合外力为重力,物体没有处在平衡状态.

高一物理《47 用牛顿运动定律解决问题(2)》课件

高一物理《47 用牛顿运动定律解决问题(2)》课件

(g取10 m/s2).
【解析】 人举物体时,其最大举力是确定的,由于电梯做加速
运动,物体有“超重”和“失重”两种情况,其运动可由牛顿 第二定律分析.加速下降时,合外力向下,对物体而言,重力大于 举力.反之,重力小于举力. (1)站在地面上的人,最大举力为 F=m1g=60×10 N=600 N. 在加速下降的电梯内,人的最大举力F仍为600 N,由牛顿第二 定律得m2g-F=m2a,
a=0时,是静止,是平衡状态 v=0 a≠0时,不是静止,不是平衡状态
2.对共点力作用下物体平衡条件的理解 (1)合
=0. ,其中 Fx

Fx合=0 ② Fy合=0
和 Fy

分别是将力进
行正交分解后, 物体在 x 轴和 y 轴上所受的合力.
根据一个物体受三个力作用处于平衡状态,则三个力的 任意二个力的合力大小等于第三个力大小,方向与第三个力 方向相反.在如右图所示中可得出F1与F2的合力F合竖直向 上,大小等于F,由三角函数关系
可得出:F合=F1· 30°=F=mPg,F2=F1· 30°.当F1达到最 sin cos
大值200 N时,mPg=100 N,F2=173 N,在此条件下,BC段绳子即
(1)判断超、失重现象关键是看加速度方向,而不是运动方向.
(2)处于超重状态时,物体可能做向上加速或向下减速运动. (3)处于失重状态时,物体可能做向下加速或向上减速运动.
下列说法正确的是(
)
A.游泳运动员仰卧在水面静止不动时处于失重状态
B.蹦床运动员在空中上升和下落过程中都处于失重状态 C.举重运动员在举起杠铃后不动的那段时间内处于超重状态
mg A.F= B.F=mgtan θ tan θ mg C.FN= D.FN=mgtan θ tan θ

物理必修用牛顿运动定律解决问题二课件

物理必修用牛顿运动定律解决问题二课件

910N,方向竖直向下。
超重对宇航员的影响
宇航员在飞船起飞和返回地 面时,处于超重状态,特别是在 升空时,超重可达重力的9倍,超 重使人不适,起初会感到头晕、 呕吐,超重达到3倍重力时既感到 呼吸困难;超重达到4倍重力时, 颈骨已不能支持头颅,有折断的 危险。所以升空时宇航员必须采 取横卧姿势,以增强对超重的耐 受能力。
宇航员的 平躺姿势
用弹簧秤匀速拉物体时,突然向上减 速运动,弹簧秤的示数如何变化?
物体向上减速时:
F
根据牛顿第二定律:
G - F =maaBiblioteka F = G - ma < G
物体所受的拉力F与物体对弹簧秤
的压力F′(弹簧秤的示数)小于 v
物体的重力
G
2、失重
物体对支持物的压力(或 对悬挂物的拉力) 小于 物体所受到的重力的情 况称为失重现象。
用牛顿运动定律 解决问题(二)
物体的受力情况
物体向上加速时:
F
根据牛顿第二定律:
F-G=ma
a
F = ma+ G > G
物体所受的拉力F与物体对 弹簧秤的拉力F′(弹簧秤的
v
示数)大于物体的重力。
G
超重和失重
1、超重
物体对支持物的压 力(或对悬挂物的 拉力) 大于物体所 受到的重力的情况 称为超重现象。
本节小结
1、超重 2、失重 3、完全失重 4、共点力的平衡条件
再见!
空间站中的宇航员
例1.下列四个实验中,不能在绕地球飞 行的太空实验舱中完成的是( ABD )
A.用弹簧秤测物体的重力 B.用天平测物体的质量 C.用温度计测舱内的温度 D.用水银气压计测舱内气体的压强
共点力的平衡条件

7.用牛顿运动定律解决问题(二)(附答案)

7.用牛顿运动定律解决问题(二)(附答案)

7.用牛顿运动定律解决问题(二)知识点一:平衡状态1.若一个物体处于平衡状态,则此物体一定是A.静止的B.匀速直线运动C.速度为零D.各共点力的合力为零2.下列处于平衡状态的物体是A.直道上匀速跑过的法拉利赛车B.百米竞赛中运动员的起跑时速度为零的瞬间C.被张怡宁击中的乒乓球与球拍相对静止时D.乘客在加速启动的列车中静止不动3.物体受到与水平方向成30°角的拉力F T的作用,向左做匀速直线运动,如图所示,则物体受到的拉力F T与地面对物体的摩擦力的合力的方向是A.向上偏左B.向上偏右C.竖直向上D.竖直向下知识点二:共点力平衡条件的应用4.长方体木块静止在倾角为θ的斜面上,其受力情况如图所示,那么木块对斜面作用力的方向A.沿斜面向下B.垂直于斜面向下C.沿斜面向上D.竖直向下5.共点的五个力平衡,则下列说法中不正确的是A.其中四个力的合力与第五个力等大反向B.其中三个力的合力与其余的两个力的合力等大反向C.五个力合力为零D.撤去其中的三个力,物体一定不平衡6.用细线AO、BO悬挂重物,如右图所示,BO水平,AO与水平方向成45°角,若AO、BO能承受的最大拉力分别为10 N和5 N,OC绳能承受的拉力足够大。

为使细线不被拉断,重物G最大重力为多少?知识点三:对超重、失重的理解7.以下关于超重与失重的说法正确的是A.游泳运动员仰卧在水面静止不动时处于失重状态B.在超重现象中,物体的重力是增大的C.处于完全失重状态的物体,其重力一定为零D.如果物体处于失重状态,它必然有向下的加速度8.如图所示,一水桶侧壁上不同高度处开有两小孔,把桶装满水,水从孔中流出。

用手将桶提至高处,然后松手让桶落下,在水桶下落的过程中A.水仍以原流速从孔中流出B.水仍从孔中流出,但流速变快C.水几乎不从孔中流出D.水仍从孔中流出,但两孔流速相同9.如图所示,一个质量为50 kg的人,站在竖直向上运动着的升降机内,他看到升降机上挂着质量为5 kg重物的弹簧测力计上的示数为40 N,这时人对升降机地板的压力是(g 取10 m/s2)A.600 N B.400 NC.500 N D.以上答案都不对10.某人在地面上最多能举起60 kg的物体,而在一个加速下降的电梯里最多能举起80 kg的物体。

4-7用牛顿运动定律解决问题(二)

4-7用牛顿运动定律解决问题(二)

第四章
7.用牛顿运动定律解决问题(二)
成才之路 ·物理 ·人教版 · 必修1
解法 3 用相似三角形求解
第四章
7.用牛顿运动定律解决问题(二)
成才之路 ·物理 ·人教版 · 必修1
取足球作为研究对象,其受重力 G、墙壁的支持力 F1、 悬绳的拉力 F2,如图所示,设球心为 O,由共点力的平衡条 件可知,F1 和 G 的合力 F 与 F2 大小相等、方向相反,由图 F AO 1 可知,三角形 OFG 与三角形 AOB 相似,所以G= AB= cosα F2=G/cosα=mg/cosα F1 OB G =AB=tanα F1=Gtanα=mgtanα。
第四章
7.用牛顿运动定律解决问题(二)
成才之路 ·物理 ·人教版 · 必修1
(3)在完全失重状态下,平常由重力产生的一切物理现象 都会完全消失,比如物体对桌面无压力,单摆停止摆动,浸 在水中的物体不受浮力等。靠重力才能使用的仪器,也不能 再使用,如天平、液体气压计等。
第四章
7.用牛顿运动定律解决问题(二)
第四章
7.用牛顿运动定律解决问题(二)
成才之路 ·物理 ·人教版 · 必修1
考点题型设计
第四章
7.用牛顿运动定律解决问题(二)
成才之路 ·物理 ·人教版 · 必修1
题型 1
物体的平衡
沿光滑的墙壁用网兜把一个足球挂在 A 点(如图),
足球的质量为 m, 网兜的质量不计, 足球与墙壁的接触点为 B, 悬绳与墙壁的夹角为 α, 求悬绳对球的拉力和墙壁对球的支持 力。
匀速直线运动 状态,则该物体处于平衡状态。
3.平衡条件: 共点力作用下物体的平衡条件是 合力为零,即 F 合=0。
第四章

物理:4.7《用牛顿运动定律解决问题(二)》课件(新人教版必修1)

物理:4.7《用牛顿运动定律解决问题(二)》课件(新人教版必修1)

学点1 学点 共点力的平衡条件
⑴平衡状态:如果一个物体在力的作用下,保持静止或匀速 平衡状态:如果一个物体在力的作用下, 直线运动状态,我们就说这个物体处于平衡状态。 直线运动状态,我们就说这个物体处于平衡状态。 ⑵共点力作用下物体的平衡条件是合力为0。 共点力作用下物体的平衡条件是合力为0 ⑶平衡条件的四个推论 若物体在两个力同时作用下处于平衡状态, ①若物体在两个力同时作用下处于平衡状态,则这两个力大小 相等、方向相反,且作用在同一直线上,其合力为零, 相等、方向相反,且作用在同一直线上,其合力为零,这就是初中 学过的二力平衡。 学过的二力平衡。 物体在三个共点力作用下处于平衡状态, ②物体在三个共点力作用下处于平衡状态,任意两个力的合力 与第三个力等大、反向。 与第三个力等大、反向。 物体在n个非平行力同时作用下处于平衡状态时 个非平行力同时作用下处于平衡状态时, 个力必定 ③物体在 个非平行力同时作用下处于平衡状态时,n个力必定 共面共点,合力为零,称为n个共点力的平衡 其中任意(n-1)个力 个共点力的平衡, 共面共点,合力为零,称为 个共点力的平衡,其中任意 个力 的合力必定与第n个力等大 反向,作用在同一直线上。 个力等大、 的合力必定与第 个力等大、反向,作用在同一直线上。 当物体处于平衡状态时, ④当物体处于平衡状态时,沿任意方向物体的合力均为零。
学点2 学点 超重和失重 (1)实重:物体实际所受的重力。物体所受重力不会因 实重:物体实际所受的重力。 物体运动状态的改变而变化。 物体运动状态的改变而变化。 视重:当物体在竖直方向有加速度时( (2)视重:当物体在竖直方向有加速度时(即ay≠0), ), 物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力, 物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力, 此时弹簧测力计或台秤的示数叫物体的视重。 此时弹簧测力计或台秤的示数叫物体的视重。 说明: 说明:正因为当物体竖直方向有加速度时视重不再等于 实重,所以我们在用弹簧测力计测物体重力时, 实重,所以我们在用弹簧测力计测物体重力时,强调应在静止 或匀速运动状态下进行。 或匀速运动状态下进行。 (3)对超重现象的理解 ) 特点: ①特点:具有竖直向上的加速度 运动形式:物体向上加速运动或向下减速运动 物体向上加速运动或向下减速运动。 ②运动形式 物体向上加速运动或向下减速运动。 说明:当物体处于超重状态时,只是拉力( 说明:当物体处于超重状态时,只是拉力(或对支持物的 压力)增大了,是视重的改变,物体的重力始终未变。 压力)增大了,是视重的改变,物体的重力始终未变。

4-7-2用牛顿运动定律解决问题(二)超重和失重、从动力学看自由落体运动

4-7-2用牛顿运动定律解决问题(二)超重和失重、从动力学看自由落体运动




规律总结:(1)判断超重现象和失重现象,其 关键是看加速度的方向,而不是运动的方 向. (2)如知道物体处于超重状态,只能知道物体 的加速度方向向上,物体是向上加速、还是 向下减速却无法判断. (3)如求物体的视重,则可选加速度方向为正 方向,分析物体受力,利用牛顿第二定律求 得.



变式训练1 一个人站在磅秤上,在他蹲下的 过程中,磅秤的示数将 ( ) A.先小于体重,后大于体重,最后等于体 重 B.先大于体重,后小于体重,最后等于体重 C.先小于体重,后等于体重 D.先大于体重,后等于体重 答案:A




解析:人蹲下的过程经历了加速向下,减速 向下和静止这三个过程. 在加速向下时,人获得向下的加速度a,由牛 顿第二定律得: mg-FN=ma. FN=m(g-a)<mg. 由此可知弹力FN将小于重力mg.
F=mg F=mg
F=m(g F>mg +a) F=m(g F<mg

特别提醒:



(1)超重与失重不是重力本身变了,而是物体 对竖直悬绳的拉力或对水平支持物的压力发 生了变化,若弹力大于重力是超重,反之是 失重. (2)从牛顿第二定律可以知道,加速度方向是 超失重判断的关键,若加速度方向向上(包括 斜向上),物体处于超重状态;若加速度方向 向下(包括斜向下),物体处于失重状态. (3)利用超失重现象可以依据加速度方向定性 的分析弹力的情况,以避免直接列式计算的 繁琐.
1 2 2h ∵h= gt ,t= 2 g 2×0.45 t1= s=0.3s 10 从最高点下落至手触水面,所需的时间为: 2×10.45 t2= s≈1.4s. 10 所以运动员在空中用于完成动作的时间约为: t=1.7s.

第七课时 用牛顿运动定律解决问题(二)

第七课时 用牛顿运动定律解决问题(二)
栏 目 链 接
答案:AD
知 识 清 单
要点2
超重和失重
1 .不论物体处于何种运动状态,物体的重力并不发
生变化. 2.超重:当物体具有 ________ 向上 的加速度时 (包括向上 加速或向下减速两种情况),物体对支持物的压力(或对悬挂 物的拉力)________ 大于 物体所受重力的现象. 3.失重:物体具有 ________ 向下 的加速度时(包括向下加 速或向上减速两种情况),物体对支持物的压力(或对悬挂物 的拉力)________ 小于 自身重力的现象.
栏 目 链 接
由牛顿第三定律,人对座椅的压力FN2′=FN2,则 FN2′ 8 mg =3. 8 答案:(1)0 (2) 3 名师点睛:解此类题同样要正确选取研究对象,以加 速度方向为正方向,应用牛顿第二定律列式求解.还要注 意的是,应用牛顿第二定律求解的结果是人受的力,还要 根据牛顿第三定律加以说明.
零的状态.
综 合 拓 展
2.求解共点力作用下物体平衡的方法.
(1) 解三角形法:这种方法主要用来解决三力平衡问
题.根据平衡条件并结合力的合成或分解的方法,把三个
栏 目 链 接
平衡力转化为三角形的三条边,然后通过解这个三角形求
解平衡问题.若力的三角形不是直角三角形,可利用力的 三角形与空间几何三角形相似求解. (2)正交分解法:处理三力或三力以上的平衡问题时非 常方便.此时平衡条件可表示为Fx合=0,Fy合=0.
栏 目 链 接
解析:设座舱距地面30 m时速度为v,h1=50 m, h2=30 m. (1)开始自由下落过程人和座舱只受重力,此时a= g,由牛顿第二定律得:mg-FN1=ma则FN1=0
(2)开始自由下落的阶段,由运动学公式得: v2=2gh1① 制动减速阶段,由运动学公式得:v2=2ah2② 由牛顿第二定律得:FN2-mg=ma③ 5 由①②得:a= g④ 3 8 由③④得:FN2= mg 3

牛顿运动定律的应用(二)修订版讲义

牛顿运动定律的应用(二)修订版讲义

牛顿运动定律应用(二)一、基础知识1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。

理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:tv a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。

(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。

);(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。

惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。

质量是物体惯性大小的量度。

(4)牛顿第一定律描述的是物体在不受任何外力时的状态。

而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。

它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F=0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。

2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。

公式F =ma. 理解要点:(1)牛顿第二定律定量揭示了力与运动的因果关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。

物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。

用牛顿运动定律解决问题(二)—多过程问题

用牛顿运动定律解决问题(二)—多过程问题

用牛顿运动定律解决问题(二)—多过程问题例1:水平传输装置如图所示,在载物台左端给物块一个初速度.当它通过如图方向转动的传输带时传输时间为t1;当皮带轮改为与图示相反的方向传输时,通过传输带的时间为t2;当皮带轮不转动时,通过传输带的时间为t3,下列说法中正确的是()A.t1一定小于t2B.t2>t3>t1C.可能有t3=t2=t1D.一定有t3=t2例2:如图,传送带与地面倾角为37°,AB长16m,传送带以10m/s的速率逆时针转动,在带上A端无初速的放一质量为0.5kg物体,它与带间的动摩擦因数为0.5,试分析物体从A到B做何运动;并求出从A运动到B所需时间?练1:如图所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m.求:(1).物体刚放上传送带时的加速度是多大?(2).物体从A到B需要的时间为多少?例3:杂技演员在进行“顶杆”表演时,用的是一根质量可忽略不计的长竹竿,质量为m = 30kg 的演员自杆顶由静止开始下滑,滑到杆底时速度正好为零.在竹竿底部与下面顶杆人肩部之间有一传感器,传感器显示顶杆人肩部的受力情况如图所示,取g = 10m/s2.求:(1)杆上的人下滑过程中的最大速度.(2)竹竿的长度.练2:航模兴趣小组设计出一架遥控飞行器,其质量m=2kg,动力系统提供的恒定升力F=28N。

试飞时,飞行器从地面由静止开始竖直上升。

设飞行器飞行时所受的阻力大小不变,g取10m/s2。

(1)第一次试飞,飞行器飞行t1=8s时到达高度H=64m。

求:飞行器所受阻力f的大小;(2)第二次试飞,飞行器飞行t2=6s时遥控器出现故障,飞行器立即失去升力。

求:飞行器能达到的最大宽度h;(3)为了使飞行器不致坠落到地面,求:飞行器从开始下落到恢复升力的最长时间t3。

人教版高中物理必修一用牛顿运动定律解决问题(二)课件

人教版高中物理必修一用牛顿运动定律解决问题(二)课件

如果人下蹲后又突然站起,情况又会怎样?
物体对支持物 的压力(或对悬 挂物的拉力) 等 于0的情况称为 完全失重现象。
四、完全失重
瓶中的水为什么不会流出?
这是因为液体受到重力 而使内部存在压力,小 孔以上部分的水对以下 部分的水的压力造成小 孔处的水流出。
当瓶子自由下落时,瓶中 的水处于完全失重状态, 小孔以上部分的水对以下 部分的水的没有压力,小 孔没有水流出。
三、从物理走向生活
1、电梯从底楼到顶楼
匀加速上升 匀速上升 匀减速上升 支持力大于重力 超重 支持力大于重力
支持力小于重力 失重
三、从物理走向生活
2、电梯从顶楼到底楼
匀加速下降 匀速下降 匀减速下降 支持力小于重力 失重 支持力等于重力
支持力大于重力 超重
特别注意
“超重”、“失重”现象与物体运动的速度 方向和大小均无关,只决定于物体的加速度方 向.
爱在哪里,哪里就有感动;
梦在哪里,哪里就有未来;
你在哪里,哪里就有
汇文中学的真诚祝福
(09广东)某人在地面上用弹簧秤 称得体重为490N。他将弹簧秤移至 电梯内称其体重,t0至t3时间段内, 弹簧秤的示数如图所示,电梯运行 的v-t图可能是(取电梯向上运动的 方向为正)
物体对支持物 的压力(或对悬 挂物的拉力) 大于物体所受 到的重力的情 况称为超重现 象。
思考
a 运动 v 类型 方向 方向 加速 上升 减速 上升 加速 下降 减速 下降 方程
发现
压力F,大小 F,与mg (F,=F) 谁大 现象
F—mg=ma F,=mg+ma F, >mg 超重
物体对支持物 的压力(或对悬 挂物的拉力) 小于物体所受 到的重力的情 况称为失重现 象。

4.7用牛顿运动定律解决问题(二)1

4.7用牛顿运动定律解决问题(二)1

运动 过程 加速上升
速度 方向
ห้องสมุดไป่ตู้
加速度 合外力 FN与G 物体 方向 方向 的关系 状态
↑ ↓ ↑ ↓ ↓ ↑
↑ ↑ ↓ ↓ 0 0
↑ ↑ ↓ ↓ 0 0
FN>G FN>G FN<G FN<G FN=G FN=G
超重 超重 失重 失重 平衡 平衡
电 梯 的 运 动 过 程
减速下降 减速上升 加速下降 匀速下降 匀速上升
解:减速上升时,物体 处于失重状态
F1 mg ma
50 10 N 50 2 N 400 N
减速下降时,物体处于 超重状态
F2 mg ma
50 10 N 50 2 N 600 N
三、完全失重
三、完全失重
例3.在完全失重的情形下,下列说法不正确的是( )
2、如何判断物体处于超重还是失重状态? 1、只要物体向上运动,一定是超重。这种说法 正确吗?
例1. 质量为m人站在电梯中。 ①人和电梯匀速上升时,人对地板的压力F=
mg
. F
②人随电梯以加速度a匀加速上升时,人对地板的压力 F= mg ma .
③人随电梯以加速度a匀减速下降时,人对地板的压力 F= mg ma. mg
7
用牛顿运动定律解决问题(二) 第二课时
电梯里台秤的示数为什么会变化呢?
一、超重现象
一、超重现象 超重是否物体的重力增加了吗? 重力不变压力变 F F
mg
mg
v
a
向上加速
请思考:物体受到哪几个力?方向如何?谁大谁小? 与静止时相比较,哪个力发生了变化?如何求这几个 力的合力?
F mg ma

牛顿第二定律应用(2)

牛顿第二定律应用(2)

小结:物体自由沿斜面运动的时间(1)
1.在等高斜面上自由下滑的时间 加速度a=gsin 斜面长S=h/sin
下滑时间t=(2S/a)1/2= (2h/g sin2)1/2
结论:物体从等高斜面上自由下滑时, 倾角越小,下滑时间越长。
h
2.在等底斜面上自由下滑的时间 加速度a=gsin 斜面长S=L/cos
f=µN
Vt=V0+at=at
例3、一个滑雪的人,质量m=75kg,以V0=2m/s的初速度 沿山坡匀加速地滑下,山坡的倾角ß=300,在t=5s的时间内 滑下的路程s=60m,求滑雪人受到的阻力(包括滑动摩擦力 和空气阻力)。
思路:已知运动情况求受力。应先求出加速度a,再利 用牛顿第二定律F合=ma求滑雪人受到的阻力。
牛顿第二定律的应用
例题1:一个静止在水平地面上的物体,质量 是2Kg,在6.4N的水平拉力作用下沿水平地
Байду номын сангаас
面向右运动,物体与水平地面间的滑动摩擦
力是4.2N。求物体4s末的速度和4s内发生的
位移。
解:对物体进行受力分析画图如右
由图知:F合=F-f=ma
f F
a= F f 6.4 4.2 1.1m / s2
70cm,这相当于标准身高男性跳过210m高的
摩天大楼,其跳跃能力远远超过了人们以前
所公认的自然界跳高冠军——跳蚤。当沫蝉
起跳时,加速度可达到4000m/s2。求它起跳
N
时所承受的地面对它的支持力是其体重的多 少倍。(取g=10m/s2)
a F合=N-G=ma
F合 =ma=5×2N=10N 4。分析物体受力情况,建立直角坐标系,由力的合 成与分解求出F
X方向 Fcos 370 -f=ma= F合 Y方向 N+Fsin 370 -mg=0 又 f=uN 联立三式可得F=17.6N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章牛顿运动定律7用牛顿运动定律解决问题(二)学习目标1.掌握共点力的平衡条件,会用来解决有关平衡问题.2.知道超重和失重的概念,知道超重和失重产生的条件.3.能从动力学的角度理解自由落体运动.自主探究1.物体做加速运动时,速度方向与加速度方向(填“相同”或“相反”),物体做减速运动时,加速度方向与速度方向(填“相同”或“相反”).2.如果一个物体在力的作用下保持或,我们就说这个物体处于.在共点力作用下物体的平衡条件是.3.物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象叫做现象.物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象叫做现象.合作探究一、共点力的平衡条件牛顿第一定律指出了物体在不受力的情况下能够保持静止或做匀速直线运动,现实生活中物体不可能不受力的作用,但是满足一定条件的前提下,也能保持静止或匀速直线运动状态.提出问题:物体保持静止或做匀速直线运动,其共同点是什么?【例1】城市中的路灯,无轨电车的供电线路等,经常用三角形的结构悬挂.图为这类结构的一种简化模型.图中硬杆OB可绕通过B点且垂直于纸面的轴转动,钢索和杆的重量都可忽略.如果悬挂物的重量为G,角AOB等于θ,钢索OA对O点的拉力和杆OB对O点的支持力各是多大?思考讨论:(1)当θ变小时,题中所求的两个力如何变化?(2)这在实际应用过程中对材料有什么要求?1.在共点力作用下处于平衡状态的物体加速度为.2.合成法:转化成二力平衡模型,任意两个力的合力与第三个力大小,方向.3.分解法(正交分解法):转化成四力平衡模型,将其中任意一个力沿其余两个力的作用线进行分解,其分力必然与其余两个力大小、方向.二、超重和失重实验探究:在电梯中放置一台电子秤,一位同学静止地站在上面,先让电梯静止在1楼,观察电梯静止时电子秤的示数;然后启动电梯向上运动,观察此时电子秤的示数变化;电梯速度稳定后,观察此时电子秤的示数变化;到达顶楼前电梯减速上升,观察此时电子秤的示数变化;随后让电梯在向下运动至1楼,观察电子秤的示数变化情况.提出问题:(1)电梯静止时,为什么电子秤的示数等于同学的质量?(2)当电梯启动向上运动时,电子秤的示数增大的原因是什么?电梯如何运动时还会出现电子秤示数增大的现象?(3)当电梯启动向下运动时,电子秤的示数减小的原因是什么?电梯如何运动时还会出现电子秤示数减小的现象?【例2】如图所示,人的质量为m,当电梯以加速度a加速上升时,人对电梯底板压力F'是多大?思考讨论:(1)人随电梯以加速度a匀减速上升,人对电梯底板的压力为多大?(2)人随电梯以加速度a匀减速下降,这时人对电梯底板的压力又是多大?(3)人随电梯以加速度a匀加速向下运动,这时人对电梯底板的压力多大?(4)人随电梯以加速度g匀加速下降,这时人对电梯底板的压力又是多大?1.当物体具有的加速度时,物体处于超重状态.处于超重状态的物体可能运动,也可能运动.2.当物体具有的加速度时,物体处于失重状态.处于失重状态的物体可能运动,也可能运动.3.物体对测力计的作用力的读数等于0的状态叫做状态.4.物体无论处于超重还是失重状态时,物体所受的重力都发生变化.课堂检测1.如图所示,光滑半球形容器固定在水平面上,O为球心,一质量为m的小滑块,在水平力F的作用下静止在P点.设滑块所受支持力为F N,OP与水平方向的夹角为θ.下列关系正确的是()A.F=B.F=mg tanθC.F N=D.F N=mg tanθ2.下列关于超重和失重的说法中,正确的是()A.物体处于超重状态时,其重力增加了B.物体处于完全失重状态时,其重力为零C.物体处于超重或失重状态时,其质量不变,但重力发生了改变D.物体处于超重或失重状态时,其质量及受到的重力都没有变化3.一种巨型娱乐器械可以让人体验超重和失重的感觉.一个可乘十多个人的环形座舱套在竖直柱子上,由升降机构送上几十米的高处,然后让座舱自由下落.下落一定高度后,制动系统启动,座舱做减速运动,到地面时刚好停下.下列判断正确的是()A.座舱在自由下落的过程中人处于超重状态B.座舱在自由下落的过程中人处于失重状态C.座舱在减速运动的过程中人处于失重状态D.座舱在减速运动的过程中人处于超重状态4.某中学实验小组的同学在电梯的天花板上固定一根弹簧测力计,使其测量挂钩(跟弹簧相连的挂钩)向下,并在钩上悬挂一个重为10N的钩码.弹簧测力计弹力随时间变化的规律如图所示,根据F t图象,下列分析正确的是()A.从时刻t1到t2,钩码处于超重状态B.从时刻t3到t4,钩码处于失重状态C.电梯可能开始停在15楼,先加速向下,接着匀速向下,再减速向下,最后停在1楼D.电梯可能开始停在1楼,先加速向上,接着匀速向上,再减速向上,最后停在15楼5.如图所示,放在水平桌面上的木块A处于静止状态,所挂的砝码和托盘的总质量为0.6kg,弹簧测力计的拉力为2N,滑轮摩擦不计.若突然将悬挂托盘的细线剪断,则下列说法正确的是(g取10m/s2)()A.弹簧测力计的示数将变小B.弹簧测力计的示数将不变C.木块A受到的合力为6ND.木块A受到的合力仍为零6.如图所示,两根等长的轻绳将日光灯悬挂在天花板上,两绳与竖直方向的夹角都为45°,日光灯保持水平,所受重力为G,左右两绳的拉力大小分别为()A.G和GB.G和GC.G和GD.G和G7.如图所示,A、B两球完全相同,质量为m,用两根等长的细线悬挂在O点,两球之间夹着一根劲度系数为k的轻弹簧,静止不动时,弹簧位于水平方向,两根细线之间的夹角为θ,则弹簧的长度被压缩了()A. B.C. D.8.如图所示,小球靠在竖直固定挡板上与斜面保持静止,不计摩擦,当缓慢增大斜面的倾角时,小球对挡板的压力F N1和小球对斜面的压力F N2的变化情况是()A.F N1变大,F N2变大B.F N1变大,F N2变小C.F N1变小,F N2变小D.F N1变小,F N2变大9.某科技兴趣小组用实验装置来模拟火箭发射卫星.火箭点燃后从地面竖直升空,t1时刻第一级火箭燃料燃尽后脱落,t2时刻第二级火箭燃料燃尽后脱落,此后不再有燃料燃烧.实验中测得火箭竖直方向的速度—时间图象如图所示,设运动过程中不计空气阻力,燃料燃烧时产生的推力大小恒定.下列判断正确的是()A.t2时刻火箭到达最高点,t3时刻火箭落回地面B.火箭在0~t1时间内的加速度大于t1~t2时间内的加速度C.t1~t2时间内火箭处于超重状态,t2~t3时间内火箭处于失重状态D.火箭在t2~t3时间内的加速度大小等于重力加速度10.在离地面30m高处,将一小球竖直向上抛出,到达最大高度h的时,速度为10m/s,则小球抛出5s末的速度大小、方向和5s内位移的大小和方向是(g取10m/s2)()A.v=30m/s,方向竖直向上B.v=30m/s,方向竖直向下C.x=45m,方向竖直向下D.x=25m,方向竖直向下11.滑板运动是一项非常刺激的水上运动,研究表明,在进行滑板运动时,水对滑板的作用力F N垂直于板面,大小为kv2,其中v为滑板速率(水可视为静止).某次运动中,在水平牵引力的作用下,当滑板和水面的夹角θ=37°时,滑板做匀速直线运动,相应的k=54kg/m,人和滑板的总质量为108kg,试求(重力加速度g取10m/s2,sin37°=0.6,忽略空气阻力):(1)水平牵引力的大小;(2)滑板的速率.12.质量为200kg的物体,置于升降机内的台秤上,从静止开始上升.运动过程中台秤的示数F与时间t的关系如图所示.求升降机在7s内上升的高度.(g取10m/s2)参考答案自主探究1.相同相反2.静止匀速直线状态平衡状态合力为03.超重失重合作探究一、共点力的平衡条件1.02.相等相反3.相等相反二、超重和失重1.向上向上加速向下减速2.向下向下加速向上减速3.完全失重4.不会课堂检测1.A解析:对小滑块受力分析如图所示,根据三角函数关系可得F=,F N=,所以选项A正确.2.D解析:物体处于超重或者失重状态时,质量、重力大小均没有发生变化,只是对支持物的压力或对悬挂物的拉力发生了变化.3.BD解析:人随座舱自由下落时,加速度为重力加速度,座舱支持力为零,人处于完全失重状态,选项A错误,选项B正确;人随座舱减速下降时,座舱支持力大于人的重力,人处于超重状态,选项C错误,选项D正确.4.C解析:0~t1阶段,物体处于平衡(静止或匀速运动)状态;t1~t2阶段,物体处于失重(加速下降或减速上升)状态;t2~t3阶段,物体处于平衡状态;t3~t4阶段,物体处于超重(加速上升或减速下降)状态,选项C正确.5.BD解析:细线剪断前,木块A受到向左的静摩擦力4N,说明最大静摩擦力不小于4N;细线剪断后,细线的拉力消失,桌面对A的静摩擦力立即变为向右的2N,使A 仍处于静止状态,合力仍为零.6.B解析:设绳子中拉力为F,日光灯受力如图所示.则F=G sin45°=G,选项B正确.7.C解析:对A球受力分析如图所示,由平衡条件得:F=mg tan,又F=kx,则x=,选项C正确.8.A解析:按照力的分解原则,将小球的重力G沿垂直于挡板和垂直于斜面方向分解为F1和F2,则F N1=F1,F N2=F2,如图所示,由于斜面倾角α在缓慢变大,故力F2在缓慢地改变大小和方向,而F1方向不变,大小缓慢变化,但无论如何变化,F1与F2、F1'与F2'、F1″与F2″…的合力始终为重力G(即对角线一定),由图可知,倾角α增大时,F N1、F N2均是增大,故选项A正确.9.CD解析:从题中图象可知,火箭一直向上运动,在t2时刻火箭速度达到最大,t3时刻火箭到达最高点,选项A错误;0~t1时间内的加速度小于t1~t2时间内的加速度,选项B错误;t1~t2时间内火箭向上加速,处于超重状态,t2~t3时间内火箭向上减速,处于失重状态,选项C正确;在t2~t3时间内火箭只受重力的作用,向上减速,加速度的大小等于重力加速度,选项D正确.10.BD解析:根据上抛运动的特点知,物体上升到最高点后,再下落距离h时,速度大小也为10m/s,由v2=2g×h得h=20m.由h=得初速度v0=20m/s.抛出5s后的速度v=v0-gt=20m/s-10×5m/s=-30m/s,负号说明方向竖直向下,选项A错误,选项B正确;位移x=v0t-gt2=20×5m-×10×52m=-25m,负号说明方向竖直向下,选项C 错误,选项D正确.11.解析:(1)以滑板和运动员为研究对象,其受力如图所示.由共点力平衡条件可得F N cosθ=mg①F N sinθ=F②由①②联立,得F=810N.(2)F N=又F N=kv2得v==5m/s.答案:(1)810N(2)5m/s12.解析:由题中图象可知,升降机在0~2s内加速上升,2~5s内匀速上升,5~7s内减速上升.设加速上升和减速上升时的加速度大小分别为a1和a3.则加速时有F1-mg=ma1代入数据解得a1=5m/s2此过程升降机上升的高度h1=a1×5×22m=10m升降机匀速运动时的速度v=a1t1=5×2m/s=10m/s此过程升降机上升的高度h2=vt2=10×3m=30m 减速时有mg-F3=ma3代入数据解得a3=5m/s2此过程升降机上升的高度h3=a3×5×22m=10m所以升降机在7s内上升的高度h=h1+h2+h3=10+30+10m=50m.答案:50m。

相关文档
最新文档