集合专项训练题

合集下载

高中数学 集合专项训练含答案

高中数学 集合专项训练含答案

高中数学 集合专项训练含答案一、单选题1.设集合(){}0.5log 10A x x =->,{}24x B x =<,则( ) A .A =B B .A B ⊇ C .A B B = D .A B B ⋃=2.已知集合{0A x x =≤或}1≥x ,{}39x B x =<,则A B =( ) A .{}12x x ≤<B .{0x x ≤或}12x ≤<C .{}2x x <D .{}02x x ≤<3.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的B .T 、V 中至多有一个关于乘法是封闭的C .T 、V 中有且只有一个关于乘法是封闭的D .T 、V 中每一个关于乘法都是封闭的4.已知集合(){}2log 21M x y x ==-,103x N x x ⎧⎫+=≤⎨⎬-⎩⎭,则M N =( )A .1,2⎛⎫+∞ ⎪⎝⎭B .[)1,-+∞C .1,32⎛⎫ ⎪⎝⎭D .1,32⎛⎤ ⎥⎝⎦ 5.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( )A .A C ⋂=∅B .AC A ⋃= C .B C B =D .A B C =6.已知集合{}1,0,1,2A =-,{}03B x x =≤≤,则A B =( )A .{}1B .{}2C .{}1,2D .{}0,1,2 7.已知集合{1,3}A =,{(3)()0}B xx x a =--=∣,若A B A ⋃=,则=a ( ) A .1 B .1-或1 C .1或3 D .38.设集合{A x y =,(){}ln 2B y y x ==-,(){}2,C x y y x ==,则下列集合不为空集的是( )A .A CB .BC ⋂ C .B A ⋂RD .A B C ⋂⋂ 9.已知集合{}2320A x x x =-+>,{}1,B m =,若A B ⋂≠∅,则实数m 的取值范围是( )A .()1,2B .()(),12,-∞+∞C .[]1,2D .()2,+∞10.若集合(){}ln 10A x x =-≤,{}2B x x =≥,则()R AB =( ) A .(2,2)- B .(1,2)C .[)1,2D .(1,2]11.()Z M 表示集合M 中整数元素的个数,设{}1|8A x x =-<<,{}|527B x x =-<<,则()Z A B =( )A .5B .4C .3D .212.已知集合{}10,1,2,A B x y x ⎧⎫===⎨⎬⎩⎭∣,则A B ⋃=( ) A .{}0,1,2 B .{}1,2 C .()0,∞+ D .[)0,∞+13.已知集合{}{}220,1A x x x B x x =+-<=<-,则()U A B =( )A .{}11x x -<<B .{}11x x -≤<C .{}21x x -<<-D .{}12x x -≤<14.已知集合{}2230A x x x =--≤,{}22B x x =-≤<,则A B ⋃=( ) A .{}12x x -≤< B .{}12x x -≤≤ C .{}22x x -<< D .{}23x x -≤≤15.设集合{}*5,,5m M x x C m N m ==∈≤,则M 的子集个数为( ) A .8 B .16 C .32 D .64二、填空题16.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______.17.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________. 18.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________. 19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______.21.若将抛掷一枚硬币所出现的结果“正面(朝上)”与“反面(朝上)”,分别记为H 、T ,相应的抛掷两枚硬币的样本空间为{},,,HH HT TH TT Ω=,则与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间的子集为______.22.已知集合{}0,1,2A =,则集合{}3,B b b a a A ==∈=______.(用列举法表示)23.已知集合{}2280P x x x =-->,{}Q x x a =≥,若P Q Q ⋂=,则实数a 的取值范围是___________.24.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( )(2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( )(4)满足{}{}00,1,2,3A 的集合A 的个数是322-个.( )25.以下各组对象不能组成集合的是______(用题号填空).①中国古代四大发明 ②地球上的小河流③方程210x -=的实数解 ④周长为10cm 的三角形⑤接近于0的数三、解答题26.设集合{|34}{|211}A x x B x m x m =-≤≤=-<<+,(1)当 1m =时,求A B ;(2)若,B A ⊆求实数m 的取值范围.27.在①A B A ⋃=,②A B ⋂≠∅,③B A ⊆R 这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由.已知一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a ,b 的值;(2)求集合B ;(3)是否存在实数m ,使得_______.(注:如果选择多个条件分别解答,按第一个解答计分).28.设:24p x <<,q :实数x 满足()()()300x a x a a +-<>.(1)若1a =,且p ,q 都为真命题,求x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.29.设全集U =R ,已知集合2{|2350}A x x x =+-≤,{(8)0}B xx x =->∣. (1)求()R ,A B A B ⋂⋃;(2)求()R ,A B A B ⋂⋃.30.把区间[)1,+∞看成全集,写出它的下列子集的补集:()1,A =+∞;{}1B =;{}15C x x =≤<;[)3,D =+∞.【参考答案】一、单选题1.D【解析】【分析】化简集合,A B ,再判断各选项的对错.【详解】因为0.5{|log (1)0}{|12}A x x x x =->=<<,{}24={|2}x B x x x =<<, 所以A B ⊆且A B ≠,所以A 错,B 错,{|12}A B x x A =<<=,C 错,{|2}A B x x B =<=,D 对,故选:D.2.B【解析】【分析】解出不等式39x <,然后根据集合的交集运算可得答案.【详解】 因为{0A x x =≤或}1≥x ,{}39x B x =< {}2x x =<,所以A B ={0x x ≤或}12x ≤<, 故选:B3.A【解析】【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可.【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确.故选:A .4.C【解析】【分析】根据对数型函数定义域解法求出集合M ,根据分式不等式解法求出集合N ,再根据集合交集概念即可求得结果.【详解】由题意知(){}21log 21,2M x y x ∞⎛⎫==-=+ ⎪⎝⎭,[)101,33x N x x ⎧⎫+=≤=-⎨⎬-⎩⎭, 所以1,32M N ⎛⎫⋂= ⎪⎝⎭. 故选:C .5.C【解析】【分析】由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可.【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C6.D【解析】【分析】依题意需要找到集合A 和集合B 中的公共元素,即是集合A 中在03x ≤≤范围内的元素.【详解】由题意知,对于集合B :03x ≤≤,∴在集合A 中只有0、1、2满足条件,{}012A B ∴=,,故选:D .7.C【解析】由A B A ⋃=得到B A ⊆,直接求解即可.【详解】因为A B A ⋃=,所以B A ⊆.由题可知,1a =或3.故选:C.8.C【解析】【分析】先化简集合A ,B ,C ,再利用集合的类型和运算求解.【详解】解:因为集合{{}2A x y x x ===≥,(){}ln 2B y y x R ==-=,且(){}2,C x y y x ==为点集, 所以A C ⋂=∅,B C =∅,{}|2=<A x x R ,{}|2⋂=<B A x x R ,A B C =∅,故选:C9.B【解析】【分析】根据一元二次不等式的解法求出集合A ,结合交集的概念和运算与空集的概念即可得出结果.【详解】由题可知,{}()(){}{}232012012A x x x x x x x x x =-+>=-->=或. 因为A B ⋂≠∅,所以m A ∈,即1m <或2m >,所以实数m 的取值范围是()(),12,-∞+∞.故选:B10.B【解析】【分析】分别解出集合A 和B ,再根据集合补集和交集计算方法计算即可.【详解】 (){}{}(]ln 10|0111,2A x x x x =-≤=<-≤=, {}(][)2,22,B xx ∞∞=≥=--⋃+,()2,2B =-R , ∴()R A B =(1,2).故选:B.11.B【分析】先求得A B ,再根据()Z M 的定义求解.【详解】解:因为{}1|8A x x =-<<,{}57|527|22⎧⎫=-<<=-<<⎨⎬⎩⎭B x x x x , 所以7|12⎧⎫=-<<⎨⎬⎩⎭A B x x , 所以()4=Z A B ,故选:B12.D【解析】【分析】先解出集合B ,再求A B .【详解】{}0B x y x x⎧===>⎨⎩∣∣. 因为{}0,1,2A =,所以A B ⋃=[)0,+∞.故选:D13.B【解析】【分析】先化简集合A ,在求集合A 与集合B 补集的交集【详解】220x x +-<()()210x x ⇒+-<21x ⇒-<<所以{}|21A x x =-<<{}|1B x x =<-{}U |1B x x ⇒=≥- 所以(){}U |11AB x x =-≤< 故选:B14.D【解析】【分析】 先解一元二次不等式求出集合A ,再按集合的并集运算即可.【详解】 由题意得{}13A x x =-≤≤,因为{}22B x x =-≤<,所以{}23A B x x ⋃=-≤≤. 故选:D.15.A【解析】根据组合数的求解,先求得集合M 中的元素个数,再求其子集个数即可.【详解】因为*5,,5m x C m N m =∈≤,由14555C C ==,235510C C ==,551C =,故集合M 有3个元素,故其子集个数为328=个.故选:A.二、填空题16.3【解析】【分析】由题意可知集合B 是集合A 的子集,进而求出答案.【详解】由B A ⊆知集合B 是集合A 的子集,所以33A a ∈⇒=,故答案为:3.17.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,618.1【解析】【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:1 19.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃20.{}0,1【解析】【分析】先求出集合A ,然后根据交集的定义求得答案.【详解】 由题意,{}22A x x =-<<,所以{}0,1A B =.故答案为:{}0,1.21.∅,{}HT ,{}TH ,{},HT TH【解析】【分析】先写出与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间,再写出其全部子集即可.【详解】与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间为{},HT TH ,此空间的子集为∅,{}HT ,{}TH ,{},HT TH故答案为:∅,{}HT ,{}TH ,{},HT TH22.{0,3,6}【解析】【分析】根据给定条件直接计算作答.【详解】因{}0,1,2A =,而{}3,B b b a a A ==∈,所以{0,3,6}B =.故答案为:{0,3,6}23.()4,+∞【解析】【分析】求出集合P ,根据P Q Q ⋂=,得Q P ⊆,列出不等式即可得解.【详解】 解:{}{22804P x x x x x =-->=>或}2x <-, 因为P Q Q ⋂=,所以Q P ⊆,所以4a >.故答案为:()4,+∞.24. 假 假 假 真【解析】【分析】(1)利用真子集的定义即可判断.(2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真25.②⑤【解析】【分析】利用集合元素的基本特征判断.【详解】①中国古代四大发明是造纸术,指南针,火药和印刷术,是确定的,能构成集合; ②地球上的小河流,不确定,不能构成集合;③方程210x -=的实数解是1或-1,是确定的,能构成集合;④周长为10cm 的三角形,是确定的,能构成集合;⑤接近于0的数,不确定,不能构成集合.故答案为:②⑤三、解答题26.(1){}12A B x x ⋂=<<(2)1m ≥-【解析】【分析】(1)直接写出集合B ,再计算A B 即可;(2)分B =∅和B ≠∅列出不等式求解即可.(1)当 1m =时,{}12B x x =<<,{}12A B x x =<<;(2)若B =∅,211m m -≥+,解得2m ≥,符合题意;若B ≠∅,由B A ⊆得21121314m m m m -<+⎧⎪-≥-⎨⎪+≤⎩,解得12m -≤<, 综上:1m ≥-.27.(1)1、2;(2)当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =;(3)若选①:2m ≥;若选②:1m <或2m >;若选③:12m ≤≤.【解析】【分析】(1)由题可知x =1是方程2320ax x -+=的解,由此即可求出a ,从而求出b ;(2)根据a 、b 的值即可分类讨论求解不等式,从而得到B ;(3)若选①,则B ⊆A ,分类讨论m 的范围即可;若选②,则根据题意分类讨论即可;若选③,则先求出A R ,分类讨论即可.(1)由一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,得0a >,且方程2320ax x -+=的两根为1、b , ∴0,31,21,a b a b a ⎧⎪>⎪⎪=+⎨⎪⎪=⨯⎪⎩ 解得1,2.a b =⎧⎨=⎩ (2)由(1)可知()20ax am b x bm -++<即为()2220x m x m -++<,即()()20x m x --<.m <2时,2m x <<;m =2时,不等式无解;m >2时,2x m <<.综上,当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =.(3)由(1)知{1A x x =<或}2x >,若选①:A B A ⋃=,则B A ⊆,当2m <时,(),2B m =,不满足;当2m =时,B =∅,满足;当2m >时,()2,B m =,满足;∴选①,则实数m 的取值范围是2m ≥;若选②:A B ⋂≠∅,当2m <时,(),2B m =,则1m <;当2m =时,B =∅,不满足;当2m >时,()2,B m =,满足;∴选②,则实数m 的取值范围是1m <或2m >;若选③:B A ⊆R ,A R []1,2=,当2m <时,(),2B m =,则m ≥1,∴12m ≤<;当2m =时,B =∅,满足;当2m >时,()2,B m =,不满足.∴选③,则实数m 的取值范围是12m ≤≤.28.(1)23x << (2)43a ≥ 【解析】【分析】(1)求出命题q 为真时x 的取值后可求两者均为真命题时x 的取值范围.(2)根据条件关系可得两个范围之间的包含关系,从而可求实数a 的取值范围.(1)1a =,q :实数x 满足()()()300x a x a a +-<>即为()()130x x +-<,因为q 为真命题,故13x ,故当p ,q 都为真命题时,23x <<.(2)因为p 是q 的充分不必要条件,故(2,4)为{}|()(3)0x x a x a +-<的真子集,而{}()|()(3)0,3x x a x a a a +-<=- 故2340a a a -≤⎧⎪≥⎨⎪>⎩(等号不同时取),故43a ≥. 29.(1)()[](]()R 0,5,,58,A B A B ⋂=⋃=-∞⋃+∞(2)[)()(]R 7,0,5,8A B A B ⋂=-⋃= 【解析】【分析】(1)解不等式求得集合,A B ,由此求得()R ,A B A B ⋂⋃.(2)结合(1)来求得()R ,A B A B ⋂⋃.(1) ()()2235750x x x x +-=+-≤,解得75x -≤≤,所以[]7,5A =-,()()R ,75,A =-∞-⋃+∞.()80x x ->,解得0x <或8x >,所以()(),08,B =-∞⋃+∞,[]R 0,8B =, 所以()[](]()R 0,5,,58,A B A B ⋂=⋃=-∞⋃+∞.(2)由(1)得[)()(]R 7,0,5,8A B A B ⋂=-⋃=. 30.{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D =【解析】【分析】根据补集的定义计算可得;【详解】解:因为[)1,U =+∞,所以{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D =。

集合专题训练(含答案)

集合专题训练(含答案)

集合专题训练(含答案)1.对集合中有关概念的考查在2020年校运动会中,集合A表示参加比赛的运动员,集合B表示参加比赛的男运动员,集合C表示参加比赛的女运动员。

那么下列关系正确的是()A。

A是B的子集B。

B是C的子集C。

A与B的交集等于CD。

B与C的并集等于A解析:根据题意,A包含了所有参加比赛的运动员,B只包含了男运动员,C只包含了女运动员。

因此,B是A的子集。

选项A正确。

点评:此题考查了集合的子集概念和集合运算,需要注意从元素的角度理解集合的含义。

2.对集合性质及运算的考查已知全集U={2,3,4,5,6,7},集合M={3,4,5,7},集合N={2,4,5,6},那么下列哪个选项是正确的?A。

M与N的交集为{4,6},N等于全集UB。

M与N的并集为{2,3,4,5,6,7},N等于全集UC。

(C并N)与M的并集等于全集UD。

(C并M)与N的交集等于N解析:根据题意,M与N的交集为{4,5},N不等于全集U;M与N的并集为{2,3,4,5,6,7},N不等于全集U;(C并N)与M的并集包含了全集U中的所有元素,因此选项C正确;(C并M)与N的交集为{4},不等于N。

因此选项D错误。

点评:此题考查了集合的并、交、补运算以及集合间的关系应用。

可以使用文氏图来帮助理解。

3.对与不等式有关集合问题的考查已知集合M={x|x+3<x-1},集合N={x|-3<x<1},那么集合{ x | x-1<x }等于哪个选项?A。

M并NB。

M交NC。

实数集RD。

(M交N)的补集解析:将集合M中的不等式化简得到-3<x,将集合N中的不等式化简得到-3<x<1,因此集合M交N等于{x|-3<x<1}。

而{x|x-1<x}等价于{x|x<1},因此选项C正确。

点评:此题考查了解不等式的知识内容,同时也考查了集合的运算。

需要注意参数的取值范围以及数形结合思想的应用。

集合专项训练题

集合专项训练题

集合专项训练题一、选择题1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC B .()()AB A CC .()()A B B CD .()A B C4.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个6.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )A .1B .1-C .1或1-D .1或1-或07.若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有( )A .MN M = B . M N N = C . M N M = D .M N =∅8.下列式子中,正确的是( )A .R R ∈+B .{}Z x x x Z∈≤⊇-,0|C .空集是任何集合的真子集D .{}φφ∈ 9.下列表述中错误的是( ) A .若A B A B A =⊆ 则, B .若B A B B A ⊆=,则 C .)(B A A )(B AD .()()()B C A C B A C U U U =A BC子曰:学而不思则罔,思而不学则殆。

10.若集合{|1}X x x =>-,下列关系式中成立的为( ) A .0X ⊆ B .{}0X ∈C .X φ∈D .{}0X ⊆11.已知集合{}2|10,A x x AR φ=+==若,则实数m 的取值范围是( ) A .4<m B .4>m C .40<≤m D .40≤≤m12.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .M NC .NM D .MN φ=二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数)(3{}|,,x x a a Q b Q =+∈∈(4){}()(){}1|,____2,1,2|______3+=≤x y y x x x (5){}32|_______52+≤+x x , (6){}31|,_______|0x x x R x x x x ⎧⎫=∈-=⎨⎬⎩⎭2.若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =_____________.已知{}{}221,21A y y x x B y y x ==-+-==+,则A B =_________。

集合练习题全部

集合练习题全部

集合练习题全部在数学中,集合是由一组元素组成的。

集合练习题是用来测试和巩固对集合概念和操作的理解和运用能力的练习题。

本文将提供一些集合练习题,帮助读者进一步掌握集合的基本知识和技巧。

题目一:集合元素判断已知集合A={1, 2, 3, 4, 5},判断下列说法是否正确并给出理由。

1. 6∈A2. 3∉A解析:1. 不正确。

集合A中没有元素6,因此6不属于集合A。

2. 正确。

集合A中包含元素3,所以3属于集合A。

题目二:集合包含关系判断已知集合A={1, 2, 3, 4, 5},集合B={2, 4, 6, 8, 10},判断下列说法是否正确并给出理由。

1. A⊆B2. A∩B={2, 4}解析:1. 不正确。

集合A中的元素都在集合B中出现,但是集合B中还有额外的元素6、8、10,因此A不是B的子集。

2. 不正确。

集合A与集合B的交集为{2, 4},即A∩B={2, 4}。

题目三:集合运算已知集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},求解下列集合运算并写出结果。

1. A∪B2. A∩B3. A-B解析:1. A∪B={1, 2, 3, 4, 5, 6, 7},即A与B的并集是包含A和B中所有元素的集合。

2. A∩B={3, 4, 5},即A与B的交集是同时包含在A和B中的元素的集合。

3. A-B={1, 2},即从A中去除掉与B共有的元素后剩下的元素的集合。

题目四:集合的补集已知集合A={1, 2, 3, 4, 5},全集为U={1, 2, 3, 4, 5, 6, 7, 8, 9, 10},求解下列集合运算并写出结果。

1. A'2. U'3. (A')'解析:1. A'={6, 7, 8, 9, 10},即A的补集是全集U中不属于A的元素的集合。

2. U'={},即全集U的补集是一个空集,因为全集的补集中没有任何元素。

集合练习题带答案

集合练习题带答案

集合练习题带答案集合是数学中的基本概念,它描述了一组对象的全体。

以下是一些集合的练习题以及相应的答案,供学生练习和参考。

练习题1:判断下列集合是否正确,并给出理由。

- A = {1, 2, 3, 4}- B = {x | x是偶数}- C = {x | x是小于10的质数}答案1:- A集合正确,因为它包含了四个元素:1, 2, 3, 4。

- B集合正确,它表示所有偶数的集合,满足集合的定义。

- C集合正确,它包含了小于10的所有质数:2, 3, 5, 7。

练习题2:给定集合 A = {1, 2, 3, 4, 5},求以下集合运算的结果。

- A ∩ {2, 4, 6, 8} (A与{2, 4, 6, 8}的交集)- A ∪ {2, 4, 6, 8} (A与{2, 4, 6, 8}的并集)- A - {3, 5} (A与{3, 5}的差集)答案2:- A ∩ {2, 4, 6, 8} = {2, 4},交集包含了A和{2, 4, 6, 8}共有的元素。

- A ∪ {2, 4, 6, 8} = {1, 2, 3, 4, 5, 6, 8},并没有重复元素。

- A - {3, 5} = {1, 2, 4},差集包含了A中除去{3, 5}后剩余的元素。

练习题3:给定集合P = {x | x是大于10的整数},Q = {x | x是小于20的整数},求P ∩ Q。

答案3:P ∩ Q = {x | 10 < x < 20},交集包含了P和Q共有的元素,即大于10且小于20的所有整数。

练习题4:给定集合R = {x | x是偶数},S = {x | x是大于5的整数},求R ∩ S。

答案4:R ∩ S = {6, 8, 10, 12, ..., 18},交集包含了R和S共有的元素,即大于5的所有偶数。

练习题5:给定集合T = {x | x是小于100的质数},求T的元素个数。

答案5:T的元素个数是25,因为小于100的质数有:2, 3, 5, 7, 11,13, ..., 97。

(完整版)高考数学《集合》专项练习(选择题含答案)

(完整版)高考数学《集合》专项练习(选择题含答案)

《集合》专项练习参考答案1.(2016全国Ⅰ卷,文1,5分)设集合,,则A ∩B =( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【解析】集合A 与集合B 的公共元素有3,5,故}5,3{=B A I ,故选B .2.(2016全国Ⅱ卷,文1,5分)已知集合,则A ∩B =( ) (A ) (B ) (C ) (D )【解析】由29x <得33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =I ,故选D .3.(2016全国Ⅲ卷,文1,5分)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念,得{0,2,6,10}A B =ð,故选C .4.(2016全国Ⅰ卷,理1,5分)设集合,,则A ∩B =( )(A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得,x 1=1,x 2=3,所以A ={x |1<x <3}(大于取两边,小于取中间).对于集合B :2x -3>0,解得x >23.3{|3}2A B x x ∴=<<I .选D .5.2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限,应满足3010m m +>⎧⎨-<⎩,解得31m -<<,故选A .6.(2016全国Ⅲ卷,理1,5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>,则S ∩T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞)(C) [3,+∞) (D)(0,2]U [3,+∞)7.(2016北京,文1,5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =I ( )(A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或【解析】画数轴得,,所以,故选C .8.(2016北京,理1,5分)已知集合,,则( )(A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2,两边同时平方{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2(2,3)A B =I {|||2}A x x =<{1,0,1,2,3}B =-A B =I {0,1}{0,1,2}{1,0,1}-{1,0,1,2}-得x 2<4,解方程x 2=4得,x 1=-2,x 2=2,所以A ={x |-2<x <2}(大于取两边,小于取中间).所以A ∩B ={-1,0,1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1,0,1}.故选C .9.(2016上海,文理1,5分)设x ∈R ,则不等式31x -<的解集为_______.【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x ,故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1,两边同时平方得(x -3)2<1,解方程(x -3)2=1得,x 1=2,x 2=4,所以A ={x |2<x <4}.【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1,解得2<x <4).A ={x |2<x <4}.10.(2016山东,文1,5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð=(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}【答案】A11.(2016山东,理2,5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C【解析】对于集合A :∵y =2x >0,∴A ={y |y >0}.对于集合B :∵x 2-1=0,解得x =±1,∴B ={x |-1<x <1}(大于取两边,小于取中间).∴A ∪B =(1,)-+∞12.(2016四川,文2,5分)设集合A ={x |1≤x ≤5},Z 为整数集,则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3【答案】B【解析】{1,2,3,4,5}A =Z I ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A Z I 中元素的个数为5,选B .13.(2016四川,理1,5分)设集合{|22}A x x =-≤≤,Z 为整数集,则A I Z 中元素的个数是( )(A )3(B )4(C )5(D )6【答案】C【解析】由题意,知{2,1,0,1,2}A =--Z I ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A I Z 中元素的个数为5,选C .14.(2016天津,文1,5分)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B I = (A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{ 【答案】A【解析】∵},12|{A x x y y B ∈-==,∴当x =1时,y =2×1-1=1;当x =2时,y =2×2-1=3;当x =3时,y =2×3-1=5.∴{1,3,5},{1,3}B A B ==I .选A .15.(2016天津,理1,5分)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A I (A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D 【解析】∵}{A x x y y B ∈-==,23,∴当x =1时,y =3×1-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =4×3-2=10.∴{14710}{14}B =A B =I ,,,,,.选D .16.(2016浙江,文1,5分)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U PQ U ()ð=( ) A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5}【答案】C17.(2016浙江,理1,5分)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(C R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(−∞,−2]∪[1,+∞)【答案】B【解析】对于集合Q :∵x 2=4,解得x =±2,∴B ={x |x ≤-2或x ≥2}(大于取两边,小于取中间).18.(2016江苏,文理1,5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B I _______.【答案】{}1,2-【解析】{}{}{}1,2,3,6231,2A B x x =--<<=-I I .故答案应填:{}1,2-19.(2015全国Ⅰ卷,文1,5分)已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A∩B 中元素的个数为( )A .5B .4C .3D .2【答案】D【解析】由已知得A ={2,5,8,11,14,17,…},又B ={6,8,10,12,14},所以A∩B ={8,14}.20.(2015全国Ⅱ卷,文1,5分)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)【答案】A【解析】因为A =(-1,2),B =(0,3),所以A ∪B =(-1,3),故选A .21.(2014全国Ⅰ卷,文1,5分)已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}.22.(2014全国Ⅱ卷,文1,5分)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A∩B =( )A .∅B .{2}C .{0}D .{-2}【答案】B【解析】∵集合A ={-2,0,2},B ={x |x 2-x -2=0}={2,-1},∴A∩B ={2},故选B .23.(2013全国Ⅰ卷,文1,5分)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A},则A∩B=( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A【解析】∵B ={x |x =n 2,n ∈A}={1,4,9,16},∴A∩B ={1,4},故选A .24.(2013全国Ⅱ卷,文1,5分)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1}【答案】C【解析】由题意得M∩N ={-2,-1,0}.选C .25.(2012全国卷,文1,5分)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2},B ={x |-1<x <1},则B ⊂≠A ,故选B .26.(2011全国卷,文1,5分)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个【答案】B【解析】由题意得P =M∩N ={1,3},∴P 的子集为⌀,{1},{3},{1,3},共4个.27.(2010全国卷,文1,5分)已知集合,则 (A )(0,2)(B )[0,2](C )|0,2|(D )|0,1,2|【解析】,,选D28.(2009全国卷,文2,5分)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集,则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】,.故选A .29.(2008全国卷,文1,5分)已知集合M ={x |(x +2)(x -1)<0},N ={x |x +1<0},则M∩N =( )A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2)【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-I M N x x30.(2007全国卷,文1,5分)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂=A .∅B .1{|}2x x <C .5{|}3x x >D .15{|}23x x -<< 【答案】D .2,,4,|A x x x R B x x Z =≤∈=∈A B =I {}|22,{0,1,2}A x x B =-≤≤={}0,1,2A B =I U A B =U ()U A B I ð{3,4,5,7,8,9}A B =U {4,7,9}(){3,5,8}U A B A B =∴=I I ð。

集合综合练习题及答案

集合综合练习题及答案

集合综合练习题及答案一、选择题1、下列哪个选项不是集合?A. {1,2,3,4,5}B. {x|x是正方形}C. {x|0<x<10}D. {x|x是中国的城市}答案:D. {x|x是中国的城市}。

因为D中的元素是不确定的,而集合中的元素必须是确定的。

2、下列哪个选项是集合?A. {1,2,3,4,5}的元素都是整数。

B. {x|x是正方形}的元素都是四边形。

C. {x|0<x<10}的元素都是正数。

D. {x|x是中国的城市}的元素都是城市。

答案:A. {1,2,3,4,5}的元素都是整数。

因为选项A中的元素都是确定的,符合集合的定义。

3、下列哪个选项不是集合?A. {1,2,3,4,5}的元素个数为5。

B. {x|x是正方形}中的元素为四边形。

C. {x|0<x<10}中的元素为正数。

D. {x|x是中国的城市}中的元素为城市。

答案:B. {x|x是正方形}中的元素为四边形。

因为B中的元素不是确定的,不符合集合的定义。

二、填空题1、写出集合{1,2,3,4,5}的所有子集:______。

2、写出集合{x|x是正方形}的所有子集:______。

3、写出集合{x|0<x<10}的所有子集:______。

4、写出集合{x|x是中国的城市}的所有子集:______。

答案:1、{∅,{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}}。

2、{∅,{正方形}}。

3、{∅,{正数}}。

4、{∅,{城市}}。

2 集合综合练习题合作经营可行性分析报告一、引言随着全球化的深入发展,企业间的合作已经成为一种趋势。

通过合作经营,企业可以共享资源、降低风险、提高效率,进而实现更大的商业价值。

本报告旨在分析合作经营的可行性,为企业决策提供参考。

二、合作经营的定义与优势合作经营是指两个或多个企业在一定领域内共同出资、共同经营、共担风险、共享收益的一种经营模式。

集合专题训练(含答案)

集合专题训练(含答案)

集合专题训练1.对集合中有关概念的考查例1我校举办的2020年校运动会中,若集合A={参加比赛的运动员},集合B={参加比赛的男运动员},集合C={参加比赛的女运动员},则下列关系正确的是 ( ) A .A B B .B C C .A ∩B=C D .B ∪C=A2.对集合性质及运算的考查例2.已知,,,则 ( )A .B .C .D .3.对与不等式有关集合问题的考查例3.已知集合,则集合为 ( )A .B .C .D .4.对与方程、函数有关的集合问题的考查例4.已知全集,集合,,则集合中元素的个数为 ( )A .1B .2C .3D .4【专题综合】1. 对新定义问题的考查例1.定义集合运算:设,,则集合的所有元素之和为 ( )A .0B .2C .3D .6【专题突破】1.满足M {a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={a 1·a 2}的集合M 的个数是( ) (A )1 (B)2 (C)3 (D)42.设集合,则( )(A) (B)(C) (D)⊆⊆{}7,6,5,4,3,2=U {}7,5,4,3=M {}6,5,4,2=N {}4,6MN =MN U =U M N C u = )(N N M C u = )({}30,31x M x N x xx ⎧+⎫=<=-⎨⎬-⎩⎭{}1x x M N M N ()RMN ()RM N {12345}U =,,,,2{|320}A x x x =-+={|2}B x x a a A ==∈,)(B A C U {},,.A B z z xy x A y B *==∈∈{}1,2A ={}0,2B =A B *⊆{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===()UA B ={}2,3{}1,4,5{}4,5{}1,53.设集合,则的取值范围是(A) (B) (C) 或 (D) 或 二.填空题:1.已知集合,,则= .2.已知集合,,若; 则实数m 的取值构成的集合为3. 已知集合,,则.三.解答题:1.设,,问是否存在非零整数,使若存在,请求出的值及;若不存在,请说明理由{}|23,S x x =->{}|8,T x a x a ST R =<<+=a 13-<<-a 13-≤≤-a 3-≤a 1-≥a 3-<a 1->a {}(1)0P x x x =-≥Q ={})1ln(|-=x y x PQ }06{2=-+=x x x M }01{=-=mx x N M N ⊆______}{2x y y A ==}2{x y y B ==____A B =},12|),{(*N x x y y x A ∈-==},|),{(*2N x a ax ax y y x B ∈+-==a A B ≠∅a B A集合专题训练答案1.对集合中有关概念的考查例1我校举办的2020年校运动会中,若集合A={参加比赛的运动员},集合B={参加比赛的男运动员},集合C={参加比赛的女运动员},则下列关系正确的是 ( ) A .A B B .B C C .A ∩B=C D .B ∪C=A 分析:本例主要考查子集的概念及集合的运算. 解析:易知选D .点评:本题是典型的送分题,对于子集的概念,一定要从元素的角度进行理解.集合与集合间的关系,寻根溯源还是元素间的关系.2.对集合性质及运算的考查例2.已知,,,则 ( )A .B .C .D .分析:本题主要考查集合的并、交、补的运算以及集合间关系的应用. 解析:由,,,故选B .点评:对集合的子、交、并、补等运算,常借助于文氏图来分析、理解.高中数学中一般考查数集和点集这两类集合,数集应多结合对应的数轴来理解,点集则多结合对应的几何图形或平面直角坐标系来理解.3.对与不等式有关集合问题的考查例3.已知集合,则集合为 ( )A .B .C .D .分析:本题主要考查集合的运算,同时考查解不等式的知识内容.可先对题目中所给的集合化简,即先解集合所对应的不等式,然后再考虑集合的运算. 解析:依题意:,∴,∴故选C .点评:同不等式有关的集合问题是高考命题的热点之一,也是高考常见的命题形式,且多为含参数的不等式问题,需讨论参数的取值范围,主要考查分类讨论的思想,此外,解决集合运算问题还要注意数形结合思想的应用.4.对与方程、函数有关的集合问题的考查例4.已知全集,集合,,则集合中元素的个数为 ( )A .1B .2C .3D .4分析:本题集合A 表示方程的解所组成的集合,集合B 表示在集合A 条件下函数的值域,故应先把集合A 、B 求出来,而后再考虑.⊆⊆{}7,6,5,4,3,2=U {}7,5,4,3=M {}6,5,4,2=N {}4,6MN =MN U =U M N C u = )(N N M C u = )({}7,6,5,4,3,2=U {}7,5,4,3=M {}6,5,4,2=N {}30,31x M x N x xx ⎧+⎫=<=-⎨⎬-⎩⎭{}1x x M N M N ()RMN ()RM N {}{}31,3M x x N x x =-<<=-{|1}M N x x ⋃=<()RMN ={}1.x x {12345}U =,,,,2{|320}A x x x =-+={|2}B x x a a A ==∈,)(B A C U )(B A C U解析:因为集合,所以,所以故选B .点评:在解决同方程、函数有关的集合问题时,一定要搞清题目中所给的集合是方程的根,或是函数的定义域、值域所组成的集合,也即要看清集合的代表元素,从而恰当简化集合,正确进行集合运算.【专题综合】1. 对新定义问题的考查例1.定义集合运算:设,,则集合的所有元素之和为 ( )A .0B .2C .3D .6分析:本题为新定义问题,可根据题中所定义的的定义,求出集合,而后再进一步求解.解析:由的定义可得:,故选D .点评:近年来,新定义问题也是高考命题的一大亮点,此类问题一般难度不大,需严格根据题中的新定义求解即可,切忌同脑海中已有的概念或定义相混淆.【专题突破】1.满足M {a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={a 1·a 2}的集合M 的个数是( ) (A )1 (B)2 (C)3 (D)42.设集合,则( )(A) (B) (C) (D)3.设集合,则的取值范围是(A) (B) (C) 或 (D) 或 二.填空题:1.已知集合,,则= .2.已知集合,,若; 则实数m 的取值构成的集合为3. 已知集合,,则.三.解答题:1.设,,问是否存在非零整数,使若存在,请求出的值及{}{}1,2,2,4A B =={}1,2,4AB ={}()3,5.U C AB ={},,.A B z z xy x A y B *==∈∈{}1,2A ={}0,2B =A B **A B *A B *A B *{0,2,4}A B =⊆{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===()UA B ={}2,3{}1,4,5{}4,5{}1,5{}|23,S x x =->{}|8,T x a x a ST R =<<+=a 13-<<-a 13-≤≤-a 3-≤a 1-≥a 3-<a 1->a {}(1)0P x x x =-≥Q ={})1ln(|-=x y x PQ }06{2=-+=x x x M }01{=-=mx x N M N ⊆______}{2x y y A ==}2{x y y B ==____A B =},12|),{(*N x x y y x A ∈-==},|),{(*2N x a ax ax y y x B ∈+-==a A B ≠∅a;若不存在,请说明理由答案:一.选择题:1.〖解析〗本小题主要考查集合子集的概念及交集运算。

集合练习题加答案

集合练习题加答案

集合练习题加答案1. 定义集合A = {x | x > 0},集合B = {x | x < 0},求A∪B(A并B)。

2. 集合C = {1, 2, 3},集合D = {2, 3, 4},求C∩D(C交D)。

3. 已知集合E = {x | x是偶数},集合F = {x | x是奇数},判断E和F是否为补集关系。

4. 集合G = {x | x是小于10的自然数},求G的补集G'。

5. 如果集合H = {1, 2, 3, 4, 5},求H的所有子集。

6. 集合I = {x | x是3的倍数},集合J = {x | x是5的倍数},求I∩J(I交J)。

7. 集合K = {1, 2, 3},求K的所有非空子集。

8. 已知集合L = {x | x是3的倍数},集合M = {x | x是小于20的自然数},求L∪M(L并M)。

9. 集合N = {x | x是小于10的质数},求N的元素个数。

10. 集合O = {x | x是偶数},集合P = {x | x是大于10的自然数},求O∩P(O交P)。

答案1. A∪B = R(实数集),因为所有实数要么大于0,要么小于0。

2. C∩D = {2, 3},因为2和3同时属于集合C和D。

3. E和F是补集关系,因为E和F的元素加起来覆盖了所有整数,并且没有重叠。

4. G' = {x | x是大于等于10的自然数},因为G包含了所有小于10的自然数。

5. H的子集有:{},{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5},{1,2,3,4,5}。

集合练习题及答案

集合练习题及答案

集合练习题及答案一、选择题1. 集合A={1,2,3},B={2,3,4},求A∪B。

A. {1,2,3,4}B. {1,2,3}C. {2,3}D. {1,4}2. 若集合A={x|x<5},B={x|x>3},则A∩B表示的集合是:A. {x|x<3}B. {x|3<x<5}C. {x|x>5}D. {x|x≤3}3. 集合A={1,2,3},B={4,5,6},A∩B等于:A. {1,2,3}B. {4,5,6}C. 空集D. {1,2,3,4,5,6}4. 集合A={x|x^2-5x+6=0},求A的元素。

A. {2,3}B. {1,6}C. {-1,6}D. {-2,3}5. 若集合A={x|-3≤x≤3},B={x|x>-2},求A-B。

A. {x|-3≤x≤-2}B. {x|-2<x≤3}C. {x|-3<x<-2}D. 空集二、填空题6. 集合{1,2,3}的补集(相对于全集U={1,2,3,4,5})是_________。

7. 若A={x|0<x<10},B={x|-5<x<5},则A∩B=_________。

8. 集合{a,b,c}的幂集含有的元素个数是_________。

9. 集合{1,2}的笛卡尔积{1,2}×{1,2}包含的元素个数是_________。

10. 若A={x|0<x<10},B={x|-5<x<5},且A⊆B,则A的元素个数最多是_________。

三、解答题11. 已知集合A={1,2,3},B={2,3,4},求A∩B,并说明交集的定义。

12. 集合C={x|x^2-4=0},求C,并解释补集的概念。

13. 给定集合D={x|-1<x<2},E={x|x>1},求D∪E,并解释并集的定义。

14. 若F={x|x^2+4x+3=0},求F,并求F相对于全集U={1,2,3,4,5,6}的补集。

集合基础练习题100个

集合基础练习题100个

集合基础练习题100个1. 设A={1,2,3},B={2,3,4},求并集A∪B。

2. 设A={1,2,3},B={3,4,5},求交集A∩B。

3. 设A={1,2,3},B={3,4,5},求差集A-B。

4. 设U={1,2,3,4,5},A={2,3},求A的补集。

5. 设U={1,2,3,4,5},A={2,3},B={3,4},判断A是否是B的子集。

6. 设U={1,2,3,4,5},A={2,3},B={3,4},判断A是否与B相等。

7. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的并集。

8. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的交集。

9. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的差集。

10. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的对称差。

11. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的并集。

12. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的交集。

13. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的差集。

14. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的对称差。

15. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的并集。

16. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的交集。

17. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的差集。

18. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的对称差。

19. 设U={苹果、香蕉、橙子、西瓜、葡萄},A={苹果、香蕉、橙子},B={橙子、西瓜},求A与B的并集。

高中数学 集合专项训练含答案

高中数学 集合专项训练含答案

高中数学 集合专项训练含答案一、单选题1.设集合{}2A x x a =<,{}23B x x a =>+,若A B =R ,则实数a 的取值范围为( ) A .()1,3- B .()(),13,-∞-⋃+∞ C .[]1,3-D .(][),13,-∞-+∞2.已知集合{}3,5,7,9,11,13,17A =,{}41,B x x n n Z ==+∈,则A B =( ) A .{}5,9,11 B .{}5,9,11,17 C .{}5,13,17D .{}5,9,13,173.设集合{|,log (1)}x a A a x R a x a =∃∈=>,{|0,B y x xy =∀≥≥,下列说法正确的是( ) A .A B ⊆B .B A ⊆C .B A ⋂=∅D .BA ≠∅4.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( ) A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,45.已知0a >且1a ≠,若集合{}{}22,log ||a M x x x N x x x =<=<,且N M ⊆﹐则实数a 的取值范围是( ) A .()1e 0,11,e ⎛⎤ ⎥⎝⎦B .()1e0,1e ,⎡⎫+∞⎪⎢⎣⎭C .()12e 0,11,e ⎛⎤ ⎥⎝⎦D .()12e 0,1e ,⎡⎫+∞⎪⎢⎣⎭6.已知集合{|10}M x x =->,集合{|(4)0}N x x x =-<,则集合M N =( )A .{|0}x x >B .{|14}x x <<C .{|0x x <或1}x >D .{|0x x <或4}x >7.已知集合{}220A x x x =--≤,{}2log B x x k =>.若A B =∅ ,则实数k 的取值范围为( ) A .02k <≤ B .04k << C .2k ≥D .4k ≥8.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( ) A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1-9.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥10.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( )A .4B .5C .6D .7 11.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( )A .PB .QC .∅D .U12.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3]13.已知集{}23A x x =+≥合,{}3,1,1,3B =--,则A B =( ) A .{}3B .{}1,3C .{}3,1--D .{}1,1,3-14.已知集合{}22280,03x A x x x B xx -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤ B .{42x x -≤≤且3}x ≠- C .{}34x x -≤≤D .{34}x x -<≤15.下列关系中正确的个数是( )①13Z ∈,R , ③*0N ∈, ④Q π∉ A .1 B .2 C .3 D .4二、填空题16.集合{}2,A x x k k ==∈Z ,{}25B x x =≤,那么A B =______.17.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________.18.已知集合{}2|210A x ax x =+-=,若集合A 中只有一个元素,则实数a 的取值的集合是______19.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________.20.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)21.已知平面上两个点集(){},|1R,R M x y x y x y =++∈∈,(){},|11,R,R N x y x a y x y =-+-≤∈∈,若MN ≠∅,则实数a的取值范围为___________..22.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______23.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.24.设P 、Q 为两个非空实数集合,定义集合{},,bP Q z z a a P b Q *==∈∈,若{}1,2P =,{}1,0,1Q =-,则集合P Q *中元素的个数为______个.25.若集合{}3A x x =>,集合{}B x x a =≥,且B A ,则实数a 的取值范围是______.三、解答题26.已知集合{}24120A x x x =--<,集合{}239B x m x m =-<<-.现有三个条件:条件①A B B =;条件②R ()B A ⊆;条件③A B B ⋃=.请从上述三个条件中任选一个,补充在下面横线上,并求解下列问题: (1)若4m =,求R ()B A ⋂; (2)若______,求m 的取值范围.注:如果选择多个条件分别解答,按第一个选择的解答计分.27.已知全集U =R ,集合{}32A x x =-<<,{}|16B x x =≤≤,{}|121C x a x a =-≤≤+. (1)求()U A B ;(2)若()C A B ⊆⋃,求实数a 的取值范围.28.已知集合{}{}|26,|3782A x x B x x x =≤≤=-≥-. (1)求A B ,R()A B ;(2)若{}|44C x a x a =-<≤+,且A ⊆C ,求a 的取值范围.29.为完成一项实地测量任务,夏令营的同学们成立了一支“测绘队”,需要24人参加测量,20人参加计算,16人参加绘图.测绘队的成员中很多同学是多面手,有8人既参加了测量又参加了计算,有6人既参加了测量又参加了绘图,有4人既参加了计算又参加了绘图,另有几人三项工作都参加了.试问这支测绘队至少有多少人?30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.(1)分别求出集合A 、B ; (2)设全集为R ,求()RA B ⋂.【参考答案】一、单选题 1.B 【解析】 【分析】由于A B =R ,所以223a a +<,解不等式即可. 【详解】由题意,223a a +<得1a <-或3a >, 故选:B . 2.D 【解析】 【分析】根据交集的定义计算即可. 【详解】因为集合{}3,5,7,9,11,13,17A =,{}41,B x x n n Z ==+∈, 所以{5,9,13,17}A B =, 故选:D. 3.D 【解析】 【分析】利用因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,得到x a x ≤,进而得出集合A 的范围;对于集合B ,化简得y ≥()g x =()g x 的最值,得出集合B 的范围,即可求解 【详解】对于集合{},log (1)xa A a x R a x a =∃∈=,因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,而,log x a x R a x ∃∈=,所以,只需要x a x ≤即可,因为1a >,所以, ln ln x a x ≤,得ln ln x a x ≤,设ln ()xf x x=,得21ln ()x f x x -'=,所以, (0,)x e ∈,()0f x '>,()f x 单调递增;(,)x e ∈+∞,()0f x '<,()f x 单调递减,所以,1()()Maxf x f e e ==,得到11e a e <≤,所以,11,e A e ⎛⎤= ⎥⎝⎦;对于集合{|0,B y x xy =∀≥≥,化简得y ≥()g x =()g x '20x >,可设()h x=,()h x '=0<,()h x ∴单调递减,又(0)0h =,所以,当0x >时,()0h x '<,()0h x <,()0g x ∴'<,()g x 单调递减,利用洛必达法则,0x →时,000x x x →→→===所以,()y gx =≥)B =+∞; 由于1(1,)A e=,)B =+∞,所以,D 正确 故选:D 4.A 【解析】 【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得; 【详解】解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =. 故选:A 5.D 【解析】 【分析】求出集合M ,再由给定条件,对集合N 分类讨论,构造函数,利用导数探讨函数最小值求解作答. 【详解】依题意,{}(1)0|{|01}x M x x x x =<<=<-,{}2lo |g 0a N x x x =-<,令2(g )lo a f x x x -=,当01a <<时,函数()f x 在(0,)+∞上单调递增,而2(1)10,()10f f a a =>=-<,则0(,1)x a ∃∈,使得0()0f x =,当00x x <<时,()0f x <,当0x x >时,()0f x >,此时{}0|0N x x x M =<<⊆,因此,01a <<,当1a >时,若01x <≤,log 0a x ≤,则()0f x >恒成立,N =∅,满足N M ⊆, 于是当1a >时,N M ⊆,当且仅当N =∅,即不等式()0f x ≥对(0,)∀∈+∞x 成立,2n (l )1x f x x a '-=,由()0f x '=得x =,当0x <<()0f x '<,当x >()0f x '>,则函数()f x 在上单调递减,在)+∞上单调递增,min 1111ln(2ln )log ()222ln 2n ln 2l ln a a a a a af x f =-=+=,于是得1ln(2ln )220ln ln a a a +≥, 即1ln(2ln )0a +≥,变形得1ln 2ea ≥,解得12e e a ≥,从而得当12e e a ≥时,()0f x ≥恒成立,N =∅,满足N M ⊆,所以实数a 的取值范围是01a <<或12e e a ≥. 故选:D 【点睛】思路点睛:涉及函数不等式恒成立问题,可以利用导数探讨函数的最值,借助函数最值转化解决问题. 6.B 【解析】 【分析】根据题意分别求出集合M 和N 的解集,求交集运算即可. 【详解】根据题意得,{|1}M x x =>,{|04}N x x =<<,所以{|14}M N x x =<<.故选:B. 7.D 【解析】 【分析】由于A B =∅ ,B 集合所表示的区间在A 集合之外. 【详解】由220x x --≤ ,解得12x -≤≤ ,即[]1,2A =- ,A B =∅ ,2log 2k ∴≥ ,4k ≥ ;故选:D. 8.C【分析】求出集合A 的解集,取交集运算即可. 【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =. 故选:C. 9.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确; 故选:C. 10.A 【解析】 【分析】求出集合B ,再根据并集的定义即可求出答案. 【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=,所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4. 故选:A. 11.B 【解析】 【分析】 依题意可得UP Q ⊆,即可得到UQ P ⊆,从而即可判断;【详解】解:因为U ()P Q P =∩,所以UP Q ⊆,所以UQ P ⊆,所以U ()P Q Q =∩;12.D 【解析】 【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R,再根据交集运算即可求出结果. 【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R,所以()[]1,3R A B =. 故选:D. 13.B 【解析】 【分析】化简集合A ,由交集定义直接计算可得结果. 【详解】化简可得{|1}A x x =≥,又{}3,1,1,3B =-- 所以{1,3}A B =. 故选:B. 14.D 【解析】 【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可. 【详解】因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B xx x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤, 故选:D. 15.B 【解析】 【分析】13是实数,0不是正整数,π是无理数 【详解】①13Z ∈错误R 正确③*0N ∈错误④Q π∉正确 故选:B二、填空题16.{}2,0,2-【解析】 【分析】根据集合A 的含义,直接求解A B ⋂即可. 【详解】因为集合A 表示元素为偶数的集合,又{}2|5{|55}B x x x x =≤=-≤≤,故{}2,0,2A B ⋂=-. 故答案为:{}2,0,2-.17.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x <18.{}0,1-【解析】 【分析】分0a =和0a ≠两种情况保证方程2210ax x 只有一个解或重根,求出a 的值即可. 【详解】当0a =时,2210ax x 只有一个解12x =, 则集合2{|210}A x ax x =+-=有且只有一个元素,符合题意; 当0a ≠时,若集合A 中只有一个元素, 则一元二次方程2210ax x 有二重根, 即440a ∆=+=,即 1.a =-综上,0a =或1-,故实数a 的取值的集合为{}0,1.- 故答案为:{}0,1.- 19.8 【解析】【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=. 故答案为:820.⊂【解析】 【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决. 【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂故答案为:⊂ 21.1⎡⎣【解析】 【分析】根据抛物线的定义可知集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,集合N 是以(),1a 为中心的正方形内部的点,数形结合先求出M N ⋂=∅时实数a 的取值范围,再求其补集即可求解.【详解】由1x y ++≥≥点(),x y 到直线10x y ++=的距离大于等于点(),x y 到点()0,0的距离,所以点(),x y 的轨迹是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的部分,即集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,由1x y +≤可得:001x y x y ≥⎧⎪≥⎨⎪+≤⎩或001x y x y <⎧⎪>⎨⎪-+≤⎩或001x y x y >⎧⎪<⎨⎪-≤⎩或001x y x y <⎧⎪<⎨⎪--≤⎩,作出其表示的平面区域如图所示:将该图象向上平移一个单位可得11x y +-≤的图象如图:将其向左或右平移a 个单位可得11x a y -+-≤的表示的平面区域,作出()2212x y x y ++=+对应的抛物线如图:将1y =代入()2212x y x y ++=+2420x x --=,解得:26x = 所以26116a <=M N ⋂=∅,将2y =代入()2212x y x y ++=+2610x x --=,解得:310x =,当310a >时,M N ⋂=∅,综上所述:当13a ≤1a ⎡∈⎣时,M N ≠∅,故答案为:1⎡⎣. 22.1078【解析】【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果.【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个.故答案为:1078.23.4【解析】【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素,∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去).故答案为:424.3【解析】【分析】分别对a 、b 进行赋值,求出z 的所有可能取值即可求解.【详解】由题意,得当1a =时,1b z a ==;当2a =且1b =-时,12b z a ==; 当2a =且0b =时,1b z a ==;当2a =且1b =时,2b z a ==;所以P Q *含有的元素有:1、2、12,即P Q *中元素个数为3个.故答案为:3. 25.3a >【解析】【分析】解不等式求得结合A ,根据B A 列不等式来求得a 的取值范围.【详解】3x >⇔3x <-或3x >,所以{|3A x x =<-或}3x >.由于B A ,所以3a >.故答案为:3a >三、解答题26.(1){|67}x x ≤<;(2)选择条件,答案见解析.【解析】【分析】(1)解一元二次不等式化简集合A ,再求出其补集,再利用交集的定义计算作答.(2)选择条件①,③,利用交集、并集的结果转化为集合的包含关系,再讨论求解作答;选择条件②,利用集合的包含关系,讨论求解作答.(1)集合()(){}{}26026A x x x x x =+-<=-<<,R {|2A x x =≤-或6}x ≥,当4m =时,{}17B x x =<<,则()R {|67}A B x x ⋂=≤<.(2)选择条件①:A B B =,则B A ⊆,若B =∅,则239m m -≥-,解得23m -≤≤,若B ≠∅,则22393296m m m m ⎧-<-⎪-≥-⎨⎪-≤⎩,解得3m <≤综上得:2m -≤≤所以m的取值范围是2m -≤≤选择条件②:R ()B A ⊆,由(1)知,R {|2A x x =≤-或6}x ≥,若B =∅,则239m m -≥-,解得 23m -≤≤,若B ≠∅,则223992m m m ⎧-<-⎨-≤-⎩或23936m m m ⎧-<-⎨-≥⎩,解得2m ≤<-或9m ≥,综上得:3m ≤或9m ≥,所以m的取值范围是3m ≤或9m ≥.选择条件③:A B B ⋃=,则A B ⊆,于是得:22393296m m m m ⎧-<-⎪-≤-⎨⎪-≥⎩,解得m ≤所以m的取值范围是m ≤27.(1){})1(|3U x x A B ⋂=-<<; (2)5(,2)(2,]2-∞-⋃-. 【解析】【分析】(1)利用补集及交集的定义运算即得;(2)利用并集的定义可得{}36A B x x ⋃=-<≤,然后分C =∅和C ≠∅讨论即得.(1)∵全集U =R , {}|16B x x =≤≤, ∴{1U B x x =<或}6x >,又集合{}32A x x =-<<,∴{})1(|3U x x A B ⋂=-<<;(2)∵{}32A x x =-<<,{}|16B x x =≤≤,∴{}36A B x x ⋃=-<≤,又()C A B ⊆⋃,∴当C =∅时,121a a ->+,∴2a <-,当C ≠∅时,则12113216a a a a -≤+⎧⎪->-⎨⎪+≤⎩, 解得522a -<≤, 综上,实数a 的取值范围为5(,2)(2,]2-∞-⋃-. 28.(1)[]()()R 3,6,(),36,A A B B ⋂=-∞⋃+∞⋂(2)[)2,6【解析】【分析】(1)解不等式求得集合B ,由此求得A B ,进而求得R ()A B . (2)根据A 是C 的子集列不等式组,由此求得a 的取值范围.(1)3782,515,3x x x x -≥-≥≥,所以{}|3B x x =≥, 所以[]()()R 3,6,(),36,A A B B ⋂=-∞⋃+∞⋂.(2)由于{}|44C x a x a =-<≤+,且A ⊆C ,所以422646a a a -<⎧⇒≤<⎨+≥⎩,所以a 的取值范围是[)2,6.29.44【解析】【分析】借助韦恩图分析可解.【详解】记集合{|A x x =是参加测量的学生},{|B x x =是参加计算的学生}, {|C x x 是参加绘图的学生},则由已知可得如下韦恩图.所以()108864642card A B C x x x x x x x x =++-++++-+-++=+ 已知24x ≤≤,故这支测绘队至少有44人.30.(1){}5A x x =>,{0B y y =<或}2y >(2)(){}R 5A B x x ⋂=≤【解析】【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ; (2)求出A B ,利用补集的定义可求得集合()R A B ⋂. (1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >. (2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R 5A B x x ⋂=≤.。

(完整版)集合练习题(包含详细答案)

(完整版)集合练习题(包含详细答案)

集合练习题1.设M={x|x≤211},a=2 015,则下列关系中正确的是()A.a⊆M B.a∉MC.{a}∉M D.{a}⊆M答案 D解析∵2 015<211=2 048,∴{2 015}⊆M,故选D.2.已知集合P={x|x2-4<0},Q={x|x=2k+1,k∈Z},则P∩Q=() A.{-1,1} B.[-1,1]C.{-1,-3,1,3} D.{-3,3}答案 A3.若P={x|x<1},Q={x|x>-1|,则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P答案 C解析由题意,得∁R P={x|x≥1},画数轴可知,选项A,B,D错,故选C.4.(2013·广东)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}答案 D解析M={-2,0},N={0,2},故M∪N={-2,0,2}.5.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.4答案 D解析由题意可得,A={1,2},B={1,2,3,4}.又∵A⊆C⊆B,∴C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},故选D项.6.(2013·山东文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4}C.{3,4} D.∅答案 A解析由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B={3,4},故A∩∁U B={3}.7.(2014·苏锡常镇一调)已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤1 B.a<1C.a≥2 D.a>2答案 C解析∵B={x|1<x<2},∴∁R B={x|x≥2或x≤1}.又∵A={x|x<a}且A∪(∁R B)=R,∴a≥2.8.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P答案 C解析依题意得集合P={y|y≤1},Q={y|y>0},∴∁R P={y|y>1},∴∁R P⊆Q,选C.9.已知全集U=R,A={x∈Z||x-3|<2},B={x|x2-2x-3≥0},则A∩∁U B 为()A.{2} B.{1,2}C.{1,2,3} D.{0,1,2,3}答案 A解析A={x∈Z|1<x<5}={2,3,4},∁U B={x∈Z|x2-2x-3<0}={x∈Z|-1<x<3}={0,1,2},∴A∩∁U B={2},故选A.10.已知集合P={x|5x-a≤0},Q={x|6x-b>0},a,b∈N,且P∩Q∩N ={2,3,4},则整数对(a,b)的个数为()A.20 B.30C.42 D.56答案 B11.(2014·人大附中期末)已知集合A={1,10,110},B={y|y=lg x,x∈A},则A∩B=()A.{110} B.{10}C.{1} D.∅答案 C解析∵B={y|y=lg x,x∈A}={y|y=lg1,y=lg10,y=lg 110}={0,1,-1},∴A∩B={1},选C.12.已知集合A={1,2,k},B={2,5}.若A∪B={1,2,3,5},则k=________.答案 313.将右面韦恩图中阴影部分用集合A、B、C之间的关系式表示出来________.答案A∩B∩(∁U C)14.(2014·皖南八校联考)已知集合A={-1,0,a},B={x|0<x<1},若A∩B≠∅,则实数a的取值范围是________.答案(0,1)解析∵A中-1,0不属于B,且A∩B≠∅,∴a∈B,∴a∈(0,1).15.已知集合A={x|log2x<1},B={x|0<x<c},(c>0).若A∪B=B,则c的取值范围是________.答案[2,+∞)解析A={x|0<x<2},由数轴分析可得c≥2.16.设集合S n={1,2,3,…,n},若x是S n的子集,把x中的所有元素的乘积称为x的容量(若x中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若x的容量为奇(偶)数,则称x为S n的奇(偶)子集.则S4的所有奇子集的容量之和为________.答案7解析由奇子集的定义,可知奇子集一定是S n中为奇数的元素构成的子集.由题意,可知若n=4,S n中为奇数的元素只有1,3,所以奇子集只有3个,分别是{1},{3},{1,3},则它们的容量之和为1+3+1×3=7.17.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.(1)9∈A∩B;(2){9}=A∩B.答案(1)a=5或a=-3(2)a=-3解析(1)∵9∈A∩B且9∈B,∴9∈A.∴2a-1=9或a2=9.∴a=5或a=±3.而当a=3时,a-5=1-a=-2,故舍去.∴a=5或a=-3.(2)∵{9}=A∩B,∴9∈A∩B.∴a=5或a=-3.而当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9}≠{9},故a=5舍去.∴a =-3.讲评 9∈A ∩B 与{9}=A ∩B 意义不同,9∈A ∩B 说明9是A 与B 的一个公共元素,但A 与B 允许有其他公共元素.而{9}=A ∩B 说明A 与B 的公共元素有且只有一个9.18.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )·(x -3a )<0}.(1)若A B ,求a 的取值范围;(2)若A ∩B =∅,求a 的取值范围;(3)若A ∩B ={x |3<x <4},求a 的取值范围.答案 (1)43≤a ≤2 (2)a ≤23或a ≥4 (3)3解析 ∵A ={x |x 2-6x +8<0},∴A ={x |2<x <4}.(1)当a >0时,B ={x |a <x <3a },应满足⎩⎪⎨⎪⎧ a ≤2,3a ≥4且等式不能同时成立⇒43≤a ≤2. 当a <0时,B ={x |3a <x <a },应满足⎩⎪⎨⎪⎧3a ≤2,a ≥4⇒a ∈∅. ∴43≤a ≤2时,A B .(2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a },a ≥4或3a ≤2,∴0<a ≤23或a ≥4.当a <0时,B ={x |3a <x <a },a ≤2或a ≥43.∴a <0时成立.验证知当a =0时也成立.综上所述,a≤23或a≥4时,A∩B=∅.(3)要满足A∩B={x|3<x<4},显然a>0且a=3时成立.∵此时B={x|3<x<9},而A∩B={x|3<x<4},故所求a的值为3.。

(完整版)集合练习题(包含详细答案)

(完整版)集合练习题(包含详细答案)

集合练习题1.设M={x|x≤211},a=2 015,则下列关系中正确的是()A.a⊆M B.a∉MC.{a}∉M D.{a}⊆M答案 D解析∵2 015<211=2 048,∴{2 015}⊆M,故选D.2.已知集合P={x|x2-4<0},Q={x|x=2k+1,k∈Z},则P∩Q=() A.{-1,1} B.[-1,1]C.{-1,-3,1,3} D.{-3,3}答案 A3.若P={x|x<1},Q={x|x>-1|,则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P答案 C解析由题意,得∁R P={x|x≥1},画数轴可知,选项A,B,D错,故选C.4.(2013·广东)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}答案 D解析M={-2,0},N={0,2},故M∪N={-2,0,2}.5.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.4答案 D解析由题意可得,A={1,2},B={1,2,3,4}.又∵A⊆C⊆B,∴C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},故选D项.6.(2013·山东文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4}C.{3,4} D.∅答案 A解析由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B={3,4},故A∩∁U B={3}.7.(2014·苏锡常镇一调)已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤1 B.a<1C.a≥2 D.a>2答案 C解析∵B={x|1<x<2},∴∁R B={x|x≥2或x≤1}.又∵A={x|x<a}且A∪(∁R B)=R,∴a≥2.8.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P答案 C解析依题意得集合P={y|y≤1},Q={y|y>0},∴∁R P={y|y>1},∴∁R P⊆Q,选C.9.已知全集U=R,A={x∈Z||x-3|<2},B={x|x2-2x-3≥0},则A∩∁U B 为()A.{2} B.{1,2}C.{1,2,3} D.{0,1,2,3}答案 A解析A={x∈Z|1<x<5}={2,3,4},∁U B={x∈Z|x2-2x-3<0}={x∈Z|-1<x<3}={0,1,2},∴A∩∁U B={2},故选A.10.已知集合P={x|5x-a≤0},Q={x|6x-b>0},a,b∈N,且P∩Q∩N ={2,3,4},则整数对(a,b)的个数为()A.20 B.30C.42 D.56答案 B11.(2014·人大附中期末)已知集合A={1,10,110},B={y|y=lg x,x∈A},则A∩B=()A.{110} B.{10}C.{1} D.∅答案 C解析∵B={y|y=lg x,x∈A}={y|y=lg1,y=lg10,y=lg 110}={0,1,-1},∴A∩B={1},选C.12.已知集合A={1,2,k},B={2,5}.若A∪B={1,2,3,5},则k=________.答案 313.将右面韦恩图中阴影部分用集合A、B、C之间的关系式表示出来________.答案A∩B∩(∁U C)14.(2014·皖南八校联考)已知集合A={-1,0,a},B={x|0<x<1},若A∩B≠∅,则实数a的取值范围是________.答案(0,1)解析∵A中-1,0不属于B,且A∩B≠∅,∴a∈B,∴a∈(0,1).15.已知集合A={x|log2x<1},B={x|0<x<c},(c>0).若A∪B=B,则c的取值范围是________.答案[2,+∞)解析A={x|0<x<2},由数轴分析可得c≥2.16.设集合S n={1,2,3,…,n},若x是S n的子集,把x中的所有元素的乘积称为x的容量(若x中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若x的容量为奇(偶)数,则称x为S n的奇(偶)子集.则S4的所有奇子集的容量之和为________.答案7解析由奇子集的定义,可知奇子集一定是S n中为奇数的元素构成的子集.由题意,可知若n=4,S n中为奇数的元素只有1,3,所以奇子集只有3个,分别是{1},{3},{1,3},则它们的容量之和为1+3+1×3=7.17.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.(1)9∈A∩B;(2){9}=A∩B.答案(1)a=5或a=-3(2)a=-3解析(1)∵9∈A∩B且9∈B,∴9∈A.∴2a-1=9或a2=9.∴a=5或a=±3.而当a=3时,a-5=1-a=-2,故舍去.∴a=5或a=-3.(2)∵{9}=A∩B,∴9∈A∩B.∴a=5或a=-3.而当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9}≠{9},故a=5舍去.∴a =-3.讲评 9∈A ∩B 与{9}=A ∩B 意义不同,9∈A ∩B 说明9是A 与B 的一个公共元素,但A 与B 允许有其他公共元素.而{9}=A ∩B 说明A 与B 的公共元素有且只有一个9.18.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )·(x -3a )<0}.(1)若A B ,求a 的取值范围;(2)若A ∩B =∅,求a 的取值范围;(3)若A ∩B ={x |3<x <4},求a 的取值范围.答案 (1)43≤a ≤2 (2)a ≤23或a ≥4 (3)3解析 ∵A ={x |x 2-6x +8<0},∴A ={x |2<x <4}.(1)当a >0时,B ={x |a <x <3a },应满足⎩⎪⎨⎪⎧ a ≤2,3a ≥4且等式不能同时成立⇒43≤a ≤2. 当a <0时,B ={x |3a <x <a },应满足⎩⎪⎨⎪⎧3a ≤2,a ≥4⇒a ∈∅. ∴43≤a ≤2时,A B .(2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a },a ≥4或3a ≤2,∴0<a ≤23或a ≥4.当a <0时,B ={x |3a <x <a },a ≤2或a ≥43.∴a <0时成立.验证知当a =0时也成立.综上所述,a≤23或a≥4时,A∩B=∅.(3)要满足A∩B={x|3<x<4},显然a>0且a=3时成立.∵此时B={x|3<x<9},而A∩B={x|3<x<4},故所求a的值为3.。

100个集合练习题

100个集合练习题

100个集合练习题题目一:求交集给定两个集合A和B,求它们的交集。

解答:给定两个集合A和B,它们的交集定义为包含A和B共有元素的集合。

可以使用以下步骤求解交集:1. 遍历集合A中的每个元素a。

2. 如果a也存在于集合B中,则将a添加到交集集合中。

3. 返回交集集合作为结果。

题目二:求并集给定两个集合A和B,求它们的并集。

解答:给定两个集合A和B,它们的并集定义为包含A和B所有元素的集合。

可以使用以下步骤求解并集:1. 创建一个空集合C,用于存储并集结果。

2. 将集合A中的所有元素添加到集合C中。

3. 遍历集合B中的每个元素b。

4. 如果b不在集合C中,则将b添加到集合C中。

题目三:求差集给定两个集合A和B,求它们的差集。

解答:给定两个集合A和B,它们的差集定义为在集合A中但不在集合B 中的所有元素的集合。

可以使用以下步骤求解差集:1. 创建一个空集合C,用于存储差集结果。

2. 遍历集合A中的每个元素a。

3. 如果a不在集合B中,则将a添加到集合C中。

4. 返回集合C作为结果。

题目四:求补集给定一个全集U和一个集合A,求A的补集。

解答:给定一个全集U和一个集合A,A的补集定义为全集U中所有不属于A的元素的集合。

可以使用以下步骤求解补集:1. 创建一个空集合C,用于存储补集结果。

2. 遍历全集U中的每个元素u。

3. 如果u不在集合A中,则将u添加到集合C中。

题目五:集合的运算给定集合A、B和C,求(A∩B)∪(A∩C)的结果。

解答:根据集合的运算规则,我们可以将(A∩B)∪(A∩C)按照以下步骤求解:1. 首先求A和B的交集,记为X。

2. 接着求A和C的交集,记为Y。

3. 最后求X和Y的并集,即得到(A∩B)∪(A∩C)的结果。

题目六:求幂集给定一个集合A,求它的幂集。

解答:给定一个集合A,它的幂集定义为包含A的所有子集合的集合。

可以使用以下步骤求解幂集:1. 初始化一个空集合P,用于存储幂集。

2. 遍历集合A的所有元素a。

集合练习题及答案

集合练习题及答案

集合练习题及答案一、选择题1. 集合A={1,2,3},B={2,3,4},则A∩B的元素个数是()A.1B.2C.3D.42. 已知集合M={x|x<5},N={x|x>3},则M∪N表示的数集是()A.{x|x<5}B.{x|x>3}C.{x|x<=5}D.{x|x>=3}3. 集合P={x|0<x<10},Q={x|-2<x<2},P∩Q的区间表示为()A.[-2,2)B.(0,2)C.(-2,10)D.(-2,2]4. 集合R={x|x^2-1=0},S={x|x^2-4=0},则R∪S的元素是()A.{-1,1}B.{-2,2}C.{-1,1,-2,2}D.{-1,1,0}5. 集合T={x|x是偶数},U={x|x是自然数},T⊆U,则T与U的关系是()A.T=UB.T⊂UC.T⊃UD.T≠U二、填空题1. 若A={x|-1<x<3},B={x|-3<x<1},则A∪B=______。

2. 设集合W={x|x^2-x-6=0},则W的元素为______。

3. 已知集合X={x|x是小于10的正整数},则X的补集C_UX=______。

4. 若集合Y={x|-2≤x≤2},Z={x|x是奇数},则Y∩Z=______。

5. 设集合V={x|x^2+2x+1=0},则V中元素的个数为______。

三、解答题1. 已知集合A={1,2,3},B={2,3,4,5},求A∪B,A∩B,并判断A和B 的包含关系。

2. 集合C={x|0<x<π},D={x|π<x<2π},求C∪D,C∩D,并说明这两个集合的数集表示。

3. 集合E={1,2},F={2,3},求E⊆F,E⊂F,E=F的真假,并说明理由。

4. 集合G={x|-1<x<5},H={x|x>-3},求G∩H,并说明结果的区间表示。

高中数学集合题目训练

高中数学集合题目训练

高中数学集合题目训练一、基础概念类1. 集合A = {x | x是小于10的正偶数},集合B = {2, 4, 6, 8},问集合A和集合B 是什么关系呢?- 那我们先来看看集合A里都有啥。

小于10的正偶数呢,那就是2、4、6、8呀。

这和集合B里的元素一模一样。

所以呀,集合A和集合B是相等的关系,就像两个长得一模一样的双胞胎,我们可以写成A = B。

2. 已知集合C={1, 3, 5},集合D={x|x是奇数且x < 7}。

集合C和集合D的关系是啥?- 首先看集合D,奇数而且小于7的数有1、3、5,这和集合C里的元素是一样的。

所以集合C是集合D的子集,而且是真子集哦,因为集合D里还有可能有其他元素(虽然这里没有),我们可以写成C⊂neqq D。

二、集合的运算类1. 集合E = {1, 2, 3, 4, 5},集合F={3, 4, 5, 6, 7}。

求E∩ F(也就是求这两个集合的交集)。

- 交集嘛,就是两个集合里共同有的元素。

那我们看看集合E和集合F,共同有的元素是3、4、5。

所以E∩ F = {3, 4, 5},就像两个人都有的宝贝一样,把这些宝贝挑出来放在一起。

2. 设集合G={x|x > - 2},集合H={x|x < 3}。

求G∪ H(也就是求这两个集合的并集)。

- 并集呢,就是把两个集合的元素都放在一起。

集合G里是大于 - 2的数,集合H里是小于3的数。

那把它们放在一起就是所有的实数啦,不过这里我们可以写成G∪ H={x|x∈ R},就像把两个人的东西都堆在一起,那就是一大堆东西啦,这里就是所有的实数。

三、稍复杂一点的题目1. 已知集合M={x|x^2-5x + 6 = 0},求集合M。

- 要找集合M,就得先解这个方程x^2-5x + 6 = 0。

这个方程可以分解成(x - 2)(x - 3)=0。

那x - 2 = 0或者x - 3 = 0,解得x = 2或者x = 3。

集合练习题以及答案

集合练习题以及答案

集合练习题以及答案集合是数学中的基本概念之一,它涉及到元素与集合之间的关系,以及不同集合之间的运算。

以下是一些集合练习题及其答案,供学习者练习和参考。

练习题1:判断下列命题的真假。

- A = {1, 2, 3}- B = {2, 3, 4}- 命题1:1 ∈ A- 命题2:4 ∈ A- 命题3:A ⊆ B答案1:- 命题1:真,因为1是集合A的元素。

- 命题2:假,因为4不是集合A的元素。

- 命题3:假,因为集合A不包含集合B的所有元素。

练习题2:集合C和D的定义如下,请找出C ∪ D和C ∩ D。

- C = {1, 2, 3, 5}- D = {2, 4, 5, 6}答案2:- C ∪ D = {1, 2, 3, 4, 5, 6},这是C和D所有元素的并集。

- C ∩ D = {2, 5},这是C和D共有的元素。

练习题3:集合E和F如下,求E - F。

- E = {1, 3, 5, 7, 9}- F = {3, 5, 7}答案3:- E - F = {1, 9},这是E中所有不在F中的元素。

练习题4:集合G和H如下,判断它们是否相等。

- G = {x | x是小于10的正整数}- H = {1, 2, 3, 4, 5, 6, 7, 8, 9}答案4:- G和H相等,因为它们包含相同的元素。

练习题5:集合I和J如下,求I的补集。

- I = {x | x是偶数}- J = R(实数集)答案5:- I的补集是所有不在I中的元素,即所有奇数,可以表示为{x ∈ J | x是奇数}。

练习题6:集合K和L如下,找出K相对于L的补集。

- K = {x | x是小于20的正整数}- L = {x | x是小于50的正整数}答案6:- K相对于L的补集是所有在L中但不在K中的元素,即{x ∈ L | 20 ≤ x < 50}。

结束语:通过这些练习题,我们可以加深对集合概念的理解,包括元素与集合的关系、集合的运算以及集合的表示方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合专项训练题
一、选择题
1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )
A .}33|{=+x x
B .},,|),{(2
2
R y x x y y x ∈-= C .}0|{2
≤x x D .},01|{2
R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )
A .()()A C
B
C B .()()A
B A C
C .()()A B B C
D .()A B C
4.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
5.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个
6.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )
A .1
B .1-
C .1或1-
D .1或1-或0
7.若集合{}
{
}
22
(,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有( )
A .M
N M = B . M N N = C . M N M = D .M N =∅
8.下列式子中,正确的是( )
A .R R ∈+
B .{}Z x x x Z
∈≤⊇-
,0|
C .空集是任何集合的真子集
D .{
}φφ∈ 9.下列表述中错误的是( ) A .若A B A B A =⊆ 则, B .若B A B B A ⊆=,则 C .)
(B A A )(B A
D .()()()B C A C B A C U U U =
A B
C
子曰:学而不思则罔,

而不学则殆。

10.若集合{|1}X x x =>-,下列关系式中成立的为( ) A .0X ⊆ B .{}0X ∈
C .X φ∈
D .{}0X ⊆
11.已知集合{
}
2
|10,A x x A
R φ=+==若,
则实数m 的取值范围是( ) A .4<m B .4>m C .40<≤m D .40≤≤m
12.设集合},4
12|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )
A .N M =
B .M N
C .N
M D .M
N φ=
二、填空题
1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N
(2)1
______,_______,______2
R Q Q e C Q π-
(e 是个无理数)
(3{
}|,,x x a a Q b Q =+∈∈
(4){}()(){}1|,____2,1,2|______3+=≤x y y x x x (5){}
32|_______52+≤+x x , (6){}31|
,_______|0x x x R x x x x ⎧⎫
=∈-=⎨⎬⎩⎭
2.若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =_____________.
已知{}
{}
221,21A y y x x B y y x ==-+-==+,则A B =_________。

3.设集合{}{}{}1,2,1,2,3,2,3,4A B C ===则
A B =()C 。

4.设全集{}
(,),U x y x y R =∈,集合2(,)
12y M x y x ⎧+⎫
==⎨⎬-⎩⎭
,{}(,)4N x y y x =≠-, 那么()()U U C M C N 等于________________。

三、解答题
1.已知集合⎭
⎬⎫
⎩⎨⎧
∈-∈=N x N x A 68|,试用列举法表示集合A 。

2.已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求m 的取值范围。

3.已知集合{}{}
22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-,
求实数a 的值。

4.设全集U R =,{}
2|10M m mx x =--=方程有实数根,
{}()2|0,.U N n x x n C M N =-+=方程有实数根求
5.设2
2
2
{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,
如果A B B =,求实数a 的取值范围。

6.集合{}
22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}
2|280C x x x =+-= 满足,A
B φ≠,,A
C φ=求实数a 的值。

8.设U R =,集合{}
2|320A x x x =++=,{}
2|(1)0B x x m x m =+++=;
若φ=B A C U )(,求m 的值。

1.解不等式:
(1) 13x ->; (2) 327x x ++-< ;
2. 分解因式:
(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)
1xy x y -+-
(5)32933x x x +++;(6)222456x xy y x y +--+-.
3、(1)ax 2+bx +c =0(a ≠0)两根分别是x 1,x 2,则x 1+x 2=b a -
,x 1·x 2=c
a
.韦达定理 (2)以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是 x 2-(x 1+x 2)x +x 1·x 2=0. (3)若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|=||
a (Δ=
b 2-4a
c ). 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根.
(1)求| x 1-x 2|的值; (2)求
2212
11x x +的值; (3)x 13+x 23.。

相关文档
最新文档