几何之五大模型

合集下载

小升初奥赛几何五大模型

小升初奥赛几何五大模型

几何五大模型一、五大模型简介(1)等积变换①、等底等高的两个三角形面积相等②、两个三角形高相等,面积之比等于底之比,如图1③、两个三角形底相等,面积在之比等于高之比,如图2④、在一组平行线之间的等积变形,如图3图1 图2 图3例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

解:S△ADC=12S△ABC=12×24=12S△ADE=12S△ADC=12×12=6;S△DEF=12S△ADE=12×6=3(2)鸟头(共角)定理模型①、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;②、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点S△ABC S△ADE =AB×AC AD×AE例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC 的面积。

解:由题意知:S△ABCS△ADE =AB×ACAD×AE=52×53=256∴S△ABC=256×S△ADE=256×12=50(平方厘米)(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)①S2=S4(梯形两翼相等)②S1:S3:S2:S4=a2:b2:ab:ab③梯形S对应的分数为(a+b)2例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

解:S△AOB:S△BOC=25:35=5:7S△AOB:S△DOC=AB2:DC2=52:72=25:49∴S△DOC=49又S△AOD=S△BOC=35∴S ABCD=25+35+35+49=144(平方厘米)2、任意四边形中的比例关系(“蝴蝶定理”):①S1:S2=S4:S3或S1×S3=S2×S4②AO:OC=S1:S4=S2:S3=(S1+S2):(S4+S3)例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2,求OC解:AO:OC=S△ABD:S△BCD=1:3OC=2×3=6(4)相似模型1、相似三角形:形状相同,大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

小学数学五大几何模型

小学数学五大几何模型

小学数学五大几何模型知识框架一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DC BA梯形中比例关系(“梯形蝴蝶定理”):①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.A BC DO baS 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCD ABCDEF G①AD AE DE AFAB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。

几何之五大模型

几何之五大模型

几何之五大模型在小学奥数知识体系中,几何五大模型是几何专题中非常重要的一块知识点,方法性很强,掌握了几何的五大模型,对于我们解决组合型直图形或者非规则图形是非常有帮助的,所以几何五大模型在小学几何体系中的重中之重!几何五大模型的难点在于我们要在掌握各个模型适用的题型、相应的方法、公式的基础上学会灵活运用,还有就是有时要根据题意同时运用多种模型,从而更好的解决问题!PS:对于不同题型均会有例题讲解分析以及精选练习题,以供大家有针对性学习巩固,相信大家对于应用题的攻克将不在话下!一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b;4、在一组平行线之间的等积变形,如图③所示,S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点则有:S△ABC:S△ADE=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知S△ADE:S△ABE=AD:ABS△ABE:S△CBE=AE:CE所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC因此S△ADE:S△ABC =(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。

例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

小升初复习重难点一几何五大模型

小升初复习重难点一几何五大模型

几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;4、在一组平行线之间的等积变形,如图③所示,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB平行于CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点则有:S[sub]△ABC[/sub]:S[sub]△ADE[/sub]=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S[sub]△ADE[/sub]:S[sub]△ABE[/sub]=AD:AB、S[sub]△ABE[/sub]:S[sub]△CBE[/sub]=AE:CE,所以S[sub]△ABE[/sub]:S[sub]△ABC[/sub]=S[sub]△ABE[/sub]:(S[sub]△ABE[/sub]+S[sub]△CBE[/sub])=AE:AC,因此S[sub]△ADE[/sub]:S[sub]△ABC[/sub]=(S[sub]△ADE[/sub]:S[sub]△ABE[/sub])×(S[sub]△ABE[/sub]:S[sub]△ABC[/sub])=(AD:AB)×(AE:AC)。

小升初复习重难点一几何五大模型

小升初复习重难点一几何五大模型

几何五大模型一、五大模型简介(1)等积变换模型1 、等底等高的两个三角形面积相等;2 、两个三角形高相等,面积之比等于底之比,如图①所示,S[sub]1[/sub] : S[sub]2[/sub]=a:b ;3 、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub] : S[sub]2[/sub]=a:b ;4 、在一组平行线之间的等积变形,如图③所示,S[sub] △ ACD[/sub]=S[sub] △ BCD[/sub];反之,如果S[sub] △ ACD[/sub]=S[sub] △ BCD[/sub],则可知直线AB平行于CD点,求三角形DEF的面积。

例、如图,三角形ABC的面积是24,D、E、F分别是BC AC AD的中【详解】根据等积变换知,5^=15^ = 1x24=12,]$丄攻=斥卅1匚=6 • EggF = Q6 - 3(2)鸟头(共角)定理模型1 、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2 、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB AC上或AB AC延长线上的点A D则有:S[sub] △ ABC[/sub] : S[sub] △ ADE[/sub]= (ABX AC (ADX AE我们现在以互补为例来简单证明一下共角定理!p _AB AC . 亨尹Z (平方厘料如图连接BE 根据等积变化模型知,S[sub] △ ADE[/sub]:S[sub] △ ABE[/sub] =AD AB S[sub] △ ABE[/sub]:S[sub] △ CBE[/sub]=AE : CE 所以 S[sub] △ ABE[/sub]:S[sub] △ ABC[/sub]=S[sub] △ ABE[/sub]:(S[sub] △ ABE[/sub]+S[sub] △ CBE[/sub] ) =AE AC,因此 S[sub] △ ADE[/sub] : S[sub] △ ABC[/sub]= (S[sub] △ ADE[/sub]: S[sub] △ ABE[/sub] ) x( S[sub] △ ABE[/sub] : S[sub] △ ABC[/sub])= (AD AB x ( AE AC 。

小学数学几何必考五大模型

小学数学几何必考五大模型

∵在正方形ABCD中,S△ABG=×AB × AB边上的高,
∴ S△ABG= S□ABCD(三角形面积等于与它等底等高的平行四边形面积的一半)
同理,S△ABG=

S
□EFGB
∴ 正方形ABCD与长方形EFGB面积相等。长方形的宽=8 ×8÷10=6.4(厘米)
【例2】长方形ABCD的面积为36cm2,E 、F、G为各边中点,H为AD边上
任意一点,问阴影部分面积是多少?
【解析】解法一:寻找可利用的条件,连接BH ,HC ,如下图:
解法二:特殊点法.找H的特殊点,把H点与D点重合,那么图形就可变成右图:
这样阴影部分的面积就是△DEF的面积,
根据鸟头定理,则有:
【巩固】
a
如右图
③夹在一组平行线之间的等积变形,如右图
反之,如果
,则可知直线
平行于
等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);
⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于
它们的高之比.
二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.
D
A
A
D
E
E
B
C
图 ⑴
如图在
上,E在AC上),则
B
图 (2)
C
中,D、E分别是AB、AC上的点如图 ⑴(或D在BA的延长线
三、蝴蝶定理
任意四边形中的比例关系(“蝴蝶定理”):
梯形中比例关系(“梯形蝴蝶定理”):

平面几何五种模型

平面几何五种模型

② AO : OC S1 S2 : S4 S3
【上下比】
=
=
=
【上上比】
=
=
=
由上述比例可以按数学运算原则推出很多规则:如
面积交叉相乘的乘积相等
=
= S1 S3 S2 S4
梯形蝴蝶定理( 梯蝴蝶 )
① S1 : S3 a2 : b2 →上:下 = a2 : b2
② S1 : S3 : S2 : S4 a2 : b2 : ab : ab →上:下:左:右 = a2 : b2 : ab : ab
+
+
=1
2
③ S 的对应份数为 a b →a2+2ab+b2=a2+b2+ab+ab 有木有↑
4 相似三角形 形状相同,大小不同的三角形,只要形状不变,无论大小怎么改变,他们都相似。 1 相似三角形的一切对应线段的长度成比例,并且 =它们的相似比 2 相似三角形的面积比 =相似比的平方
3 连接三角形两边中点的线段叫做三角形的中位线 三角形中位线定理:三角形的中位线长 =它所对应的底边长的一半 就是三角形任 2 边中点连出来的中位线就是第三边长的一半! 出题几率:多产生于 2 条平行线造成的相似三角形
等于浅紫色三角形是“嵌入”在大三角形 ABC里面,注意,鸟头定理用的是乘积比!不是
单独的线段比 ~
记忆上用 夹角 2 边
最好记,这里等于
E
D
A 对顶角
D E
A
B
C
B
C
D 互补角 A
E
D
A
E
B
CB
C
鸟头定理的证明,写出来是因为很多题目的解题过程,都需要补这么一条辅助线来过度连

几何五大模型定理

几何五大模型定理

几何五大模型定理
几何学是一个古老的学科,并在数学领域发挥着不可替代的作用。

过去2000多年来,一些极具影响力的几何学家们有力地推动了几何学研究的发展,创造了许多引人注目的几何模型定理。

以下将介绍五大几何模型定理,它们是几何学的代表性研究成果。

第一个几何模型定理是欧几里得定理,也称为“欧几里得尺规定理”,这是古希腊数学家欧几里得著名的定理。

它声明:“三角形内角之和等于180度”。

它是数学基本概念的基础,借此可以证明各种几何图形的构成关系。

第二个几何模型定理是埃及人定理,也称为“埃及三角形定理”。

这是一个基本定理,它宣称:“正三角形的高等于它的底乘以三角形的高”。

第三个几何模型定理是勾股定理,这是古希腊数学家勾股第六世纪首次提出的定理。

它表明:“三角形的斜边的平方等于两常规边的平方之和”。

第四个几何模型定理是朱丽叶定理,由十八世纪法国数学家朱丽叶蒙德拉克提出。

它宣称:“在平面内,给定一个三角形与
它的外接圆,三角形内角周长和半径之比等于外角角度和圆周长的比之和”。

第五个几何模型定理是莱布尼茨定理,由德国数学家马克斯·莱布尼茨于1794年提出的定理。

它声明:“存在唯一的平行四边形,其面积等于任何给定四边形的面积之和”。

以上就是几何学五大模型定理的主要内容,它们的发现和推导象征着几何学的成熟,也为更深入研究几何学提供了基础。

几何的五大模型

几何的五大模型

5、 想想?正方形ABCD中,还有哪些没有包块进去,及与份数之间旳关系
6、SΔADE =S2+S3,S ΔBCF =S4+S3 想想?为何,用了什么模型
7、∴正方形ABCD被提成了24份 S阴影=S2+S4=6÷24×12=3cm2
例题:相同模型
例题4:如图,长方形ABCD中,E为AD旳中点,AF与BE、BD分别交于
例题:二分之一模型
例题3:如图ABFE和CDEF都是矩形,AB旳长是4厘米,BC旳长是3厘 米,那么图中阴影部分旳面积是多少平方厘米。
分析:阴影部分是一种个三角形,矩形CDEF中阴影 A
B
部分旳三角形底边长度为矩形旳长,高与矩 E
F
形宽相等,根据面积公式可知S阴影=SEDCF÷2
D
C
思索:二分之一模型是什么意思?
分析:SΔ黄+SΔ绿=S长方形÷2(=宽×长÷2)
黄色三角形面积21cm2,占长方形面积百分比

50%-15%=35% 所以,长方形面积=21÷35%=60cm2


绿
例题:等积变换
例题2:图中ABCD是个直角梯形,以AD为一边向外作长方形ADEF, 其面积为6.36平方厘米,连接BE交AD于P,再连接PC,则图 中阴影部分旳面积是多少平方厘米?
AB
S1 S2
a
b
图1
CD 图2
概念
2、鸟头定理(共角定理)模型
1)两个三角形中有一种角相等或互补,这两个三角形叫做共角三角形
2)共角三角形旳面积比等于相应交(相等或互补角)两夹边旳乘积之比
D
E
A
D
A
A
E D
BC

1数学几何五大模型

1数学几何五大模型

数 学 几 何 五 大 模 型一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半; 二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△1S 2S 1S 2S ab图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):(1) 1243::S S S S =或者1324S S S S ⨯=⨯(2)()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)(1)2213::S S a b =(2)221324::::::S S S S a b ab ab =;(3)梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型(1)AD AE DE AFAB AC BC AG===; (2)22::ADE ABCS S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方。

小学奥数之几何五大模型

小学奥数之几何五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于及它等底等高的平行四边形面积的一半;五大模型1S 2S二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系及四边形内的三角形相联系;另一方面,也可以得到及面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),及相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。

几何的五大模型

几何的五大模型
解析:
利用燕尾定理,连接FC,BFD面积/BFC面积=DE/EC=1/2,如果BFD面积为1份的话,BFC为2份;又DF=FG,所以BFG面积与BFD面积相等也是1份,故FGC面积是2-1=1份,那么BG=GC;再利用燕尾定理,DFC的面积与DFB相等也是1份,BDC的面积是4份=6,故一份面积是6/4=1.5,阴影部分是1+2/3=5/3份,面积是1.5×5/3=2关系是一样的。)
四、相似三角形模型
相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型
解析:
因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50厘米2。
几何的五大模型
一、等积变换模型
1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型
显然,最大的三角形的面积为21公顷.
解析:
如图所示,设上底为a,则下底为2a,梯形的高为h,则EF= (a+2a)= ,所以,
。所以
阴影部分
= 即 ,梯形 ABCD的面积=
如下图所示,为了方便叙述,将某些点标上字母.

小升初-数学-几何-五大几何模型

小升初-数学-几何-五大几何模型
12
小升初数学-几何 是
平方厘米.
A E D
B M
F
N C
【作业 4】 一个等腰直角三角形和一个正方形如图摆放,①、②、③这三块的面积比依次为 1: 4 : 41.那么,④、⑤这两块的面积比是______.
① ①



【作业 5】 下图中,四边形 ABCD 都是边长为 1 的正方形,E、F、G、H 分别是
1
小升初数学-几何
S△△ABC : S ADE ( AB AC) : ( AD AE)
(1)
(2)
(3)
(4)
三、蝴蝶定理
任意四边形中的比例关系(“蝴蝶定理”):
① S1 : S2 S4 : S3 或者 S1 S3 S2 S4 ② AO : OC S1 S2 : S4 S3
D
A
4 O E3
C
F
B
【巩固】 ABCD 是平行四边形,面积为 72 平方厘米, E 、 F 分别为 AB 、 BC 的中点,则图中
阴影部分的面积为
平方厘米.
A
D
O E
M
B
F
C
二、蝴蝶模型 【例 4】 如图所示,长方形 ABCD 内的阴影部分的面积之和为 70,AB=8,AD=15 四边形
6
小升初数学-几何 EFGO 的面积为______.
AB、BC、CD、DA 的重点,如果左图中阴影部分与右图中阴影部分的面积之比
是最简分数 m ,那么,m+n 的值等于__________。
n
H A
DA
H D
E
GE
G
B
F
CB
F
C

几何图形的五大模型

几何图形的五大模型

几何图形的五大模型一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵需要种的天数是2150÷86=25天甲25天完成24×25=600棵那么乙就要完成900-600=300棵之后,才去帮丙即做了300÷30=10天之后即第11天从A地转到B地。

2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?这是一道牛吃草问题,是比较复杂的牛吃草问题。

把每头牛每天吃的草看作1份。

因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=1.6份所以,每亩原有草量60-30×1.6=12份第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃。

小升初平面几何常考五大模型知识分享

小升初平面几何常考五大模型知识分享

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2 -c(c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

几何之五大模型(加梅涅劳斯及赛瓦定理)

几何之五大模型(加梅涅劳斯及赛瓦定理)

• 如图:G、H是AC的三等分点,D是 BC的四等分点,求AF:FE:ED= ( ):( ):( )
思考:《塞瓦定理》
• 设M是三角形ABC内的任意一点,直线AM、 BM、CM分别交对边于点D、E、F,则
BD DC

CE EA •
AF FB
=1
当三角形的顶点向对边连线并交于一点时,从三角形 任一顶点出发,沿顺(或逆)时针围着三角形的外周, 按“部、部、部、部、部、部”的顺序,一笔画并回 到起点。
s2 O S4 S3
•(S1+S2)︰(S4+SB3)=AO︰OC
C
• 练习4.如图,某公园的外轮 廓是四边形ABCD,被对角 线AC、BD分成四个部分, △AOB面积为1平方千米, △BOC面积为2平方千米, △COD的面积为3平方千米, 公园陆地的面积是6.92平方 千米,求人工湖的面积是多 少平方千米?
S1 S3 S2 S4
• 设AO︰OC= S1︰S4= S2︰S3=a:b
• S1=ax, S4=bx,S2=ay, S3=by
• 则(S1+S2)︰(S4+S3)
• =(ax+ay):(bx+by)
• =a(x+y):b(x+y)
D
• =a:b
A s1
• = AO︰OC
蝴蝶定理:
若每个小方格面积均为1, 则: 格点多边形面积=外周格点数÷2+内部格点数-1
练习:图中每个小正方形的面积都是1平方厘 米,求图中阴影部分的面积.(每个小正方形的面 积为2平方厘米呢?)
• 4、右图中每个小正方形的面积为1平 方分米,那么阴影部分的面积是多少 平方分米?
阴影面积:大三角形面积 (2 1):(3 4) 1: 6

几何五大模型-汇总

几何五大模型-汇总

几何五大模型-汇总小学平面几何五大模型一、共角定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在AABC中,DE分别是AB.AQ 上的点如图⑴(或D在朋的延长线上,£在AC 上),贝!J S“c : S“E =⑷ x AC): (AD x AE)证明:由三角形面积公式S=1/2*a*b*sinC可推导出若AABC 和ZXADE 中,ZBAC=ZDAE 或ZBAC+ZDAET80。

,S A/IBC AB X ACS MDE AD X AE二、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如下图£:二=“"③夹在一组平行线之间的等积变形,如右图S^CD二Sg 反之,如果SycD=Sg则可知直线A3平行于CD・④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.三、蝶形定理1、任意四边形中的比例关系(“蝶形定理”):①S, :S2=S4:S3或者S|XS严S’xSj®/IO:OC = (S1+5j:(S.+S,)速记:上X下二左X右蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.2、梯形中比例关系(“梯形蝶形定理”):①S,:53=fl2:/>2②S : S;'.S2:S i=a~:b:iab: ab ;③S的对应份数为仗+疔.四、相似模型(二)沙漏模型(一)金字塔模型②S'DE:=虫尸:MG?・相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾模型和风筝模型)在AABC 中,AD9 BE, CF 相交于同一点O,那么5^ : =BD.DC.上述定理给出了一个新的转化面积比与线段比的手段,因为和A4CO的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.附件1:鸟头模型例题及习题:逵扶方廠积$g=l,三角形$2= £, ,3少=2设AB F , EC 二丄;aBS=-x2-a = —,那么 C5=l- —=—;6 3a a 3a 3aCF = -x2^—=—;5 3a 5 那么Mm-®# 那么$5=卜善¥ = £: 所以S'如=】-卜卜卜知即:S T =证明:如有图.连接BE 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何之五大模型
在小学奥数知识体系中,几何五大模型是几何专题中非常重要的一块知识点,方法性很强,掌握了几何的五大模型,对于我们解决组合型直图形或者非规则图形是非常有帮助的,所以几何五大模型在小学几何体系中的重中之重!几何五大模型的难点在于我们要在掌握各个模型适用的题型、相应的方法、公式的基础上学会灵活运用,还有就是有时要根据题意同时运用多种模型,从而更好的解决问题!
PS:对于不同题型均会有例题讲解分析以及精选练习题,以供大家有针对性学习巩固,相信大家对于应用题的攻克将不在话下!
一、五大模型简介
(1)等积变换模型
1、等底等高的两个三角形面积相等;
2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b;
3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b;
4、在一组平行线之间的等积变形,如图③所示,S△ACD=S△BCD;反之,如果
S△ACD=S△BCD,则可知直线AB平行于CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型
1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;
2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点
则有:S△ABC:S△ADE=(AB×AC):(AD×AE)
我们现在以互补为例来简单证明一下共角定理!
如图连接BE,根据等积变化模型知
S△ADE:S△ABE=AD:AB
S△ABE:S△CBE=AE:CE
所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC
因此S△ADE:S△ABC =(S△ADE:S△ABE)×(S△ABE:S△ABC)
=(AD:AB)×(AE:AC)。

例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

(3)蝴蝶模型
1、梯形中比例关系(“梯形蝴蝶定理”)
例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

2、任意四边形中的比例关系(“蝴蝶定理”):
例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2、DO=3,求CO的长度是DO长度的几倍。

蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径,通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

1、相似三角形:形状相同,大小不相等的两个三角形相似;
2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

3、相似三角形性质:
①相似三角形的一切对应线段(对应高、对应边)的比等于相似比;
②相似三角形周长的比等于相似比;
③相似三角形面积的比等于相似比的平方。

相似模型大致分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有BC平行DE这样的一对平行线!
例、如图,已知在平行四边形ABCD中,AB=16、AD=10、BE=4,那么FC的长度是多少?
由于阴影部分的形状像一只燕子的尾巴,所以在数学上把这样的几何图形叫做燕尾模型,看一下它都有哪些性质:
S△ABG:S△ACG=S△BGE:S△CGE=BE:CE
S△BGA:S△BGC=S△GAF:S△GCF=AF:CF
S△AGC:S△BGC=S△AGD:S△BGD=AD:BD
例、如图,E、D分别在AC、BC上,且AE:EC=2:3,BD:DC=1:2,AD与BE交于点F,四边形DFEC的面积等于22平方厘米,求三角形ABC的面积。

二、五大模型经典例题详解
(1)等积变换模型
例1、图中的E、F、G分别是正方形ABCD三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是多少?
例2、如图所示,Q、E、P、M分别为直角梯形ABCD两边AB、CD上的点,且DQ、CP、ME彼此平行,已知AD=5、BC=7、AE=5、EB=3,求阴影部分三角形PQM的面积。

(2)鸟头(共角)定理模型
例1、如图所示,平行四边形ABCD,BE=AB、CF=2CB、GD=3DC、HA=4AD,平行四边形ABCD的面积为2,求平行四边形ABCD与四边形EFGH的面积比。

例2、如图所示,△ABC的面积为1,BC=5BD、AC=4EC、DG=GS=SE、AF=FG,求△FGS的面积。

(3)蝴蝶模型
例1、如图,正六边形面积为1,那么阴影部分面积为多少?
例2、如图,长方形ABCD被CE、DF分成四块,已知其中3块的面积分别为2、5、8平方厘米,求余下的四边形OFBC的面积。

例3、如图,已知正方形ABCD的边长为10厘米,E为AD的中点,F为CE的中点,G为BF的中点,求三角形BDG的面积。

(4)相似模型
例1、如图,正方形的面积为1,E、F分别为AB、BD的中点,GC=1/3FC,求阴影部分的面积。

例2、如图,长方形ABCD,E为AD的中点,AF与BD、BE分别交于G和H,OE 垂直于AD,交AD于E点,交AF于O点,已知AH=5,HF=3,求AG的长。

(5)燕尾模型
例1、如图,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,求四边形BGHF的面积。

例2、如图,在△ABC中,BD=2DA、CE=2EB、AF=2FC,那么△ABC的面积是阴影△GHI面积的几倍?
例3、如图,在△ABC中,点D是AC的中点,点E、F是BC的三等分点,若△ABC 的面积是1,求四边形CDMF的面积。

三、巩固练习
1、如图,在角MON的两边上分别有A、C、E、B、D、F六个点,并且△OAB、△ABC、△BCD、△CDE、△DEF的面积都等于1,求△DCF的面积。

2、如下图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米,求三角形CDF的面积。

3、如下图,在三角形ABC中,BD=2AD,AG=2CG,BE=EF=FC,求四边形DGFE面积占三角形ABC的几分之几?
4、如图,四边形EFGH的面积是66平方米,EA=AB、CB=BF、DC=CG、HD=DA,求四边形ABCD的面积。

5、边长为1的正方形ABCD中,BE=2EC、FC=DF,求三角形AGE的面积。

6、如图,一个长方形被一些直线分成了若干个小块,已知三角形ADG的面积为11,三角形BCH的面积为23,求四边形EGFH的面积。

7、如图,三角形ABC是一块锐角三角形余料,BC=120毫米,高AD=80毫米。

现在要把它加工成一个正方形零件,是正方形的一边在BC上,其余两个顶点分别在AB、AC 上,这个正方形零件的边长是多少?
8、如图,已知正方形ABCD的面积为120平方厘米,E是AB边的中点,F是BC边的中点,求四边形BGHF的面积。

9、如图,正方形ABCD的边长是12厘米,E、F分别是AB、BC的中点,AF与CE交于点G,求四边形AGCD的面积。

10、如图,在四边形ABCD中,AB=3BE、AD=3AF,四边形AEOF的面积是12,求平行四边形BODC的面积。

四、巩固练习详解。

相关文档
最新文档