磁场经典例题
高中物理竞赛讲义-磁场典型例题解析精选全文完整版
可编辑修改精选全文完整版磁场典型例题解析一、磁场与安培力的计算【例题1】两根无限长的平行直导线a 、b 相距40cm ,通过电流的大小都是3.0A ,方向相反。
试求位于两根导线之间且在两导线所在平面内的、与a 导线相距10cm 的P 点的磁感强度。
【解说】这是一个关于毕萨定律的简单应用。
解题过程从略。
【答案】大小为×10−6T ,方向在图9-9中垂直纸面向外。
【例题2】半径为R ,通有电流I 的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。
【解说】本题有两种解法。
方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。
因为θ → 0(在图9-10中,为了说明问题,θ被夸大了),弧形导体可视为直导体,其受到的安培力F = BIL ,其两端受到的张力设为T ,则T 的合力ΣT = 2Tsin 2θ再根据平衡方程和极限xxsin lim0x →= 0 ,即可求解T 。
方法二:隔离线圈的一半,根据弯曲导体求安培力的定式和平衡方程即可求解…【答案】BIR 。
〖说明〗如果安培力不是背离圆心而是指向圆心,内张力的方向也随之反向,但大小不会变。
〖学员思考〗如果圆环的电流是由于环上的带正电物质顺时针旋转而成(磁场仍然是进去的),且已知单位长度的电量为λ、环的角速度ω、环的总质量为M ,其它条件不变,再求环的内张力。
〖提示〗此时环的张力由两部分引起:①安培力,②离心力。
前者的计算上面已经得出(此处I = ωπλ•π/2R 2 = ωλR ),T 1 = B ωλR 2 ;后者的计算必须..应用图9-10的思想,只是F 变成了离心力,方程 2T 2 sin 2θ =πθ2M ω2R ,即T 2 =πω2R M 2 。
〖答〗B ωλR 2 + πω2R M 2 。
【例题3】如图9-11所示,半径为R 的圆形线圈共N 匝,处在方向竖直的、磁感强度为B 的匀强磁场中,线圈可绕其水平直径(绝缘)轴OO ′转动。
几种常见的磁场例题解析
几种常见的磁场【典型例题】【例1】关于磁现象的电本质,下列说法中错误的是( )A 、 磁体随温度升高磁性增强B 、安培分子电流假说揭示了磁现象的电本质B 、 所有磁现象的本质都可归结为电荷的运动D 、一根软铁不显磁性,是因为分子电流取向杂乱无章【解析】安培分子电流假设告诉我们:物质微粒内部,存在一种环形电流,即分子电流。
分子电流使每个物质微粒都成为微小的磁体,当分子电流的取向一致时,整个物体体现磁性,若分子电流取向杂乱无章,那么整个物体不显磁性。
当磁体的温度升高时,分子无规则运动加剧,分子电流取向变得不一致,磁性应当减弱。
【答案】A【例2】两圆环A 、B 同心放置且半径R A >R B ,将一条形磁铁置于两环圆心处,且与圆环平面垂直,如图所示,则穿过A 、B 两圆环的磁通量的大小关系为( )A 、φA >φB B 、φA =φBC 、φA <φBD 、无法确定【解析】磁通量可形象地理解为穿过某一面积里的磁感线的条数,而沿相反方向穿过同一面积的磁通量一正、一负,要有抵消。
本题中,条形磁铁内部的所有磁感线,由下往上穿过A 、B 两个线圈,而在条形磁体的外部,磁感线将由上向下穿过A 、B 线圈,不难发现,由于A 线圈的面积大,那么向下穿过A 线圈磁感线多,也即磁通量抵消掉多,这样穿过A 线圈的磁通量反而小。
【例3】如图所示,通有恒定电流的导线MN 与闭合金属框共面,第一次将金属框由Ⅰ平移到Ⅱ第二次将金属框绕cd 边翻转到Ⅱ,设先后两次通过金属框的磁通量变化分别为1ϕ∆和2ϕ∆,则( )A 、1ϕ∆>2ϕ∆B 、1ϕ∆=2ϕ∆C 、1ϕ∆<2ϕ∆D 、不能判断【解析】导体MN 周围的磁场并非匀强磁场,靠近MN 处的磁场强些,磁感线密一些,远离MN 处的磁感线疏一些,当线框在I 位置时,穿过平面的磁通量为Ⅰϕ,当线圈平移至Ⅱ位置时,磁能量为Ⅱϕ,则磁通量的变化量为1ϕ∆=ⅠⅡ-ϕϕ=Ⅰϕ-Ⅱϕ,当到线框翻转到Ⅱ位置时,磁感线相当于从“反面”穿过原平面,则磁通量为-Ⅱϕ,则磁通量的变化量是1ϕ∆=ⅠⅡ-ϕϕ-=Ⅰϕ+Ⅱϕ所以1ϕ∆<2ϕ∆【答案】C【基础练习】一、选择题:1、关于磁感线和电场线,下列说法中正确的是( )A 、磁感线是闭合曲线,而静电场线不是闭合曲线B 、磁感线和电场线都是一些互相平行的曲线C 、磁感线起始于N 极,终止于S 极;电场线起始于正电荷,终止于负电荷D 、磁感线和电场线都只能分别表示磁场和电场的方向2、关于磁感应强度和磁感线,下列说法中错误的是( )A 、磁感线上某点的切线方向就是该点的磁感线强度的方向B 、磁感线的疏密表示磁感应强度的大小C 、匀强磁场的磁感线间隔相等、互相平行D、磁感就强度是只有大小、没有方向的标量3、一束电子流沿水平面自西向东运动,在电子流的正上方有一点P,由于电子运动产生的磁场在P 点的方向为()A、竖直向上B、竖起向下C、水平向南D、水平向北4、安培分子电流假说可用来解释()A、运动电荷受磁场力作用的原因B、两通电导体有相互作用的原因C、永久磁铁具有磁性的原因D、软铁棒被磁化的现象5、如图所示,环形导线周围有三只小磁针a、b、c,闭合开关S后,三只小磁针N极的偏转方向是()A、全向里B、全向外C、a向里,b、c向外D、a、c向外,b向里6、如图所示,两根非常靠近且互相垂直的长直导线,当通以如图所示方向的电流时,电流所产生的磁场在导线所在平面内的哪个区域内方向是一致且向里的()A、区域ⅠB、区域ⅡC、区域ⅢD、区域Ⅳ二、填空题:7、如图所示,一面积为S的长方形线圈abcd有一半处在磁感应强度为B的匀强磁场中,这时穿过线圈的磁通量为Wb,当线圈以ab为轴从图中位置转过60°的瞬间,穿过线圈的磁通量为。
磁场各种典型例题全覆盖(很好)
磁 场【例1】磁场对电流的作用力大小为F =BIL (注意:L 为有效长度,电流与磁场方向应 ).F 的方向可用 定则来判定.试判断下列通电导线的受力方向.× × × × . . . .×× ×. . × ×× . . . .× × × × . . . .试分别判断下列导线的电流方向或磁场方向或受力方向.【例2】如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。
分析的关键是画出相关的磁感线。
【例3】 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会___(增大、减小还是不变?)。
水平面对磁铁的摩擦力大小为___。
解:本题有多种分析方法。
⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。
磁铁对水平面的压力减小,但不受摩擦力。
⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。
⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
【例4】 如图在条形磁铁N 极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转? B B B B解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。
(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。
3-1带电粒子在磁场中的运动经典例题
带电粒子在磁场中的运动一一、带电粒子(不计重力)在磁场中做圆周运动问题解题的一般步骤: 1、找圆心:①物理方法:两洛仑兹力延长线的交点为圆心②几何方法:弦的垂直平分线与一直径的交点2、求半径:①物理方法:由qvB=mv2/R 得 R=mv/qB②几何方法:利用三角知识和圆的知识求3、确定圆心角:①物理方法:圆心角φ等于运动速度的偏向角θ②几何方法:圆心角φ等于弦切角β的二倍 4、时间确定:a. 用公式 t =s / v 或 t =α/ω求b. 已知周期T ,所对应的圆心角为α时5、求其他量;题型分类:一、单边界磁场例题1.如图所示,x 轴上方有垂直纸面向里的匀强磁场.有两个质量相同,电荷量也相同的带正、负电的离子(不计重力),以相同速度从O 点射入磁场中,射入方向与x 轴均夹θ角.则正、负离子在磁场中A.运动时间相同B.运动轨道半径相同C.重新回到x 轴时速度大小和方向均相同D.重新回到x 轴时距O 点的距离相同例题2、 如图所示,在x 轴上方存在着垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成120°角,若粒子穿过y 轴正半轴后在磁场中到x 轴的最大距离为a,则该粒子的荷质比和所带电荷的正负是( )A .aB23v,正电荷B .aB2v,正电荷C .aB23v,负电荷 D .aB2v,负电荷例题3、如图3-6-9所示,一个带负电的粒子以速度v 由坐标原点射入充满x 正半轴的磁场中,速度方向与x 轴、y 轴均成45°角.已知该粒子电量为-q ,质量为m ,则该粒子通过x 轴和y 轴的坐标分别是多少?ATt T t360或2απα==针对练习1、 如图直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?3、如图3-6-2所示,在y<0的区域内存在匀强磁场,磁场方向垂直平面并指向纸面外,磁感应强度为B .一带正电的粒子(不计重力)以速度v 0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为,求该粒子的电荷量与质量之比q/m .二、双边界磁场例题1. 三个速度大小不同的同种带电粒子,沿同一方向从如图所示的长方形区域的匀强磁场上边缘射入强磁场,当它们从下边缘飞出时对入射方向的偏角分别为90°、60°、30°,则它们在磁场中的运动时间之比 ( ) A .1∶1∶1B .1∶2∶3C .3∶2∶1D .1∶2∶3例题2.如图所示,一束电子(电量为e )以速度v 0垂直射入磁感应强度为B ,宽为d 的匀强磁场中,穿出磁场时速度方向与电子原来入射方向的夹角为30°,则电子的质量是多少?穿过磁场的时间是多少?例题3、.如图所示,宽为d 的匀强磁场的磁感应强度为B ,方向垂直于纸面向里.现有一个电量为-q ,质量为m 的粒子(不计重力),从a 点以垂直于磁场边界PQ 并垂直于磁场的方向射入磁场,然后从磁场上边界MN 上的b 点射出磁场.已知ab 连线与PQ 成60º,求该带电粒子射出磁场时的速度大小。
高中物理《磁场》典型题(经典推荐含答案)
高中物理《磁场》典型题(经典推荐含答案)高中物理《磁场》典型题(经典推荐)一、单项选择题1.下列说法中正确的是:A。
在静电场中电场强度为零的位置,电势也一定为零。
B。
放在静电场中某点的检验电荷所带的电荷量 q 发生变化时,该检验电荷所受电场力 F 与其电荷量 q 的比值保持不变。
C。
在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零。
D。
磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定。
2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。
如关系式 U=IR,既反映了电压、电流和电阻之间的关系,也确定了 V(伏)与 A(安)和Ω(欧)的乘积等效。
现有物理量单位:m(米)、s(秒)、N(牛)、J (焦)、W(瓦)、C(库)、F(法)、A(安)、Ω(欧)和 T(特),由他们组合成的单位都与电压单位 V(伏)等效的是:A。
J/C 和 N/CB。
C/F 和 T·m2/sC。
W/A 和 C·T·m/sD。
W·Ω 和 T·A·m3.如图所示,重力均为 G 的两条形磁铁分别用细线 A 和B 悬挂在水平的天花板上,静止时,A 线的张力为 F1,B 线的张力为 F2,则:A。
F1=2G,F2=GB。
F1=2G,F2>GC。
F1GD。
F1>2G,F2>G4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在 1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在 1s时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为:A。
1/2B。
1C。
2D。
45.如图所示,矩形 MNPQ 区域内有方向垂直于纸面的匀强磁场,有 5 个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中 a、b、c 处进入的粒子对应表中的编号分别为:A。
磁场典型例题解析
作业4
• 在图中虚线所示的区域存在匀强电场和匀强磁场。 取坐标如图,一带电粒子沿x轴正方向进入此区域,
在穿过此区域的过程中运动方向始终不发生偏转。 不计重力的影响,电场强度E和磁感强度B的方向 可能是:( A )
• A.E和B都沿x轴方向
• B.E沿y轴正向,B沿z 轴负向 y
• C.E沿z轴正向,B沿y轴正向
有粒子射出的范围。
解答
• 关键是画出粒子的运动轨迹
由图可知在AB两点之间粒子可以射出磁场
OB=R OA= 3R
A
AB 1 3 R,R mV qB
2R A1
O R 60°
AB 1 3 mV
B
qB
作业7
• 如图所示,在y<0的区域内存在匀强磁场,磁 场方向垂直于xoy平面并指向纸面外,磁感应 强度为B。一带正电的粒子以速度v0从O点射入 磁场,入射方向在xoy平面内,与x轴正向的夹 角为θ。若粒子射出磁场的位置与O点的距离 为l,求该粒子的电量核质量之比q/m。
• 电子的定向移动方向与电流方向相反 • 根据左手定则电子所受洛仑兹力方向右 • 所以右侧聚集较多电子 • a点的电势较高。 • 正确选项是C。
例题二
• 如垂带经直过电图纸偏粒,面转子L1向后从和里正AL2点的好为以相过两初同B平点速匀行,度强的经v磁虚与过场线LB2,,成点AL3时、01上°速B方角度两和斜方点L向向都2下上也在方射斜L2出都向上上。,是 成30°角,不计重力,下列说法中正确的是( )
例题七
• 如图所示为利用电磁作用输送非导电液体装置的示意图。一水平 放置的塑料管道截面为边长是L的正方形、,其右端面上有一截 面积为A的小喷口,喷口离地的高度为h。管道中有一绝缘活塞。 在活塞的中部和上部分别嵌有两根金属棒a、b,其中棒b的两端 与一电压表相连,整个装置放在竖直向上的匀强磁场中。当棒a 中通有垂直纸面向里的恒定电流I时,活塞向右匀速推动液体从 喷口水平射出,液体落地点离喷口的水平距离为S。若液体的密 度为ρ,不计所有阻力,求:
42、磁场专题42
42、磁场专题42.多过程与周期性问题专题42 多过程与周期性问题例题1:在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B=0.10 T,磁场区域半径r=3 m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外,两区域切点为C。
今有质量m=3.2×10^-26 kg、带电荷量q=1.6×10^-19 C的某种离子,从左侧区边缘的A点以速度v=1×10^6 m/s正对O1的方向垂直射入磁场,它将穿越C点后再从右侧区穿出。
求:(1) 该离子通过两磁场区域所用的时间;(2) 离子离开右侧区域的出射点偏离最初入射方向的侧移距离多大?(侧移距离指在垂直初速度方向上移动的距离)解析:(1) 离子在磁场中做匀速圆周运动,在左、右两区域的运动轨迹是对称的。
设轨迹半径为R,圆周运动的周期为T。
由牛顿第二定律有qvB=m,又T=v/(qB),联立两式得:R=v/(qB),T=2πR/v。
将已知数据代入得R=2 m,t=2T=4.19×10^6 s。
2) 在图中过O2向AO1作垂线,联立轨迹对称关系知侧移距离d=2rsin2θ,即d=2×3sin53°=2 m。
例题2:在第二象限和第四象限的正方形区域内分别存在着匀强磁场,磁感应强度均为B,方向相反,且都垂直于xOy 平面。
一电子由P(-d,d)点,沿x轴正方向射入磁场区域I(电子质量为m,电荷量为e,sin 53°=5/√29)。
求:(1) 电子能从第三象限射出的入射速度的范围;(2) 若电子从(0,0)位置射出,求电子在磁场I中运动的时间t;(3) 求第(2)问中电子离开磁场II时的位置坐标。
解析:(1) 电子能从第三象限射出的临界轨迹如图甲所示,电子偏转半径范围为<r<d/2.由evB=m得v=rm/Bd,故电子入射速度的范围为<v<2veB/(rm)。
磁场习题(含答案解析)
磁场典型例题(一)磁通量的大小比较与磁通量的变化例题1. 如图所示,a、b为两同心圆线圈,且线圈平面均垂直于条形磁铁,a的半径大于b,两线圈中的磁通量较大的是线圈___________。
解析:b 部分学生由于对所有磁感线均通过磁铁内部形成闭合曲线理解不深,容易出错。
例题2. 磁感应强度为B的匀强磁场方向水平向右,一面积为S的线圈abcd如图所示放置,平面abcd与竖直面成θ角。
将abcd绕ad轴转180º角,则穿过线圈的磁通量的变化量为()A. 0B. 2BSC. 2BSc osθD. 2BSs inθ解析:C部分学生由于不理解关于穿过一个面的磁通量正负的规定而出现错误。
(二)等效分析法在空间问题中的应用例题3. 一个可自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个圆线圈的圆心重合,当两线圈都通过如图所示的电流时,则从左向右看,线圈L1将()A. 不动B. 顺时针转动C. 逆时针转动D. 向纸外平动解析:C 本题可把L1、L2等效成两个条形磁铁,利用同名磁极相斥,异名磁极相吸,即可判断出L1将逆时针转动。
(三)安培力作用下的平衡问题例题4. 一劲度系数为k的轻质弹簧,下端挂有一匝数为n的矩形线框abcd,bc边长为l。
线框的下半部处在匀强磁场中,磁感应强度大小为B,方向与线框平面垂直,在图中垂直于纸面向里。
线框中通以电流I,方向如图所示。
开始时线框处于平衡状态。
令磁场反向,磁感应强度的大小仍为B,线框达到新的平衡。
在此过程中线框位移的大小=__________,方向_____________。
解析:,向下。
本题为静力学与安培力综合,把安培力看成静力学中按性质来命名的一个力进行受力分析,是本题解答的基本思路。
例题5. 如图所示,两平行光滑导轨相距为20cm,金属棒MN质量为10g,电阻R=8Ω,匀强磁场的磁感应强度B的方向竖直向下,大小为0.8T,电源电动势为10V,内阻为1Ω。
(文末附答案)人教版2022年高中物理磁场典型例题
(每日一练)(文末附答案)人教版2022年高中物理磁场典型例题单选题1、在等边三角形的三个顶点a、b、c处,各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图.过c点的导线所受安培力的方向A.与ab边平行,竖直向上B.与ab边平行,竖直向下C.与ab边垂直,指向左边D.与ab边垂直,指向右边2、如图所示,小磁针的N极指向正确的是()A.a B.b C.c D.d3、CT扫描是计算机X射线断层扫描技术的简称,CT扫描机可用于对多种病情的探测。
图(a)是某种CT机主要部分的剖面图,其中X射线产生部分的示意图如图(b)所示。
图(b)中M、N之间有一电子束的加速电场,虚线框内有匀强偏转磁场;经调节后电子束从静止开始沿带箭头的实线所示的方向前进,打到靶上,产生X射线(如图中带箭头的虚线所示);将电子束打到靶上的点记为P点。
则()A.M处的电势高于N处的电势B.增大M、N之间的加速电压可使P点左移C.偏转磁场的方向垂直于纸面向外D.增大偏转磁场磁感应强度的大小可使P点左移4、在如图所示的空间中,存在场强为E的匀强电场,同时存在沿x轴负方向,磁感应强度为B的匀强磁场.一质子(电荷量为e)在该空间恰沿y轴正方向以速度v匀速运动.据此可以判断出A.质子所受电场力大小等于eE,运动中电势能减小,沿着z轴方向电势升高B.质子所受电场力大小等于eE,运动中电势能增大,沿着z轴方向电势降低C.质子所受电场力大小等于evB,运动中电势能不变,沿着z轴方向电势升高D.质子所受电场力大小等于evB,运动中电势能不变,沿着z轴方向电势降低5、取两个完全相同的长导线,用其中一根绕成如图(a)所示的螺线管,当该螺线管中通以电流强度为I的电流时,测得螺线管内中部的磁感应强度大小为B,若将另一根长导线对折后绕成如图(b)所示的螺线管,并通以电流强度也为I的电流时,则在螺线管内中部的磁感应强度大小为()A.0B.0.5B C.B D.2 B6、如图所示,在M、N处存在与纸面垂直,且通有大小相等、方向相反电流的长直导线,已知a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等。
14章磁场例题习题
第十四章 稳恒磁场例题例14-1 在真空中,电流由长直导线1沿垂直于底边bc 方向经a 点流入一由电阻均匀的导线构成的正三角形金属线框,再由b 点从三角形框流出,经长直导线2沿cb 延长线方向返回电源(如图).已知长直导线上的电流强度为I ,三角框的每一边长为l ,求正三角形的中心点O 处的磁感强度B.解:令1B 、2B 、acb B 和ab B分别代表长直导线1、2和三角形框ac 、cb 边和ab 边中的电流在O点产生的磁感强度.则 ab acb B B B B B21 1B :由于O 点在导线1的延长线上,所以1B= 0.2B :由毕-萨定律)60sin 90(sin 402 d I B 式中 6/330tan 21l l Oe d)231(34602 lI B )332(40 l I 方向:垂直纸面向里.acb B 和ab B:由于ab 和acb 并联,有 acb acb ab ab R I R I又由于电阻在三角框上均匀分布,有21cb ac ab R R acb ab ∴ acb ab I I 2 由毕奥-萨伐尔定律,有ab acb B B 且方向相反. ∴ )332(402lIB B ,B的方向垂直纸面向里.例14-2 如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为 ,求与平板共面并且距离平板一边为b 的任意点 P 的磁感强度. 解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d(2) 这载流长条在P 点产生的磁感应强度 xiB2d d 0 xx2d 0方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度B B dba bxdx x20b b a x ln 20 方向垂直纸面向里.abIIO1 2 e例14-1图ObxaP例14-2图例14-3 如图所示,半径为R ,线电荷密度为 (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度 转动,求轴线上任一点的B的大小及其方向.解: R I 2/32230)(2y R R B B yB的方向与y 轴正向一致.例14-4 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径 为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系.解:由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1,则 1014R IB同理, 2024R IB∵ 21R R ∴ 21B B 故磁感强度 12B B B 204R I104R I206R I∴ 213R R例14-5 在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:[ ] (A)1d L l B2d L l B,21P P B B(B)1d L l B 2d L l B ,21P P B B .(C)1d L l B2d L l B,21P P B B .(D)1d L l B 2d L l B,21P P B B .例14-6 在安培环路定理 i LI l B 0d 中, i I 是指 ;B是指 .例14-3图例14-4图1 2I 3(a) (b)⊙例14-5图例14-7 如图,一条任意形状的载流导线位于均匀磁场中,试证明导线a 到b 之间的一段上所受的安培力等于载同一电流的直导线ab 所受的安培力.证明:由安培定律 B l I f d d ,ab 整曲线所受安培力为 b aB l I f fd d因整条导线中I 是一定的量,磁场又是均匀的,可以把I 和B提到积分号之外,即 b aB l I f d B l I ba)d (B ab I载流相同、起点与终点一样的曲导线和直导线,处在均匀磁场中,所受安培力一样.例14-8 判断下列说法是否正确,并说明理由:(1) 若所取围绕长直载流导线的积分路径是闭合的,但不是圆,安培环路定理也成立.(2) 若围绕长直载流导线的积分路径是闭合的,但不在一个平面内,则安培环路定理不成立.例14-9 如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为 .该筒以角速度 绕其轴线匀速旋转.试求圆筒内部的磁感强度.解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , R R i )2/(2作矩形有向闭合环路如右图中所示.从电流分布的对称性分析可知,在ab 上各点B 的大小和方向均相同,而且B的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直,在de , cd fe ,上各点0 B.应用安培环路定理 I l B 0d可得 ab i ab B 0 R i B 00 圆筒内部为均匀磁场,磁感强度的大小为 R B 0 ,方向平行于轴线朝右. 例14-10 如右图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是 [ ](A) ab 边转入纸内,cd 边转出纸外.(B) ab 边转出纸外,cd 边转入纸内.(C) ad 边转入纸内,bc 边转出纸外.(D) ad 边转出纸外,bc 边转入纸内.例14-11 如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将[ ] (A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab .例14-7图例14-9图例14-10图例14-11图(C) 逆时针转动同时离开ab . (D) 逆时针转动同时靠近ab .例14-12 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为[ ](A)R r I I 22210 . (B)Rr I I 22210 .(C) rR I I 22210 . (D) 0.例14-13 载流平面线圈在均匀磁场中所受的力矩大小与线圈所围面积 ;在面积一定时,与线圈的形状 .(填: 有关、无关)习题14-1 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为[ ](A) 01 B ,02 B .(B) 01 B ,lIB 0222.(C) l I B0122 ,02 B . (D) l I B 0122 ,lIB 0222 . 14-2 在真空中,电流I 由长直导线1沿垂直bc 边方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行ac 边方向流出,经长直导线2返回电源(如图).三角形框每边长为l ,则在该正三角框中心O 点处磁感强度的大小为 ;磁感强度的方向为 。
高中物理磁场经典习题(题型分类)含答案
高中物理磁场经典习题(题型分类)含答案题组一1.在xOy平面内,y≥0的区域有垂直于平面向里的匀强磁场,磁感应强度为B。
一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以速度v射入。
粒子的重力不计。
求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。
2.如图所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e。
盒子中存有沿ad方向的匀强电场,场强大小为E。
一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v,经电场作用后恰好从e处的小孔射出。
现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B。
粒子仍恰好从e孔射出。
不考虑带电粒子的重力和粒子之间的相互作用。
1)所加的磁场的方向是什么?2)电场强度E与磁感应强度B的比值是多少?题组二4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小为B1 = 0.20 T的匀强磁场,在y轴的右侧存在垂直纸面向里、宽度d=0.125 m的匀强磁场B2.某时刻一质量为m=2.0×10^-8 kg、电量为q=+4.0×10^-4 C的带电微粒(重力可忽略不计),从x轴上坐标为(-0.25 m,0)的P点以速度v=2.0×10^3 m/s沿y轴正方向运动。
试求:1)微粒在y轴的左侧磁场中运动的轨道半径;2)微粒第一次经过y轴时速度方向与y轴正方向的夹角;3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。
5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B,方向平行于板面并垂直于纸面朝里。
图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。
假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。
高考物理磁场例题
ADBCO α E图3例1:如图,三根长直通电导线中电流大小相同,通过b 、d 导线的电流方向为垂直纸面向里,c 导线电流方向为垂直纸面向外,a 点为b 、d 两点连线的中点,ac 垂直bd ,且ab=ad=ac ,则a 点的磁场方向为( ) A .垂直纸面向外 B .垂直纸面向里 C .沿纸面由a 指向b D .沿纸面由a 指向d例2:如图2,两根垂直纸面、平行且固定放置的直导线M 和N ,通有同向等值电流;沿纸面与直导线M 、N 等距放置的另一根可自由移动的通电导线ab ,则通电导线ab 在安培力作用下运动的情况是A.沿纸面逆时针转动B.沿纸面顺时针转动C.a 端转向纸外,b 端转向纸里D.a 端转向纸里,b 端转向纸外例3:如图3,固定的半圆弧形光滑轨道置于水平方向的匀强电场和匀强磁场中,轨道圆弧半径为R ,磁感应强度为B ,方向垂直于纸面向外,电场强度为E ,方向水平向左。
一个质量为m 的小球(可视为质点)放在轨道上的C 点恰好处于静止,圆弧半径OC 与水平直径AD 的夹角为α(sin α=0.8).⑴求小球带何种电荷?电荷量是多少?并说明理由.⑵如果将小球从A 点由静止释放,小球在圆弧轨道上运动时,对轨道的最大压力的大小是多少?答案:⑴正电荷,E mg q 43= ⑵ ()E m gRg B E F 439+=例4:关于洛伦兹力,以下说法正确的是( )A 、带电粒子运动时不受洛伦兹力作用,则该处的磁感强度为零B 、磁感强度、洛伦兹力、粒子的速度三者之间一定两两垂直C 、洛伦兹力不会改变运动电荷的速度D 、洛伦兹力对运动电荷一定不做功5:图中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B 的匀强磁场,方向垂直纸面向外是MN 上的一点,从O 点可以向磁场区域发射电量为+q 、质量为m 、速率为V 的粒子,粒子射入磁场时的速度可在纸面内各个方向已知先后射人的两个粒子恰好在磁场中给定的P 点相遇,P 到0的距离为L不计重力及粒子间的相互作用(1)求所考察的粒子在磁场中的轨道半径 (2)求这两个粒子从O 点射人磁场的时间间隔LLUS d U BD 图8yxM N 0,-bL,0O 图9例6:一绝缘杆的一端固定在水平桌面上,与桌面成α角.水平方向匀强磁场垂直于α角所在的平面,如图6,有一质量为m 的小球,带电量为+q ,通过球心有一小孔。
磁场典型例题
磁场典型例题
1.如图所示,边长为L的等边三角形ABC为两个有界匀强磁场的理想边界,三角形内的磁场方向垂直纸面向外,磁感应强度大小为B,三角形外的磁场(足够大)方向垂直纸面向里,磁感应强度大小也为B.把粒子源放在顶点A处,它将沿∠A的角
平分线发射质量为m、电荷量为q、初速度为v=的负电粒子(粒子重力不计).求:
(1)从A射出的粒子第一次到达C点所用时间为多少?
(2)带电粒子在题设的两个有界磁场中运动的周期.
解析 (1)带电粒子垂直进入磁场,做匀速圆周运动
已知可得到r =L
从A点到达C点的运动轨
迹如图所示,可得
tAC=T/ 6 =πm /3Bq ;
(2)带电粒子在一个周期内的运动如图;
带电粒子从C到B的时间:
tCB=5T/ 6 =5πm/ 3Bq ;
根据对称性可知,带电粒子运动的周期为:
T=3(tAC+tCB)
解得:T′=6πm /qB ;。
电磁感应经典例题及解析
电磁感应经典例题及解析电磁感应是电磁学中的重要概念,也是我们日常生活中常常会遇到的现象。
在电磁感应的过程中,磁场的变化会导致电场的产生,进而引发电流的产生。
这一原理广泛应用于发电机、变压器等电磁设备中。
下面我们来看一些经典的电磁感应例题,并对其进行解析。
例题1:一个磁感强度为0.2 T的匀强磁场,以2 m/s的速度向垂直于磁场的方向移动,求导体中感应电动势的大小。
解析:根据电磁感应的原理,导体中感应电动势的大小等于磁感强度与导体的速度的乘积,即E = Bv。
将已知数据代入计算,E = 0.2 T × 2 m/s = 0.4 V。
例题2:一个圆形线圈的半径为10 cm,磁感强度为0.5 T的磁场垂直于线圈的平面,在0.2 s内磁场的强度从0.2 T增加到0.6 T,求线圈中感应电流的大小。
解析:根据电磁感应的原理,感应电流的大小等于感应电动势与电阻的比值,即I = ε/R。
感应电动势可以通过磁场的变化率来计算,即ε = -dφ/dt。
其中,φ表示磁通量。
磁通量的大小等于磁感强度与线圈面积的乘积,即φ = Bπr^2。
将已知数据代入计算,φ = 0.2 T ×π× (0.1 m)^2 = 0.02π Tm^2。
对磁通量关于时间的导数,即dφ/dt,可以计算为(0.6 T - 0.2 T)/0.2 s = 2 T/s。
因此,感应电动势的大小为ε = -2 T/s。
线圈的电阻需要另外给定,才能计算感应电流的大小。
通过以上例题的解析,我们可以看到,在电磁感应问题中,需要根据已知条件来计算磁通量的变化率,从而得到感应电动势的大小。
最后,根据电路中的电阻情况,可以计算出感应电流的大小。
电磁感应是电磁学中的重要概念,掌握电磁感应的原理和应用,对于理解和应用电磁学的知识具有重要意义。
通过解析经典的电磁感应例题,可以加深对电磁感应原理的理解,提高解决实际问题的能力。
高二物理磁场经典例题
高二物理磁场经典例题1.一个导线在均匀磁场中受力,磁场方向垂直于导线方向。
如果磁场强度增加,则导线上的安培力的变化情况如何?答案:导线上的安培力将增大。
2.在电流为I的长直导线附近,距离导线d处的磁感应强度为B。
如果将导线的电流加倍,则距离导线d处的磁感应强度如何变化?答案:距离导线d处的磁感应强度也将加倍。
3.一个半径为r的圆形线圈通以电流I,位于均匀磁场中。
求线圈上任意一点的磁感应强度。
答案:线圈上任意一点的磁感应强度为B=μ₀*I/(2*r),其中μ₀为真空中的磁导率。
4.两根平行长直导线,电流分别为I₁和I₂,它们的间距为d。
求两导线之间的相互作用力。
答案:两导线之间的相互作用力为F=μ₀*I₁*I₂/(2*π*d),其中μ₀为真空中的磁导率。
5.一根长直导线通以电流I,与之平行的一段长度为L的导线距离它为d。
求这一段导线受到的安培力。
答案:这一段导线受到的安培力为F=μ₀*I²*L/(2*π*d),其中μ₀为真空中的磁导率。
6.一个充满铜棒的长直螺线管通以电流I,螺线管的半径为R,匝数为N。
求铜棒两端的电势差。
答案:铜棒两端的电势差为ΔV=B*L*v,其中B为磁感应强度,L为铜棒的长度,v 为铜棒在磁场中的速度。
7.一个充满铜棒的长直螺线管通以电流I,螺线管的半径为R,匝数为N。
求铜棒受到的洛伦兹力。
答案:铜棒受到的洛伦兹力为F=B*I*L,其中B为磁感应强度,L为铜棒的长度。
8.一台电动机的转子中有N个线圈,每个线圈的面积为A,总电阻为R。
转子在磁场中以角速度ω旋转。
求电动机输出的电功率。
答案:电动机输出的电功率为P=N*B²*A*ω²*R,其中B为磁感应强度。
9.一个半径为r的螺线管通以电流I,磁场方向与螺线管轴线平行。
求螺线管内部的磁感应强度。
答案:螺线管内部的磁感应强度为B=μ₀*I*N/L,其中μ₀为真空中的磁导率,N为螺线管的匝数,L为螺线管的长度。
14章磁场 例题习题
第十四章 稳恒磁场例题1--30、在真空中,电流由长直导线1沿垂直于底边bc 方向经a 点流入一由电阻均匀的导线构成的正三角形金属线框,再由b 点从三角形框流出,经长直导线2沿cb 延长线方向返回电源(如图).已知长直导线上的电流强度为I ,三角框的每一边长为l ,求正三角形的中心点O 处的磁感强度B.解:令1B 、2B 、acb B 和ab B分别代表长直导线1、2和三角形框ac 、cb边和ab 边中的电流在O 点产生的磁感强度.则 ab acb B B B B B+++=211B :由于O 点在导线1的延长线上,所以1B= 0. 2B :由毕-萨定律)60sin 90(sin 402︒-︒π=dI B μ 式中 6/330tan 21l l Oe d =︒⋅==)231(34602-⋅π=lI B μ)332(40-π=lIμ 方向:垂直纸面向里.acb B 和ab B:由于ab 和acb 并联,有 a c b a c b ab ab R I R I ⋅=⋅又由于电阻在三角框上均匀分布,有21=+=cbac ab R R acbab ∴ acb ab I I 2=由毕奥-萨伐尔定律,有ab acb B B =且方向相反. ∴ )332(402-π==lIB B μ,B的方向垂直纸面向里.27、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面并且距离平板一边为b 的任意点P 的磁感强度. 解:利用无限长载流直导线的公式求解.(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 xiB π=2d d 0μxxπ=2d 0δμ方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度 ==⎰B B d ⎰+πba bxdx x20δμbb a x+π=ln20δμ 方向垂直纸面向里.例题34、如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.解: λωR I = 2/32230)(2y R R B B y +==λωμB的方向与y 轴正向一致.例题35、平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径 为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系.解:由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1,则 1014R I B μ= 同理, 2024R IB μ=∵ 21R R > ∴ 21B B < 故磁感强度 12B B B -= 204R I μ=104R I μ-206R I μ=∴ 213R R =13、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则: (A) =⎰⋅1d L l B⎰⋅2d L l B,21P P B B = (B) ≠⎰⋅1d L l B⎰⋅2d L l B,21P P B B =. (C) =⎰⋅1d L l B⎰⋅2d L l B,21P P B B ≠.(D)≠⎰⋅1d L l B⎰⋅2d L l B,21P P B B ≠. [ C ]31、在安培环路定理∑⎰⋅=i LI l B 0d μ 中,∑i I 是指 ;B是指 .环路L 所包围的所有稳恒电流的代数和 环路L 上的磁感强度例题32、如图,一条任意形状的载流导线位于均匀磁场中,试证明导线a 到b 之间的一段上所受的安培力等于载同一电流的直导线ab 所受的安培力.I abB1 2 I 3 (a)(b)⊙证明:由安培定律 B l I f⨯=d d ,ab 整曲线所受安培力为 ⎰⎰⨯==b aB l I f f d d因整条导线中I 是一定的量,磁场又是均匀的,可以把I 和B提到积分号之外,即 ⎰⨯=b aB l I f d B l I ba⨯=⎰)d (B ab I⨯=载流相同、起点与终点一样的曲导线和直导线,处在均匀磁场中,所受安培力一样.33、判断下列说法是否正确,并说明理由:(1) 若所取围绕长直载流导线的积分路径是闭合的,但不是圆,安培环路定理也成立.(2) 若围绕长直载流导线的积分路径是闭合的,但不在一个平面内,则安培环路定理不成立. 答:第一说法对,第二说法不对.∵ 围绕导线的积分路径只要是闭合的,不管在不在同一平面内,也不管是否是圆,安培环路定理都成立.3、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为σ.该筒以角速度ω绕其轴线匀速旋转.试求圆筒内部的磁感强度.解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2作矩形有向闭合环路如右图中所示.从电流分布的对称性分析可知,在ab 上各点B 的大小和方向均相同,而且B的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,上各点0=B .应用安培环路定理 ∑⎰⋅=I l B 0d μ可得 ab i ab B 0μ= σωμμR i B 00== 圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.4、如右图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,bc 边转入纸内. [ A ]28、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将(A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab .(C) 逆时针转动同时离开ab . (D) 逆时针转动同时靠近ab . [ D ]9、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) RrI I 22210πμ. (B)Rr I I 22210μ.(C)rRI I 22210πμ. (D) 0. [ D ]14、载流平面线圈在均匀磁场中所受的力矩大小与线圈所围面积 ;在面积一定时,与线圈的形状.(填: 有关、无关)有关 无关习题22、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为(A) 01=B ,02=B . (B) 01=B ,lI B π=0222μ.(C) lI B π=0122μ,02=B . (D) lI B π=0122μ,lI B π=0222μ. [ C ]10、在真空中,电流I 由长直导线1沿垂直bc 边方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行ac 边方向流出,经长直导线2返回电源(如图).三角形框每边长为l ,则在该正三角框中心O 点处磁感强度的大小为 ;磁感强度的方向为 。
磁现象 磁场知识点的例题及其解析
磁现象磁场知识点的例题及其解析【例题1】将小磁针放在磁场中,小磁针静止时极所指的方向规定为该点的磁场方向;磁场越强的地方,磁感线分布越。
答案:北;密。
解析:掌握磁场、磁场的性质及磁场方向的判定;掌握磁感线的概念、方向及分布。
磁场的基本性质是它对放入其中的磁体产生磁力的作用;放在磁场中的某一点的小磁针静止时,北极所指的方向就是该点的磁场方向;为了描述磁场,人们引入了磁场的概念,磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。
磁场越强的地方,磁感线分布越密。
【例题2】下列有关磁场的说法错误的是()A.磁体周围的磁场是真实存在的B.磁感线是为了描述磁场面虚拟的封闭曲线C.通电导体周围存在着磁场D.地面上的指南针N极总是指向地理的南极答案:D解析:A.磁体周围存在磁场,磁场是真实存在的,故A正确;B.磁感线是为了形象描述磁场的分布引入的物理模型,是虚拟的封闭曲线,故B正确;C.根据奥斯特实验可知,通电导体周围存在着磁场,故C正确;D.地球是一个大磁体,地磁的南北极与地理的南北极相反,所以指南针静止时,指南针的N 极指向地磁的南极即地理的北极,故D错误。
【例题3】如图所示,磁悬浮地球仪应用了(选填“同”或“异”)名磁极相互排斥的规律:磁悬浮地球仪悬浮静止时,底座对地球仪的斥力与地球仪受到的重力(选填“是“或“不是”)一对平衡力。
答案:同;是。
解析:因为球体与底座是相互分离的,所以球体与底座之间是相互排斥的,即该悬浮地球仪是利用的同名磁极相互排斥的原理制成的;因为球体静止在空中时受两个力的作用,一个是竖直向下的重力,一个是竖直向上的底座对它的斥力。
在这两个力的作用下地球仪保持静止,所以这两个力是一对平衡力。
【例题4】下列说法中正确的是()A.用磁感线可以描述磁场的强弱B.只要导体在磁场中运动,该导体中就会产生感应电流C.通电导体产生的磁场的方向与通过该导体的电流方向有关D.利用撒在磁体周围的铁屑可以判断该磁体周围各点的磁场方向答案:AC.解析:A.用磁感线可以描述磁场的强弱,磁感线越密集的地方,磁场越强,故A正确;B.导体中产生感应电流的条件是:闭合电路的一部分导体在磁场中做切割磁感线运动;导体在磁场中运动,不一定会产生感应电流,故B错误;C.奥斯特实验说明了通电导体周围存在磁场,该实验还表明电流方向改变时,其磁场方向也随之改变,所以,通电导体产生磁场的方向与通过该导体的电流方向有关,故C正确;D.利用铁屑可以看到磁体周围磁场的分布情况,但看不到磁场方向,磁场方向是人为规定的,故D错误.。
高中物理电磁学磁场经典大题例题
(每日一练)高中物理电磁学磁场经典大题例题单选题1、如图所示,在M、N处存在与纸面垂直,且通有大小相等、方向相反电流的长直导线,已知a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等。
下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的的磁感应强度方向相反C.c、d两点处的磁感应强度方向相同D.a、c两点处的磁感应强度方向不同答案:C解析:A.a、b、c、d四个点的磁感应强度均为M、N两长直导线在各点的磁感应强度的叠加,由安培定则可知,M、N在O点处磁感应强度的方向相同,合磁感应强度竖直向下,不为零,故A错误;B.M在a处产生的磁场方向竖直向下,在b处产生的磁场方向竖直向下,N在a处产生的磁场方向竖直向下,b处产生的磁场方向竖直向下,根据场强的叠加知,a、b两点处磁感应强度大小相等,方向相同,故B错误;C.M在c处产生的磁场方向垂直于cM偏向右下,在d处产生的磁场方向垂直dM偏向左下,N在c处产生的磁场方向垂直于cN偏向左下,在d处产生的磁场方向垂直于dN偏向右下,根据平行四边形定则,知c处的磁场方向竖直向下,d处的磁场方向竖直向下,且合场强大小相等,故C正确;D.由以上分析可知,a、c两点处磁感应强度的方向都竖直向下,方向相同,故D错误。
故选C。
2、如图所示,竖直线MN∥PQ,MN与PQ间距离为a,其间存在垂直纸面向里的匀强磁场,磁感应强度为B,O 是MN上一点,O处有一粒子源,某时刻放出大量速率均为v(方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN成θ=60°角射出的粒子恰好垂直PQ射出磁场,则粒子在磁场中运动的最长时间为()A.πa3v B.√3πa3vC.4πa3v D.2πav答案:C解析:当θ=60°时,粒子的运动轨迹如图甲所示,根据几何关系有a=R sin30°解得R=2a设带电粒子在磁场中运动轨迹所对的圆心角为α,则其在磁场中运行的时间为t=α2πT即α越大,粒子在磁场中运行的时间越长,α最大时粒子的运行轨迹恰好与磁场的右边界相切,如图乙所示,因R=2a,此时圆心角αm为120°,即最长运行时间为T3,因T=2πRv=4πav所以粒子在磁场中运动的最长时间为4πa3v。
磁场例题汇总
r电流密度为-δ的实心导体组成。
空心部分轴线上任一点O’的磁感应强度B,等 于半径为R的载流圆柱在O’点所产生的磁感应强度 与通反向电流半径为r的圆柱在O’点所产生的B的 矢量和,即 B=BR+Br
由于无限长载流金属圆柱的磁场具有对称性 ,可用安培环路定律来求B
=
μ on I .( R cscβ2 dβ
2 R 3 csc 3β
) R2=
μ onI dβ
2cscβ
β 2
B= β1
μ onI dβ
2cscβ
=
μ onI
2
β2
sinβ dβ
β1
=
μ onI
2
( cosβ 2
cosβ 1)
...................
β1
β2
RP
B=
μ onI
2
( cosβ 2
运流电流: I = q/ t
= Q/2
R P x
s
x
处磁场:B
=
μ
2(
o
x
IR 2+
2
R
2
)3
2
=
μ o Q R 2
4 ( x 2 + R 2 )3
2
二、环路定律的应用
1. 直长通电螺线管
l B.dl =abB .dl + bcB .dl +cdB .dl+daB .dl
=abB .dl + 0 + 0 + 0
= Io B R2 sin2 t
(2) 解一: (t) = B . dS = B .S = BR2 cos t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场知识网络:单元切块:按照考纲的要求,本章内容可以分成三部分,即:基本概念安培力;洛伦兹力带电粒子在磁场中的运动;带电粒子在复合场中的运动。
其中重点是对安培力、洛伦兹力的理解、熟练解决通电直导线在复合场中的平衡和运动问题、带电粒子在复合场中的运动问题。
难点是带电粒子在复合场中的运动问题。
一.磁场和磁感线1.磁场的产生:磁场是磁极、电流周围存在的一种物质,对放在磁场中的磁极、电流具有力的作用. 注意:地球产生的磁场,如图1-1所示,地球的北极是地磁场的_____(南、北)极。
2.磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或小磁针静止时N极的指向).3.磁感线:用来形象描述磁场的大小和方向的一系列________(闭合、不闭合)的________(相交、不相交)曲线.用_________表示大小,用____________表示方向。
图 1-14.电流产生的磁场方向判断:安培定则(又叫____________定则)5.常见磁场的磁感线:例1:下列说法中正确的是 ( )A 磁场和电场一样,是客观存在的特殊物质B 磁感线总是从磁体的N 极出发,终止于磁体的S 极C .磁感线的方向就是磁场方向D 磁感线和电场线一样都是闭合不相交的曲线例2:两根非常接近且互相垂直的长直导线,当通以如图1-2所示的电流时,图中磁场方向 向外且最大的是第______区域. 例3:如图1-3所示,带负电的橡胶环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡的位置是 ( ) A .N 极竖直向下 B .N 极竖直向上C .N 极沿轴线向左D .N 极沿轴线向右 二. 安培力和磁感应强度 1.安培力:F=________, F 的方向:F___B;F___I 。
具体判断方法:左手定则:伸开左手,让磁感线穿过掌心,四指沿着_____方向,大姆指指向_________方向. 常见结论:同向电流相互______,反向电流相互_______。
2.磁感应强度 定义式:B=_______,B 的单位:________,是___(矢.标)量。
注意:磁场中某位置的磁感应强度的大小及方向是存在的,与放入的电流I 的大小、导线的长短L 的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B 与F 成正比,或B 与IL 成反比。
例1:下列说法中正确的是( )A.磁场中某一点的磁感应强度可以这样测定:把一小段通电导线放在该点时受到的磁场力F 与导线的长度L 、通过的电流I 乘积的比值即ILF B =B.通电导体在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度ILFB =只是定义式,它的大小取决于场源以及磁场中的位置,与F 、I 、L 以及通电导体在磁场中的方向无关D.通电导体所受磁场力的方向就是磁场的方向例2:垂直于磁场长为0.2米的导线,通以3A 的电流时,在与磁场方向垂直的情况下,它受到磁场的作用力是6×10-2N,则磁场的磁感应强度B 是_______T,当导线的长度在原位置的缩短为原来的一半时,磁感应强度为_______T.例3:如图2-1所示,AB 是两根通有大小相等,方向相反电流的直导线,则它们中垂线上C 处的 磁场方向为______;D 处磁场方向为______。
若B 也为方向向内的电流,则C 处的磁场方向 为_________;D 处磁场方向为_______。
例4:如图2-2所示,将一根长为l 的直导线,由中点折成直角形放在磁感应强度为B 的匀强磁场中,导线平面与磁感线垂直,当导线中通以电流I 后,磁场对导线的作用力大小为( ) A .BIl 21 B .BIlC .BIl 22D .BIl 2 例5:如图2-3所示,导体杆ab 质量为m,电阻为R,静止在光滑倾角为θ斜 金属导轨上,导轨间距为d,电阻不计,匀强磁场的磁感强度大小为B,方向 竖直向上,电源内阻不计,则电源的电动势为____,欲使棒静止在斜面上且对斜面无压力,则B 的方向为_______.例6:如图2-4所示,两根相互平行放置的长直导线a 和b 通有大小相等、方 向相反的电流,a 受到磁场力的大小为F 1,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为F 2.则此时b 受到的磁场力大小为( ) A .F 2 B .F 1-F 2 C .F 1+F 2 D .2F 1-F 2例7:如图2-5所示,长1米的水平直杆重6牛,在匀强磁场中通以2安的电流后, 悬线与竖直方向成370的角,求该匀强磁场的最小值大小______。
三.带电粒子在磁场中的运动 1.洛伦兹力的大小:当电荷运动的方向与磁场方向垂直时,F 洛=______。
图 1-2 图 2-5 图 2-2a bI图 2-4图 2-3图 2-1ωN SO O /图1-32.洛伦兹力的方向:用_____手定则来判断:用四指指向_____电荷的运动方向或负电荷运动的反方向,则大姆指所指的方向即为_______________方向.3.带电粒子在磁场中的运动规律: 当电荷运动的方向与磁场方向垂直时,电荷的运动轨迹为_________; 其运动的向心力由______提供, 即F 向=_______=________可得带电粒子做圆周运动的半径为R=______; 周期为T=_______;可见,运动周期T 与______和________无关.4.注意点:(1)洛伦兹力______(做,不做)功,比较:安培力____ (做,不做)功. (2)带电粒子在磁场中作匀速圆周运动所受的洛伦兹力大小不变,但方向时刻改变: F__v, F__B.因而______(不是,是)恒力.(3)带电粒子在磁场中作匀速圆周运动的周期与电荷的运动速度无关,与电荷的正负无关,只与电荷的荷质比有关. 5.圆心、半径及时间的确定方法:(1)已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心。
(2) 已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,做其中垂线,这两条垂线的交点就是圆弧轨道的圆心。
(2)用几何知识求得半径大小;(3)找出圆心角大小,用t=__________,求时间. 6.注意圆周运动中有关对称规律.(1)从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角_________; (2)在圆形磁场区域内,沿径向射入的粒子,必沿________射出. 例1:下列说法中正确的是: ( )A 运动电荷在磁场中一定受磁场力作用,在电场中一定受电场力作用B 当运动电荷在某处不受磁场力作用时,该处的磁感应强度一定为零C 电荷与磁场没有相对运动,则一定不会受到磁场的作用力D 当电荷运动的方向与磁场的方向成θ时,洛伦兹力的方向仍与磁场方向垂直. 例2:每时每刻都有大量宇宙射线向地球射来,地磁场可以改变射线 中大多数带电粒子的运动方向,使它们不能到达地面,这对地球上的生命有十分重要的意义。
假设有一个带正电的宇宙射线粒子正垂直于地面向赤道射来,如图3-1所示, 在地磁场的作用下,它将 ( )A .向东偏转B .向南偏转C .向西偏转D .向北偏转例3::如图3-2所示,正方形容器处在匀强磁场中,一束电子从a 孔沿a →b 方向垂直 射入容器内的匀强磁场中,结果一部分电子从小孔c 射出,一部分电子从小孔d 射出, 则从c 、d 两孔射出的电子( )A .速度之比1:2:=d c v vB .在容器中运动的时间之比2:1:=d c t tC .在容器中运动的加速度大小之比1:2:=d c a aD .在容器中运动的加速度大小之比1:2:=d c a a例4:如图3-3所示,质量为m 电量为q 的带电粒子以速度V 垂直射入宽度范围为d 的匀强磁场中,并偏转300后射出,则该区域的磁感强度大小为_______.例5:如图3-4所示,一电量为2×10-6库质量为4mg 的电荷以10m/s 的速度垂直一边进入长 为4米宽为2米的匀强磁场区域的一顶点,并刚好从另一顶点区域射出,则该区域的匀强磁场大小为________.例6:如图3-5所示,在y<0的区域里存在垂直于纸面向外大小为B 的匀强磁场,一带正 电的粒子以速度V O 从O 点射入磁场,入射方向在xoy 平面内,与x 轴正向的夹角为θ, 若粒子射出磁场的位置与O 点的距离为L,则该粒子的电量和质量之比为______.例7: 如图3-6所示,把中心带有小孔的平行放置的两个圆形金属板M 和 N ,连接在电压恒为U 的直流电源上。
一个质量为m ,电荷量为q 的微观正粒子,以近似于静止的状态,从M 板中心的小孔进入电场,然后又从N 板中心的小孔穿出,再进入磁感应强度为B 的足够宽广的匀强磁场中运动。
求:(1)该粒子从N 板中心的小孔穿出时的速度有多大?图3- 1 图 3-2图 3-4图 3-5图 3-3Bθ Q PM N ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯(2)该粒子在磁场中受到的洛仑兹力是多大?(3)若圆形板N 的半径为R,如果该粒子返回后能够直接打在圆形板N 的右 侧表面上,那么该磁场的磁感应强度B 至少为多大?例8:如图3-7所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。
MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。
P 为屏上的一小孔,PQ 与MN 垂直。
一群质量为m 、带电荷量+q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。
则以下说法正确的是( )A .在荧光屏上将出现一个圆形亮斑,其半径为mvqBB .在荧光屏上将出现一个半圆形亮斑,其半径为mvqBC .在荧光屏上将出现一个条形亮线,其长度为()21cos mv qBθ- D .在荧光屏上将出现一个条形亮线,其长度为()21sin mvqBθ-例9:如图3-8所示,图中圆形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B ,现有一电荷量为q 、质量为m 的正离子从a 点沿圆形区域的直径射入,设正离子射出磁场区域的方向与入射方向的夹角为600,求此正离子在磁场区域内飞行的时间及射出磁场的位置。
例10:如图3-9所示,真空中有以(r ,0)为圆心,半径为r 的圆形匀强磁场区域,磁场的磁感应强度大小为B ,方向垂直于纸面向里,在y = r 的 虚线上方足够大的范围内,有方向水平向左的匀强电场,电场强度的大小为E ,从 O 点向不同方向发射速率相同的质子,质子的运动轨迹均在纸面内,且质子在磁场 中的偏转半径也为r ,已知质子的电荷量为q ,质量为m ,不计重力、粒子间的相 互作用力及阻力的作用。