TFT-LCD显示原理及驱动
TFT_LCD液晶显示器的驱动原理详解
TFT_LCD液晶显示器的驱动原理详解TFT液晶显示器是一种广泛应用于电子产品中的显示技术,它具有亮度高、色彩鲜艳、对比度高等特点。
其驱动原理涉及到液晶分子的操控和信号的产生,下面将详细介绍TFT_LCD液晶显示器的驱动原理。
TFT液晶显示器的基本构造是将两块玻璃基板之间夹上一层液晶材料并加上一层透明导电材料形成液晶屏幕。
液晶是一种具有各向异性的有机材料,其分子有两种排列方式:平行排列和垂直排列。
平行排列时液晶分子可以使光线通过,垂直排列时则阻止光线通过。
这种液晶分子的特性决定了TFT液晶显示器的驱动原理。
TFT液晶显示器的显示过程是通过将电信号施加到液晶分子上来实现的。
在TFT液晶显示器中,每个像素都有一个薄膜晶体管(TFT)作为驱动器,这个晶体管可以控制液晶分子的排列方式。
当电压施加到晶体管上时,晶体管会打开,液晶分子垂直排列,使得背光通过液晶层后被过滤器颜色选择,从而显示对应的颜色。
当电压不再施加到晶体管上时,晶体管关闭,液晶分子平行排列,背光被完全阻挡,形成黑色。
为了产生详细的图像,TFT液晶显示器采用了阵列式的组织结构。
在每个像素之间有三个基色滤光片,分别为红色、绿色和蓝色。
液晶层上的每个像素都与一个TFT晶体管和一个电容器相连。
当电压施加到TFT晶体管上时,电容器会积蓄电荷,触发液晶分子的排列,从而控制对应像素的颜色。
在驱动原理的实现过程中,TFT液晶显示器需要一个控制器来产生电信号。
控制器通过一个复杂的算法,将输入的图像数据转化为适合TFT液晶显示器的电信号,以实现图像的显示。
控制器还负责对TFT晶体管进行驱动,为每个像素提供适当的电压。
另外,TFT液晶显示器还需要背光模块来提供光源。
背光模块通常使用冷阴极荧光灯(CCFL)或者白色LED来产生光线。
背光通过液晶分子的排列方式来调节光的透过程度,从而形成不同的颜色。
为了提供更好的显示效果,在TFT液晶显示器中还需要增加背光的亮度和对比度的调节功能。
TFTLCD显示原理及驱动介绍
TFTLCD显示原理及驱动介绍TFTLCD是一种液晶显示技术,全称为Thin Film Transistor Liquid Crystal Display,即薄膜晶体管液晶显示器。
它是目前应用最广泛的显示器件之一,被广泛应用在电子产品中,如手机、平板电脑、电视等。
TFTLCD显示屏是由数百万个像素点组成的,每个像素点又包含红、绿、蓝三个亚像素。
这些像素点由一层薄膜晶体管(TFT)驱动。
薄膜晶体管是一种微型晶体管,位于每个像素点的背后,用来控制液晶材料的偏振状态。
当电流通过薄膜晶体管时,液晶分子会受到电场的影响,从而改变偏振方向,使光线在通过液晶层时发生偏转,从而改变像素点的亮度和颜色。
TFTLCD显示屏需要配备驱动电路,用来控制TFT晶体管的电流,以控制液晶分子的偏振状态。
驱动电路通常由一个控制器和一组电荷泵组成。
控制器负责接收来自外部的指令,通过电荷泵为晶体管提供适当的电流。
电荷泵可以产生高电压和低电压,从而控制液晶分子的偏振状态。
控制器通过一组驱动信号,将指令传递给TFT晶体管,控制像素点的亮度和颜色。
TFTLCD驱动器是用来控制TFTLCD显示屏的硬件设备,通常与控制器紧密连接。
驱动器主要负责将控制器发送的信号转换为液晶的电流输出,实现对像素点的亮度和颜色的控制。
驱动器还负责控制像素点之间的互动,以实现高质量的图像显示。
1.扫描电路:负责控制像素点的扫描和刷新。
扫描电路会按照指定的频率扫描整个屏幕,并刷新像素点的亮度和颜色。
2.数据存储器:用于存储显示数据。
数据存储器可以暂时保存控制器发送的图像数据,以便在适当的时候进行处理和显示。
3.灰度调节电路:用于调节像素点的亮度。
通过调节像素点的电流输出,可以实现不同的亮度效果。
4.像素点驱动电路:负责控制像素点的偏振状态。
像素点驱动电路会根据控制器发送的指令,改变液晶分子的偏振方向,从而改变像素点的亮度和颜色。
5.控制线路:用于传输控制信号。
控制线路通常由一组电线组成,将控制器发送的信号传输到驱动器中,以控制整个显示过程。
tft lcd 工作原理
tft lcd 工作原理
TFT LCD(薄膜晶体管液晶显示器)是一种常见的显示技术,广泛应用于电子设备中,例如平板电脑、智能手机和电视等。
下面是TFT LCD的工作原理:
1. 液晶层:TFT LCD最关键的部分是液晶层,液晶层由液晶
分子组成,液晶分子可以通过电场的作用改变其在空间中的排列方式。
2. 背光源:TFT LCD需要一个背光源,通常采用LED(Light Emitting Diode)作为背光源。
背光源会在显示器的后面提供
均匀的光源,通过液晶层透过背光源的光来显示图像。
3. 薄膜晶体管阵列:液晶层的每个像素点都包含一个对应的薄膜晶体管。
这些薄膜晶体管阵列是连接在导线网格上的,用于控制液晶层中液晶分子的排列方式。
4. 驱动电路:TFT LCD中的驱动电路负责控制薄膜晶体管阵列,通过在特定像素点上施加电压,改变液晶分子的排列方式。
这样,液晶层就可以根据不同的电压来控制光的透过程度,从而生成不同的颜色和亮度。
5. 控制器:TFT LCD还包含一个控制器,用于接收来自电子
设备的信号,并将其转化为正确的像素点显示在液晶屏上。
控制器通常采用计算机程序或者芯片实现。
总的来说,TFT LCD的工作原理是通过控制驱动电路中的薄
膜晶体管阵列,在液晶层中施加电场,进而控制液晶分子的排列方式,从而控制光的透过程度,最终显示出图像。
TFT_LCD_驱动原理
TFT_LCD_驱动原理TFT(薄膜晶体管)液晶显示屏是一种广泛应用于电子产品中的平面显示技术。
TFT液晶显示屏由液晶单元和薄膜晶体管阵列组成,每个像素都由一个液晶单元和一个薄膜晶体管控制。
TFT液晶显示屏的原理是利用液晶的电光效应来实现图像的显示。
液晶是一种介于固体和液体之间的有机化合物,具有光电效应。
通过在液晶材料中施加电场,可以改变液晶的折射率,从而控制光的透射或反射。
液晶的电光效应使得TFT液晶显示屏可以根据电信号来调节每个像素点的亮度和颜色。
TFT液晶显示屏的驱动原理主要包括以下几个步骤:1.数据传输:首先,需要将图像数据从输入设备(如计算机)传输到液晶显示屏的内部电路。
这通常是通过一种标准的视频接口(如HDMI或VGA)来完成的。
2.数据解码与处理:一旦数据传输到液晶显示屏内部,它会被解码和处理,以提取有关每个像素点的亮度和颜色信息。
这些信息通常以数字方式存储在显示屏的内部存储器中。
3.电压调节:在液晶显示屏中,每个像素是由一个液晶单元和一个薄膜晶体管组成。
薄膜晶体管通过控制液晶单元的电场来调节每个像素的亮度和颜色。
为了控制液晶单元的电场,需要施加不同电压信号到每个像素点上。
这些电压信号由驱动电路产生,并通过薄膜晶体管传递到液晶单元。
4.像素刷新:一旦电压信号被传递到液晶单元,液晶单元将会根据电场的变化来调节光的传输或反射,从而实现每个像素的亮度和颜色调节。
整个屏幕的像素都将按照这种方式进行刷新,以显示出完整的图像。
5.控制信号发生器:控制信号发生器是液晶显示屏的一个重要组成部分,用于生成各种控制信号,如行扫描和场扫描信号,以及重新刷新图像的同步信号。
这些控制信号保证了像素的正确驱动和图像的稳定显示。
总结起来,TFT液晶显示屏的驱动原理涉及数据传输、数据解码与处理、电压调节、像素刷新和控制信号发生器等多个步骤。
通过控制电压信号和液晶单元的电场变化,TFT液晶显示屏能够实现图像的显示,并且具有色彩鲜艳、高对比度和快速响应等优点,因此在各种电子产品中得到广泛应用。
TFT_LCD液晶显示器的驱动原理详解
TFT LCD液晶显示器的驱动原理TFT LCD液晶显示器的驱动原理(一)我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理.Cs(storage capacitor)储存电容的架构一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate 的方式的原因.至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显的就是位在另一片玻璃之上. 如此一来, 由液晶所形成的平行板电容Clc, 便是由上下两片玻璃的显示电极与common电极所形成. 而位于Cs储存电容上的common电极, 则是另外利用位于与显示电极同一片玻璃上的走线, 这跟Clc上的common电极是不一样的, 只不过它们最后都是接到相同的电压就是了.整块面板的电路架构从图3中我们可以看到整片面板的等效电路, 其中每一个TFT与Clc跟Cs所并联的电容, 代表一个显示的点. 而一个基本的显示单元pixel,则需要三个这样显示的点,分别来代表RGB三原色. 以一个1024*768分辨率的TFT LCD来说, 共需要1024*768*3个这样的点组合而成. 整片面板的大致结构就是这样, 然后再藉由如图3中 gate driver所送出的波形, 依序将每一行的TFT打开, 好让整排的source driver同时将一整行的显示点, 充电到各自所需的电压, 显示不同的灰阶. 当这一行充好电时, gate driver便将电压关闭, 然后下一行的gate driver便将电压打开, 再由相同的一排source driver对下一行的显示点进行充放电. 如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电. 以一个1024*768 SVGA分辨率的液晶显示器来说, 总共会有768行的g ate走线, 而source走线则共需要1024*3=3072条. 以一般的液晶显示器多为60Hz的更新频率来说, 每一个画面的显示时间约为1/6 0=16.67ms. 由于画面的组成为768行的gate走线, 所以分配给每一条gate走线的开关时间约为16.67ms/768=21.7us. 所以在图3 g ate driver送出的波形中, 我们就可以看到, 这些波形为一个接着一个宽度为21.7us的脉波, 依序打开每一行的TFT. 而sourcedriver则在这21.7us的时间内, 经由source走线, 将显示电极充放电到所需的电压, 好显示出相对应的灰阶.面板的各种极性变换方式由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏. 但是如果画面一直不动, 也就是说画面一直显示同一个灰阶的时候怎么办? 所以液晶显示器内的显示电压就分成了两种极性, 一个是正极性, 而另一个是负极性. 当显示电极的电压高于common电极电压时, 就称之为正极性. 而当显示电极的电压低于c ommon电极的电压时, 就称之为负极性. 不管是正极性或是负极性, 都会有一组相同亮度的灰阶. 所以当上下两层玻璃的压差绝对值是固定时, 不管是显示电极的电压高, 或是common电极的电压高, 所表现出来的灰阶是一模一样的. 不过这两种情况下, 液晶分子的转向却是完全相反, 也就可以避免掉上述当液晶分子转向一直固定在一个方向时, 所造成的特性破坏. 也就是说, 当显示画面一直不动时, 我们仍然可以藉由正负极性不停的交替, 达到显示画面不动, 同时液晶分子不被破坏掉特性的结果. 所以当您所看到的液晶显示器画面虽然静止不动, 其实里面的电压正在不停的作更换, 而其中的液晶分子正不停的一次往这边转, 另一次往反方向转呢!图4就是面板各种不同极性的变换方式, 虽然有这么多种的转换方式, 它们有一个共通点, 都是在下一次更换画面数据的时候来改变极性. 以60Hz的更新频率来说, 也就是每16ms, 更改一次画面的极性. 也就是说, 对于同一点而言, 它的极性是不停的变换的. 而相邻的点是否拥有相同的极性, 那可就依照不同的极性转换方式来决定了. 首先是frame inversion, 它整个画面所有相邻的点, 都是拥有相同的极性. 而row inversion与column inversion则各自在相邻的行与列上拥有相同的极性. 另外在dot inversion上, 则是每个点与自己相邻的上下左右四个点, 是不一样的极性. 最后是delta inversion, 由于它的排列比较不一样, 所以它是以RGB 三个点所形成的pixel作为一个基本单位, 当以pixel为单位时, 它就与dot inversion很相似了, 也就是每个pixel与自己上下左右相邻的pixel,是使用不同的极性来显示的.Common电极的驱动方式图5及图6为两种不同的Common电极的电压驱动方式, 图5中Common电极的电压是一直固定不动的, 而显示电极的电压却是依照其灰阶的不同, 不停的上下变动. 图5中是256灰阶的显示电极波形变化, 以V0这个灰阶而言, 如果您要在面板上一直显示V0这个灰阶的话, 则显示电极的电压就必须一次很高, 但是另一次却很低的这种方式来变化. 为什么要这么复杂呢? 就如同我们前面所提到的原因一样, 就是为了让液晶分子不会一直保持在同一个转向, 而导致物理特性的永久破坏. 因此在不同的frame中, 以V0这个灰阶来说, 它的显示电极与common电极的压差绝对值是固定的, 所以它的灰阶也一直不曾更动. 只不过位在Clc两端的电压, 一次是正的, 称之为正极性, 而另一次是负的, 称之为负极性. 而为了达到极性不停变换这个目的, 我们也可以让common电压不停的变动, 同样也可以达到让Clc两端的压差绝对值固定不变, 而灰阶也不会变化的效果, 而这种方法, 就是图6所显示的波形变化. 这个方法只是将common电压 一次很大, 一次很小的变化. 当然啦, 它一定要比灰阶中最大的电压还大, 而电压小的时候则要比灰阶中最小的电压还要小才行. 而各灰阶的电压与图5中的一样, 仍然要一次大一次小的变化.这两种不同的Common驱动方式影响最大的就是source driver的使用. 以图7中的不同Common电压驱动方式的穿透率来说, 我们可以看到, 当common电极的电压是固定不变的时候, 显示电极的最高电压, 需要到达common电极电压的两倍以上. 而显示电极电压的提供, 则是来自于source driver. 以图七中common电极电压若是固定于5伏特的话, 则source driver所能提供的工作电压范围就要到10伏特以上. 但是如果common电极的电压是变动的话, 假使common电极电压最大为5伏特, 则source driver的最大工作电压也只要为5伏特就可以了. 就source driver的设计制造来说, 需要越高电压的工作范围, 制程与电路的复杂度相对会提高, 成本也会因此而加高.面板极性变换与common电极驱动方式的选用并不是所有的面板极性转换方式都可以搭配上述两种common电极的驱动方式. 当common电极电压固定不变时, 可以使用所有的面板极性转换. 但是如果common电压是变动的话, 则面板极性转换就只能选用frame inversion与row inversion.(请见表1) 也就是说, 如果你想使用column inversion或是dot inversion的话, 你就只能选用 common电极电压固定不动的驱动方式. 为什么呢? 之前我们曾经提到 common电极是位于跟显示电极不同的玻璃上, 在实际的制作上时, 其实这一整片玻璃都是common电极. 也就是说, 在面板上所有的显示点, 它们的common电压是全部接在一起的. 其次由于gate driver的操作方式是将同一行的所有TFT打开,好让source driver去充电, 而这一行的所有显示点, 它的common电极都是接在一起的, 所以如果你是选用common电极电压是可变动的方式的话, 是无法在一行TFT上, 来同时做到显示正极性与负极性的. 而column inversion与dot inversion的极性变换方式, 在一行的显示点上, 是要求每个相邻的点拥有不同的正负极性的. 这也就是为什么 common电极电压变动的方式仅能适用于frame inv ersion与row inversion的缘故. 而common电极电压固定的方式, 就没有这些限制. 因为其common电压一直固定, 只要source dri ver能将电压充到比common大就可以得到正极性, 比common电压小就可以得到负极性, 所以common电极电压固定的方式, 可以适用于各种面板极性的变换方式.表1面板极性变换方式 可使用的common电极驱动方式Frame inversion固定与变动Row inversion固定与变动Column inversion只能使用固定的common电极电压Dot inversion只能使用固定的common电极电压各种面板极性变换的比较现在常见使用在个人计算机上的液晶显示器, 所使用的面板极性变换方式, 大部分都是dot inversion. 为什么呢? 原因无它, 只因为dot inversion的显示品质相对于其它的面板极性变换方式, 要来的好太多了. 表2是各种面板极性变换方式的比较表. 所谓F licker的现象, 就是当你看液晶显示器的画面上时, 你会感觉到画面会有闪烁的感觉. 它并不是故意让显示画面一亮一灭来做出闪烁的视觉效果, 而是因为显示的画面灰阶在每次更新画面时, 会有些微的变动, 让人眼感受到画面在闪烁. 这种情况最容易发生在使用frame inversion的极性变换方式, 因为frame inversion整个画面都是同一极性, 当这次画面是正极性时, 下次整个画面就都变成了是负极性. 假若你是使用common电压固定的方式来驱动, 而common电压又有了一点误差(请见图8),这时候正负极性的同一灰阶电压便会有差别, 当然灰阶的感觉也就不一样. 在不停切换画面的情况下, 由于正负极性画面交替出现,你就会感觉到Flicker的存在. 而其它面板的极性变换方式, 虽然也会有此flicker的现象, 但由于它不像frame inversion 是同时整个画面一齐变换极性, 只有一行或是一列, 甚至于是一个点变化极性而已. 以人眼的感觉来说, 就会比较不明显. 至于crosstalk 的现象, 它指的就是相邻的点之间, 要显示的资料会影响到对方, 以致于显示的画面会有不正确的状况. 虽然crosstalk的现象成因有很多种, 只要相邻点的极性不一样, 便可以减低此一现象的发生. 综合这些特性, 我们就可以知道, 为何大多数人都使用dot inve rsion了. 表2面板极性变换方式 Flicker的现象 Crosstalk的现象Frame inversion明显 垂直与水平方向都易发生Row inversion不明显 水平方向容易发生Column inversion不明显 垂直方向容易发生Dot inversion几乎没有 不易发生面板极性变换方式, 对于耗电也有不同的影响. 不过它在耗电上需要考量其搭配的common电极驱动方式. 一般来说 common电极电压若是固定, 其驱动common电极的耗电会比较小. 但是由于搭配common电压固定方式的source driver其所需的电压比较高, 反而在source driver的耗电会比较大. 但是如果使用相同的common电极驱动方式, 在source driver的耗电来说,就要考量其输出电压的变动频率与变动电压大小. 一般来说, 在此种情形下, source driver的耗电,会有 dot inversion > row inversion > column inversion > frame inversion的状况. 不过现今由于dot inversion的source driver多是使用PN型的OP, 而不是像row inversi on是使用rail to rail OP, 在source driver中OP的耗电就会比较小. 也就是说由于source driver在结构及电路上的改进, 虽然先天上它的输出电压变动频率最高也最大(变动电压最大接近10伏特,而row inversion面板由于多是使用common电极电压变动的方式,其source driver的变动电压最大只有5伏特,耗电上会比较小), 但dot inversion面板的整体耗电已经减低很多了. 这也就是为什么大多数的液晶显示器都是使用dot inversion的方式.TFT LCD液晶显示器的驱动原理(二)上次跟大家介绍液晶显示器的驱动原理中有关储存电容架构,面板极性变换方式,以及common电压的驱动方式.这次我们延续上次的内容,继续针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver 所送出波形的timing图.SVGA分辨率的二阶驱动波形我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=7864 32个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel 的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着76 8个gate driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate driver打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压.而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的timing介绍过一次呢?因为我们接下来要讨论的feed thr ough电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD 面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc).Cs on common架构且common电压固定不动的feed through电压我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成feed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed through电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame的时间比例是不正确的.在此我们是为了能仔细解释每个f rame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将768个gate driver走线打开的.所以每个gate走线打开的时间,相对于一个frame的时间,是很短的.当gate走线打开或关闭的那一瞬间,电压的变化是最激烈的,大约会有30~40伏特,再经由Cgd的寄生电容,影响到显示电极的电压.在图3中,我们可以看到Cgd寄生电容的存在位置.其实Cgd的发生,跟一般的CMOS电路一样,是位于MOS的gate 与drain端的寄生电容.但是由于在TFT LCD面板上gate端是接到gate driver输出的走线,因此一但在gate driver输出走在线的电压有了激烈变化,便会影响到显示电极上的电压.在图2之中,当Frame N的gate走线打开时,会产生一个向上的feed through电压到显示电极之上.不过此时由于gate走线打开的缘故,source driver会对显示电极开始充电,因此即便一开始的电压不对(因为feed through电压的影响),source driver仍会将显示电极充电到正确的电压,影响便不会太大.但是如果当gate走线关闭的时候,由于source driver已经不再对显示电极充电,所以gate driver关闭时的电压压降(30~40伏特),便会经由Cgd寄生电容feed through到显示电极之上,造成显示电极电压有一个feed through的电压压降,而影响到灰阶显示的正确性.而且这个feed through电压不像gate走线打开时的feed through电压一样,只影响一下子,由于此时source driver已经不再对显示电极充放电,feed through电压压降会一值影响显示电极的电压,直到下一次gate driver走在线的电压再打开的时后.所以这个feed through电压对于显示画面的灰阶的影响,人眼是可以明确的感觉到它的存在的.而在Frame N+1的时候,刚开始当gate driver走线打开的那一瞬间,也会对显示电极产生一个向上的feed through电压,不过这时候由于gate已经打开的缘故,source driver会开始对显示电极充电,因此这个向上的feed through电压影响的时间便不会太长.但是当gate走线再度关闭的时候,向下的feed through电压便会让处在负极性的显示电极电压再往下降,而且受到影响的负极性显示电压会一直维持到下一次gate走线再打开的时候.所以整体来说,显示电极上的有效电压,会比source driver的输出电压要低.而减少的电压大小刚好为gate走线电压变化经由Cgd的feed through电压.这个电压有多大呢?在图4中,我们以电荷不灭定律,可以推导出feed through电压为 (Vg2 – Vg1) * Cgd / (Cgd + Clc + Cs) .假设Cg d=0.05pF,而Clc=0.1pF, Cs=0.5pF且gate走线从打开到关闭的电压为 –35伏特的话. 则feed through电压为 –35*0.0 5 / (0.05+0.1+0.5) = 2.69伏特. 一般一个灰阶与另一个灰阶的电压差约仅有30到50 mV而已(这是以6 bit的分辨率而言,若是8 bit分辨率则仅有3到5 mV而已).因此feed through电压影响灰阶是很严重的.以normal white的偏光板配置来说,会造成正极性的灰阶会比原先预期的来得更亮,而负极型的灰阶会比原先预期的来得更暗.不过恰好feed through电压的方向有一致性,所以我们只要将common电压向下调整即可.从图2中我们可以看到,修正后的common电压与原先的comm on电压的压差恰好等于feed through电压.Cs on common架构且common电压变动的feed through电压图5为Cs on common且common电压变动的电压波形,由于其common电压是随着每一个frame而变动的,因此跟common 电压固定的波形比较起来.其产生的feed through电压来源会再多增加一个,那就是common电压的变化.这个common电压的变化,经由Clc+Cs的电容,便会影响到显示电极的电压.且由于整个LCD面板上所有显示点的Clc与Cs都是接到common电压,所以一但common电压有了变化,受影响的就是整个面板的所有点.跟前面gate电压变化不一样的是,gate电压变化影响到的只是一整行的显示点而已.不过Common电压变化虽然对显示电极的电压有影响,但是对于灰阶的影响却没有像gate电压变化来的大.怎么说呢?如果我们使用跟前面一样的电容参数值,再套用图6所推导出来的公式,再假设Common电压由0伏特变到5伏特,则common电压变化所产生的feed through电压为(5 -0)*(0.1pF+ 0.5pF) / (0.05pF + 0.1pF +0.5pF) = 5 * 0.6 /0.65=4.62伏特.虽然显示电极增加这么多电压,但是common电极也增加了5伏特.因此在Clc两端,也就是液晶的两端,所看到的压差变化,就只有4.62-5=0.38伏特而已.跟之前gate走线电压变化所产生的feed through电压2.69伏特比较起来要小的多了,所以对灰阶的影响也小多了.且由于它所产生的feed through电压有对称性,不像Gate走线所产生的feedthrough电压是一律往下,所以就同一个显示点来说,在视觉对灰阶的表现影响会比较小.当然啦,虽然比较小,但是由于对整个LCD面板的横向的768行来说, common电压变化所发生的时间点,跟gate走线打开的时间间隔并不一致,所以对整个画面的灰阶影响是不一样的.这样一来,就很难做调整以便改进画面品质,这也是为什么common电压变动的驱动方式,越来越少人使用的缘故.Cs on gate架构且common电压固定不动的feed through电压图7是Cs on gate且common电压固定不动的电压波形图.它并没有common电压变化所造成的feed through电压,它只有由于gate电压变化所造成的feed through电压.不过它跟Cs on common不一样的是,由gate电压变化所造成的feed th rough电压来源有两个地方,一个是自己这一条gate走线打开经由Cgd产生的feed through电压,另一个则是上一条gate 走线打开时,经由Cs所产生的feed through电压.经由Cgd的feed through电压跟前面所讨论过的状况是一样的,在这边就不再提了.但是经由Cs的feed through电压,是因为Cs on gate的关系,如图3所示.Cs on gate的架构,它的储存电容另一端并不是接到common电压,而是接到前一条gate走线,因此在我们这一条gate走线打开之前,也就是前一条gate走线打开时,在前一条gate走线的电压变化,便会经由Cs对我们的显示电极造成feed through电压.依照图8的公式,同时套用前面的电容参数与gate电压变化值,我们可得到此一feed through电压约为 35*0.5pF/(0.5pF+0.1pF+0.05pF)=26.92伏特.这样的feed through电压是很大的,不过当前一条gate走线关闭时,这个feed through电压也会随之消失.而且前一条gat e走线从打开到关闭,以SVGA分辨率的屏幕来说,约只有21.7us的时间而已.相对于一个frame的时间16.67ms是很短的.再者当前一条gate走线的feed through电压影响显示电极后,我们这一条的gate走线也随之打开,source driver立刻将显示电极的电压充放电到所要的目标值.从这种种的结果看来,前一条gate走线的电压变化,对于我们的显示电极所表现的灰阶,几乎是没有影响的.因此对于Cs on gate且common电压固定不动的驱动方式来说,影响最大的仍然是gate走在线电压变化经由Cgd产生的feed through电压,而其解决方式跟前面几个一样,只需将common电压往下调整即可.Cs on gate架构且common电压变动的feed through电压图9是Cs on gate架构且common电压变动的feed through电压波形图.这样子的架构,刚好有了前面3种架构的所有缺点,那就是 gate走线经由Cgd的feed through电压,和前一条gate走线经由Cs的feed through电压,以及Common电压变化经由Clc的feed through电压.可想而知,在实际的面板设计上几乎是没有人使用这种架构的.而这4种架构中最常用的就是 Cs on gate架构且common电压固定不动的架构.因为它只需要考虑经由Cgd的feed through电压,而Cs on gate的架构可得到较大的开口率的缘故.。
TFT–LCD驱动原理及相关电路知识资料
Company Confidential
Interface
DVDD
Mini-LVDS Data&Clk
load/MPOL
Source driver IC
Timing Data, Clk Controller
&Control
LVDS
Von, Voff DVDD
STV,CPV OE
LC
Cs
Connector
Source Line Gate Line
G S D
TFT组件
加入电压
液晶
Clc Cs
保持电容
RON ROFF
Company Confidential
BOE HF Copyright ⓒ 2012
2
5.TFT-LCD驱动原理
VDD DC/DC Converter
Gamma
STH, CPH
AVDD, DVDD
B1O1 open T-CON无输入,白屏。 B101 short,OK
Company Confidential
BOE HF Copyright ⓒ 2012
10
5.2-4驱动原理_匹配电阻
1.匹配电阻异常(测量值应为 50欧姆),灰阶画面出现 A/D,如左图
2.测试点对地短路,出现异常 点灯如右图(多为COF静 电击穿引起
Gate Driver IC
Vcom
Vcom
WOA
BOE HF Copyright ⓒ 2012
3
从Interface Connector 进来的信号有电源VDD,数据信号和控制信号。
VDD进入DCDC Converter,变成一个3.3V的数字供电电压DVDD,它 需要给SOURCE IC ,GATE IC 和T/CON供电。另一个是模拟供电电压 AVDD。它给Gamma部分,Source IC 供电。从DCDC 出来的还有TFT 的开启电压 Von和关断电压Voff。数据信号和控制信号,进入T/CON, 由它产生控制时序,并和数据一起传送到Source IC和gate IC上。 Gamma 电路用来产生Gamma基准电压,送到source IC 中,由 Source IC 中的DA 转换器变出相应的各灰度的电压值。 Vcom (CF基 准电压)是由VCOM 电路产生,一般的是从PCB板上,通过Source IC 和Gate IC引入到panel上的
tft lcd 栅极驱动原理
tft lcd 栅极驱动原理TFT LCD栅极驱动原理TFT LCD(Thin Film Transistor Liquid Crystal Display)是一种采用薄膜晶体管驱动的液晶显示技术。
在TFT LCD中,栅极驱动是其中一种常见的驱动方式。
本文将介绍TFT LCD栅极驱动原理及其工作过程。
一、TFT LCD基本原理TFT LCD由若干个像素点组成,每个像素点由液晶分子和薄膜晶体管构成。
液晶分子通过改变其排列方式来控制光的透过程度,从而实现图像显示。
薄膜晶体管则充当信号开关,负责控制液晶分子的状态。
二、栅极驱动原理在TFT LCD中,栅极驱动是控制薄膜晶体管开关状态的关键。
栅极驱动通过一组栅极信号来控制液晶分子的排列方式,从而改变光的透过程度。
具体来说,栅极驱动将栅极信号转换成薄膜晶体管的控制信号,通过对薄膜晶体管的开关控制来实现像素点的亮灭。
三、栅极驱动工作过程栅极驱动的工作过程可以分为以下几个步骤:1. 输入信号处理:栅极驱动器接收来自图像处理器的输入信号,对信号进行处理和解码,以获取控制液晶分子排列的相关信息。
2. 信号放大:经过处理后的信号被放大,以提供足够的电压和电流来驱动液晶分子的排列变化。
3. 信号转换:放大后的信号被转换成适合薄膜晶体管控制的格式。
通常情况下,液晶显示器使用的是NMOS(n型金属氧化物半导体)或PMOS(p型金属氧化物半导体)薄膜晶体管。
4. 栅极信号输出:转换后的信号通过栅极驱动器输出到对应的栅极线上。
每个栅极线都与一组像素点相连,栅极信号会同时作用于这组像素点的薄膜晶体管。
5. 液晶分子排列控制:栅极信号作用于薄膜晶体管后,通过改变晶体管的导通状态,控制液晶分子的排列方式。
不同的排列方式会导致光的透过程度发生变化,从而实现图像的显示。
6. 图像刷新:栅极驱动器按照一定的刷新频率不断重复上述过程,以保持图像的稳定显示。
TFT LCD栅极驱动原理的核心是通过控制薄膜晶体管的开关状态来控制液晶分子的排列方式,从而实现图像的显示。
TFT-LCD显示原理及驱动介绍
主要内容
TFT LCD 簡介 TFT-LCD 面板介紹 TFT-LCD 显示原理 TFT-LCD 基本驅動方式及应用 TFT-LCD 驅動電路架構 補充: MVA显示原理介绍
TFT LCD 簡介
TFT LCD的相關知識
TFT LCD:Thin Film Transistor Liquid Crystal Display。 超薄膜晶体管液晶显示器 1、優點:
TFT-LCD 显示原理
圖像顯示原理
電腦顯示之圖像均是由一個個的像素(pixel)構成
dot
Pixel
每個像素均由三種 顏色紅(R) 綠(G) 藍(B) 的小光點 (dot)構成
混色效果 分別控制RGB dot亮度 ,自由組成各種圖案
三角形越大所能顯示的顏色越豐富
TFT LCD的顯示方式
TFT 結構
S1
S2
S3
Sn-1 Sn
G1
G2 G3 TFT Source 線 Gate 線 液晶電容 儲存電容
Gm-1
Gm
背光模組
背光模組主要是用來提供液晶面板均勻、高亮度的光 源,由於TFT-LCD之非自發光性,因此須利用外加光源如: 發光二極體、冷陰極射線管等。 主要功能:提供液晶面板平面光源,提供適當的 輝度、色度、均齊度、視角等
-Voltage
+Voltage
VCOM
VCOM
这两种不同的Common驱动方式影响最大的就是source driver的使用. 以不同Common电压驱动方式的穿透率来说, 我们 可以看到, 当common电极的电压是固定不变的时候, 显示电极的 最高电压, 需要到达common电极电压的两倍以上. 而显示电极电 压的提供, 则是来自于source driver. 以图中common电极电压若 是固定于5伏特的话, 则source driver所能提供的工作电压范围就 要到10伏特以上. 但是如果common电极的电压是变动的话, 假使 common电极电压最大为5伏特, 则source driver的最大工作电压 也只要为5伏特就可以了. 就source driver的设计制造来说, 需要 越高电压的工作范围, 制程与电路的复杂度相对会提高, 成本也 会因此而加高.
tft-lcd驱动原理
tft-lcd驱动原理
TFT-LCD是薄膜晶体管液晶显示屏的简称。
它是一种用于显示图像的先进技术,其中每个像素都由液晶层的一个薄膜晶体管和一个透明电极组成。
液晶层通过改变电场而控制晶体管的导电性,从而实现显示图像。
为了驱动TFT-LCD,需要使用显示控制器芯片及其相关的电路。
当显示控制器芯片发送信号时,与每个像素相关的电路会根据电荷的变化来更新像素颜色。
在TFT-LCD驱动中,红、绿、蓝三个基本颜色的信号分别传输到每个像素的电路中,以形成所需的颜色。
驱动TFT-LCD还需要使用后端控制器和液晶驱动器的组合。
后端控制器发送的控制信号会根据不同的数据格式对数据进行处理,并将其传输到液晶驱动器。
液晶驱动器还包括行驱动器和列驱动器,用于控制液晶层中薄膜晶体管的通断状态,并最终形成图像。
总的来说,TFT-LCD驱动需要使用显示控制器芯片、后端控制器和液晶驱动器等多个组件来完成。
它们协同工作,根据发送的信号控制每个像素的颜色,最终呈现出清晰、逼真的图像效果。
最详细的TFTLCD液晶显示器结构及原理
最详细的TFTLCD液晶显示器结构及原理TFT-LCD(Tin Film Transistor Liquid Crystal Display)是一种常见的液晶显示技术,广泛应用于电子设备中,包括智能手机、电视、电子游戏等。
本文将详细介绍TFT-LCD液晶显示器的结构和工作原理。
TFT-LCD液晶显示器的结构主要由下面几个部分组成:背光装置、液晶模组、控制电路和驱动芯片。
首先是背光装置,它通常由冷阴极荧光灯(CCFL)或LED背光源组成。
背光装置产生光线,并通过背面照亮整个显示面板。
接下来是液晶模组,它包含两片玻璃基板和液晶材料。
其中液晶材料由液晶分子组成,这些分子具有光学特性,可以通过外部电场的作用来调节光的透过程度。
液晶材料位于两片玻璃基板之间,其中的每个像素点由一个液晶分子和一个电极组成。
然后是控制电路,它负责接收从电源和信号源传来的信号,并将这些信号转换为控制信号来控制液晶分子。
控制电路通常由硅晶圆制成,包括存储器、时钟、逻辑电路等。
最后是驱动芯片,它与控制电路紧密结合,用于控制每个像素点的液晶分子的状态。
驱动芯片通常包括行驱动器和列驱动器,分别用于控制液晶分子的行扫描和列选择。
TFT-LCD液晶显示器的工作原理如下:1.电压施加:控制电路将电压信号发送到驱动芯片,然后驱动芯片发送适当的电压信号到液晶模组中的每个像素点。
2.电场影响:液晶分子在电场的作用下发生变化。
当电场施加到一个像素点时,液晶分子会重新排列,导致光的透过程度发生变化。
3.光的透过:背光照射在液晶模组后,根据液晶分子的排列方式,光线可以透过模组的一些区域,被观察者看到。
4.彩色显示:在一些液晶显示器中,为了显示彩色,每个像素点通常由红、绿、蓝三个亚像素组成,其中每个亚像素有一个滤光片来控制光的通道。
通过调整不同颜色亚像素的透光度,可以实现彩色显示。
总结起来,TFT-LCD液晶显示器的结构和原理主要涉及背光装置、液晶模组、控制电路和驱动芯片。
tftlcd工作原理
tftlcd工作原理
TFT LCD(薄膜晶体管液晶显示器)是一种使用薄膜晶体管技术来驱动液晶显示器的设备。
它由液晶层和玻璃基板构成,液晶层中有许多小的液晶单元,每个单元由一个蓝色、一个绿色和一个红色亚像素组成。
TFT LCD的工作原理可以被简单地描述为以下几个步骤:
1. 信号输入:通过电缆或接口将图像信号输入到TFT LCD。
2. 数据处理:TFT LCD内部的控制电路将图像信号转换为适合驱动液晶显示的信号,并将其发送给相应的液晶单元。
3. 液晶对齐:液晶层中的液晶单元会根据收到的信号进行重新排列,以调整其光透过性。
通过改变液晶单元的排列方式,可以控制光线的透射和阻挡。
4. 色彩显示:每个液晶单元都包含了三个亚像素(蓝色、绿色和红色),它们在组合时可以呈现出各种不同的颜色。
通过调整每个亚像素的透明度,TFT LCD可以显示出不同的色彩。
5. 背光源:在TFT LCD后面通常有一个背光源,用于照亮显示屏。
这种背光源可以是冷阴极灯(CCFL)或LED。
6. 查询刷新:在液晶单元被排列好后,TFT LCD会根据信号逐行刷新显示各个像素,以呈现完整的图像。
TFT LCD的工作原理可以实现图像的高清、色彩鲜明的显示
效果,在电子设备中得到广泛应用,如手机、平板电脑、电视等。
TFT液晶显示屏驱动方法的研究
TFT 液晶显示屏驱动方法的研究随着科技的日益发展,液晶显示屏已经成为我们生活中不可或缺的一部分。
而在液晶显示屏中,TFT 液晶显示屏也越来越得到广泛应用。
TFT 液晶显示屏具有高分辨率、高亮度、高对比度、颜色鲜艳等优点,因此在手机、电脑显示屏等领域得到了广泛应用。
TFT 液晶显示屏的驱动方法对于显示屏的性能、显示效果以及功耗等方面都有着巨大的影响。
本文主要对TFT 液晶显示屏的驱动方法进行研究。
1.TFT 液晶显示屏的原理与结构TFT 液晶显示屏(Thin Film Transistor Liquid Crystal Display,简称TFT-LCD)是液晶显示屏的一种。
TFT-LCD 显示屏利用液晶分子在电场作用下对入射光的偏振方向的旋转改变光的透射量,从而完成图像的显示。
在TFT-LCD 中,每一个像素点都包含一个薄膜晶体管(Thin Film Transistor,简称TFT),通过该晶体管控制液晶的偏振方向,从而实现屏幕显示。
TFT 液晶显示屏的结构可以分为两部分:液晶层和驱动电路。
液晶层是由两个平行的玻璃基板组成,中间夹层有液晶分子。
驱动电路包括扫描信号源和数据信号源。
其中,扫描信号源用于控制行扫描的开始和结束,数据信号源用于控制列数据的输入。
2.TFT 液晶显示屏的驱动方法2.1.静态驱动方法静态驱动方法也称为点阵驱动方法,它的原理是将每一行的所有像素点信号同时输出,再通过扫描信号进行逐行逐列驱动。
静态驱动方法简单,但是存在以下缺点:① 性能受限:静态驱动方法只能实现低分辨率的屏幕显示,对于高分辨率的显示无法满足要求。
② 偏重度不均:由于静态驱动方法主要是通过控制扫描信号来实现像素点的控制,因此对于大像素点的控制不够均匀,出现偏重度不均等问题。
2.2.动态驱动方法动态驱动方法也称为逐行驱动方法,它的原理是分时将像素点信号输出到各个像素点,并逐行驱动。
动态驱动方法能够满足高分辨率和高亮度的要求,但是功耗较大。
tftlcd驱动原理
tftlcd驱动原理TFTLCD驱动原理解析TFT(Thin-Film Transistor)液晶显示屏是目前最常用的显示技术之一,其驱动原理是通过驱动电子电路控制液晶做电场变化,以实现像素点显示颜色和亮度的变化。
本文将对TFTLCD驱动原理进行详细解析。
TFTLCD驱动原理由两部分组成:图像生成和电压驱动1.图像生成TFTLCD液晶显示屏由许多像素点组成,每个像素点由三个基本颜色通道红(R),绿(G)和蓝(B)构成。
图像生成的第一步是将输入的图像数据转换为红、绿、蓝三个通道对应的灰度值,再由灰度值映射到具体的RGB值,以确定每个像素点的颜色。
该过程中需要使用一种称为查找表的技术,以有效地映射输入图像的像素值到三个通道的比例。
这个查找表中的值是由显示屏的属性和色彩设定决定的。
通过这种方式,可以根据人眼的感知方式,生成最接近输入图像的颜色。
2.电压驱动TFTLCD驱动原理的第二部分是电压驱动,通过控制每个像素点的电压来改变其颜色和亮度。
每个像素点都由一个薄膜晶体管(Thin Film Transistor,简称TFT)控制。
在电平刷新模式下,每个像素点的晶体管都要刷新很多次,在每个刷新周期内,通过在TFT上施加电压来改变晶体管的导通状态。
当TFT导通时,液晶膜上的电荷将通过该晶体管流入公共电平。
TFT导通的时间是通过控制驱动电路的频率和占空比来实现的。
频率越高,像素点的颜色刷新速度越快,可以提高图像的清晰度和稳定性。
占空比则是指TFT导通的时间和总的刷新周期的比值,通过调整占空比,可以改变像素点的亮度。
TFTLCD驱动原理的关键技术是源驱动和栅极驱动。
源驱动器是负责控制TFT的导通时间和电流的驱动电路,栅极驱动器则是负责控制每行像素点的导通时间和颜色的驱动电路。
对于源驱动器,它需要根据每行像素点的亮度和颜色,将对应的电流作为输入信号,通过增幅电路来控制TFT的导通时间。
而对于栅极驱动器,它需要根据每行像素点的导通时间和颜色,将对应的电压作为输入信号,通过驱动电路来生成合适的驱动信号。
TFT-LCD驱动原理_一目了然
当TFT OFF时, 形成高阷抗阷抗Roff,可防止信号数据泄露。
面板矩阵
8
③ 一般Ron大于Roff 至少105。
④ Panel是按照一定时序对液晶进行扫描充电的。 品保客服中心
2.驱动原理框图
Vdd(12V)DC/DC converter Interface connector AVDD(16.3V) Gamma
7
品保客服中心
1. 引言 – TFT 开关的工作原理
面板是由Gate Line与Data Line组成的一个矩阵结构。在Array基板上,矩阵的每一个交叉点对应一个TFT开关。
TFT开关
TFT等效电路图
① 扫描线连接同一列所有TFT栅极电极,而信号线连接 同一行所有TFT源极电极。
② 当TFT ON时,形成低阷抗Ron,信号线为液晶充电;
sth,cph,
Mini-LVDS load,mpol
AVDD, DVDD Source driver IC
DVDD (3.3V)
data LC Cs
LVDS data
Von(26.3V), Voff(-8V) DVDD (3.3V) Gate Timing stv,cpv driver Controller IC
1. 引言 – Color介绍
Color 介绍 ① R,G,B三基色组合形成各种颜色。 ②能显示的颜色数由RGB的数字信号的位数来决定。
TFT基板
N = 2n(R) * 2n(G) * 2n(B) = 23n N: 能显示的颜色数 n :数字数据的位数。
1Pixel
1Dot=R,G,B Sub-pixel
△ Y/Y=1/255=0.39%
255 254
tft-lcd 主要工作原理
TFT-LCD 主要工作原理随着科技的发展,液晶显示技术在电子产品中得到了广泛应用。
TFT-LCD(薄膜晶体管液晶显示器)作为一种主流的液晶显示技术,在手机、电视、电脑等设备中得到了广泛的应用。
那么,TFT-LCD 到底是如何工作的呢?接下来,我们将从主要工作原理等方面进行探讨。
一、基本构成1. 液晶屏幕TFT-LCD 的核心部件就是液晶屏幕,它由液晶材料和玻璃基板组成。
液晶材料是一种特殊的有机化合物,可以通过电压的变化来控制光的穿透和阻挡。
2. 薄膜晶体管TFT-LCD 还包括大量的薄膜晶体管,它们被集成在显示面板的背面。
每个像素点都对应一个薄膜晶体管,用于控制该像素点的颜色和亮度。
3. 驱动电路TFT-LCD 背面还集成了大量的驱动电路,这些电路可以给每个薄膜晶体管提供精确的电压,从而控制每个像素点的显示状态。
二、工作原理1. 液晶材料的特性液晶材料是一种特殊的有机化合物,它的分子结构可以根据外加电场的强弱来改变。
当没有电场作用于液晶材料时,它会保持无序排列,光无法通过。
而当有电场作用于液晶材料时,它的分子结构会重新排列,使得光线可以穿过。
2. 薄膜晶体管的作用每个像素点都由一个薄膜晶体管控制。
当电压施加到晶体管上时,晶体管会改变通道的导电性,从而改变液晶材料的排列。
这就决定了每个像素点的显示状态。
3. 驱动电路的控制驱动电路是整个液晶显示器的控制中枢,它可以根据输入信号,精确地控制每个薄膜晶体管的电压。
通过调节每个像素点的电压,驱动电路可以控制整个屏幕的显示状态。
三、工作过程1. 信号输入当外部设备发送视瓶信号时,这些信号会经过TFT-LCD 的接口进入显示屏。
2. 信号处理信号进入后,驱动电路会对信号进行处理,然后将处理好的信号传送给每个像素点对应的薄膜晶体管。
3. 显示效果薄膜晶体管根据驱动电路提供的电压,改变液晶材料的排列,从而实现对光的控制。
整个屏幕就会显示出相应的图像了。
四、优缺点TFT-LCD 作为一种主流液晶显示技术,具有以下特点:1. 优点4.1.1色彩丰富TFT-LCD 可以显示出数百万种颜色,色彩饱满丰富。
TFTLCD驱动原理
TFTLCD驱动原理TFT LCD (Thin Film Transistor Liquid Crystal Display) 是一种采用薄膜晶体管驱动的液晶显示技术。
相比传统的液晶显示技术,TFT LCD具有更高的刷新率、更快的响应速度和更大的视角。
像素驱动是指通过电压控制液晶分子的取向,从而实现不同亮度的像素。
在TFTLCD中,每个像素由一个薄膜晶体管和一个液晶分子组成。
薄膜晶体管是一个控制信号的开关,它可以根据输入的电压来控制液晶分子的取向。
当薄膜晶体管导通时,液晶分子与玻璃基板平行排列,这时光线通过液晶分子时会发生偏转,达到亮度较高的效果。
当薄膜晶体管断开时,液晶分子呈现垂直排列,光线经过时不会发生偏转,达到亮度较低的效果。
通过对每个像素的薄膜晶体管施加不同的电压,可以实现不同亮度的像素显示。
行/列驱动是指通过逐行或逐列扫描的方式将像素驱动到正确的位置,从而形成图像。
在TFTLCD中,屏幕被划分为多个行和列,每个行和列交叉点处都有一个像素。
行/列驱动器负责将逐行或逐列的扫描信号发送到每个像素的薄膜晶体管上,控制其开关状态。
通过逐行或逐列的扫描方式,可以确保每个像素都能得到正确的驱动信号,从而在屏幕上形成图像。
在TFTLCD驱动中,还需要使用控制电路来控制每个像素的亮度值、色彩和刷新频率。
控制电路通常由一块集成电路芯片和其他辅助电路组成。
集成电路芯片负责接收从图像处理器发送的图像数据,并将其转换为行/列驱动所需要的信号。
其他辅助电路负责提供电源和时钟信号,以及处理其他输入输出接口等功能。
总的来说,TFTLCD的驱动原理是通过像素驱动和行/列驱动来控制每个像素的亮度和位置,从而形成图像。
通过控制电路,可以实现对图像的亮度、色彩和刷新频率等参数的控制。
这种驱动原理使得TFTLCD可以达到更高的刷新率和响应速度,以及更大的视角,从而广泛应用于各种电子产品中,如手机、电视和电脑显示屏等。
TFT-LCD Module 显示驱动原理
TFT-LCD时序控制器的发展
TTL/CMOS单口 TCON
降低时钟频率 降低EMI
TTL/CMOS双口 TCON
LDI 接口 TCON
Smart: 集成OSD、Scaling 和TCON
DVI 接口 TCON
TFT-LCD时序控制器
• TTL/CMOS接口的TCON被目前大多数产品所采用。 • LDI接口的TCON是时序控制器和LVDS接收器集成在 一起,提高了集成度,LVDS协议传送数据降低了EMI。 主要产品有TI的TFP7401、 国半的FPD85310、 FPD87310 以及Silicon Image的SIL223等。 • 自从TMDS通讯协议问世, 在数字显示领域产生了很大 的反响, 所以DVI接口用于TFT-LCD模块也成了模块发 展的趋势。将DVI接口和TCON集成的产品有Silicon Image的SIL243。
TFT-LCD Smart Panel 显示器
TFT-LCD的Smart Monitor结构
OSD Scaling Tcon
栅 驱 动 器 栅 驱 动 器
DC-DC电源 变换器
灰度等级电压
Monitor 接 口
源驱动器
源驱动器
TFT-LCD Panel
( 1024 x 768 )
电源
TFT-LCD Smart Monitor 模块
TMDS接口的数据格式
24/36 位 图像数据 数据通道 0 24/36 位图像数据 DE
发送器
图象控制器
DE
数据通道 1 数据通道 2
6 位 制 号 控 信 : Hsync, Vsync, CTL0~3
6 位 制 号 Hsync, 控 信 : Vsync, CTL0~3
tft驱动原理
tft驱动原理TFT驱动原理。
薄膜晶体管液晶显示技术(Thin Film Transistor-Liquid Crystal Display,TFT-LCD)是一种目前广泛应用于平板电视、手机、电脑显示屏等领域的显示技术。
而TFT驱动原理是TFT-LCD技术中的核心部分,它直接影响着显示屏的刷新率、色彩和清晰度。
本文将从TFT驱动原理的基本构成、工作原理和优势特点等方面进行详细介绍。
TFT驱动原理主要由薄膜晶体管(Thin Film Transistor,TFT)、玻璃基板、导线等组成。
其中,薄膜晶体管是TFT-LCD的关键部件之一,它通过控制像素点的通断来实现显示效果。
玻璃基板则承载着薄膜晶体管和导线,起到了支撑和保护的作用。
导线则负责传输电信号,是TFT-LCD的电路连接部分。
TFT驱动原理的工作原理是通过控制薄膜晶体管的导通和截断来控制像素点的亮暗,从而形成图像。
当电压加到薄膜晶体管上时,晶体管导通,像素点变为亮点;当电压断开时,晶体管截断,像素点变为暗点。
这样通过对每个像素点的控制,就可以形成清晰的图像。
而且TFT驱动原理可以实现高刷新率、高分辨率和真实色彩的显示效果,因此在显示技术中得到了广泛的应用。
TFT驱动原理相比于传统的被动矩阵驱动方式具有明显的优势。
首先,TFT驱动原理可以实现每个像素点的独立控制,因此可以实现更高的分辨率和更真实的色彩。
其次,TFT驱动原理可以实现更高的刷新率,可以有效减少屏幕闪烁,保护用户的视力。
此外,TFT-LCD显示屏在功耗和响应速度上也有明显的优势,可以满足用户对高性能显示的需求。
总的来说,TFT驱动原理是TFT-LCD技术的核心部分,它通过控制薄膜晶体管的导通和截断来实现像素点的亮暗控制,从而形成清晰的图像。
相比于传统的被动矩阵驱动方式,TFT驱动原理具有更高的分辨率、更真实的色彩、更高的刷新率和更低的功耗等优势,因此在显示技术中得到了广泛的应用。
希望通过本文的介绍,读者能对TFT驱动原理有更深入的了解。
tft-lcd原理
tft-lcd原理TFT-LCD原理TFT-LCD(Thin Film Transistor - Liquid Crystal Display)是一种常见的液晶显示技术,广泛应用于电子产品中,如手机、电视、电脑等。
本文将介绍TFT-LCD的原理及其工作过程。
TFT-LCD是由许多像素组成的显示屏,每个像素由液晶分子和薄膜晶体管(TFT)组成。
液晶分子具有特殊的光学性质,可以控制光的透过与阻挡,从而实现图像的显示。
TFT-LCD的工作原理是基于液晶分子的光学特性和TFT的电子控制。
当外部电压施加在液晶分子上时,液晶分子会发生取向改变,从而改变光的透过性。
TFT作为驱动器,通过控制液晶分子的取向来控制像素点的亮度和颜色。
液晶分子的取向是通过液晶分子在两个玻璃基板之间的对齐层来实现的。
液晶分子在没有外部电压的情况下,会沿着对齐层的方向排列,使得光无法透过。
而当外部电压施加在液晶分子上时,液晶分子的排列会发生改变,光线可以通过液晶分子并透过显示屏。
TFT作为每个像素的驱动器,控制着液晶分子的取向。
TFT是一种特殊的薄膜晶体管,通过控制栅极上的电压来控制源极和漏极之间的电流。
当TFT接收到来自显示控制器的信号时,会根据信号的强弱来改变源极和漏极之间的电流,从而改变液晶分子的取向。
通过控制每个像素点的TFT,可以实现显示屏上不同像素的亮度和颜色变化。
TFT-LCD使用了背光源来提供背景光。
背光源通常采用冷阴极荧光灯(CCFL)或LED。
背光源的光线通过液晶分子后,在彩色滤光片的作用下形成彩色图像。
总结一下TFT-LCD的工作原理:当显示控制器发送信号给TFT时,TFT根据信号的强弱控制液晶分子的取向,改变光的透过性;背光源提供背景光,通过彩色滤光片形成彩色图像。
通过控制每个像素点的TFT,可以实现显示屏上图像的显示。
TFT-LCD技术以其优良的色彩还原度、高对比度、快速响应速度和低功耗等特点,在电子产品领域得到了广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gamma Voltage組成。所以當正負周期
ΔV 的壓差不一樣時,就會產生Flicker的現 象。
-Voltage
+Voltage
VCOM
VCOM
这两种不同的Common驱动方式影响最大的就是source driver的使用. 以不同Common电压驱动方式的穿透率来说, 我们 可以看到, 当common电极的电压是固定不变的时候, 显示电极的 最高电压, 需要到达common电极电压的两倍以上. 而显示电极电 压的提供, 则是来自于source driver. 以图中common电极电压若 是固定于5伏特的话, 则source driver所能提供的工作电压范围就 要到10伏特以上. 但是如果common电极的电压是变动的话, 假使 common电极电压最大为5伏特, 则source driver的最大工作电压 也只要为5伏特就可以了. 就source driver的设计制造来说, 需要 越高电压的工作范围, 制程与电路的复杂度相对会提高, 成本也
• LC: Liquid Crystal 液态晶体。 • CF:Color Filter彩色濾光片。分R、G、B 三种颜
色的滤光片。 • B/L: Back light背光。 • L/G: Light Guide导光板。 • data line:數據线,進行資料的傳輸。 • scan line :扫描线,控制TFT的開關。 控制TFT上的电晶体是
解析度和驅動 IC的關係
256 bits Gate×3 p
384 bits source × 8 p
XGA
768×1024×3
480 bits source × 10 p
UXGA
1200×1600×3
256 bits Gate×4 p
384 bits source × 10 p
SXGA
1024×1280×3
最基本的彩色濾光片其結構為玻璃基板(Glass substrate)上製作防反射之
黑色遮光層,即為BM層,再依序製作上具有透光性紅` 綠`藍三原色之彩色濾光膜 層(濾光層之形狀` 尺寸`色澤配列依不同用途之液晶顯示器而異),最後濺鍍上透 明導電膜(ITO Indium Tin Oxide).
Black Matrix目的: 遮蔽漏光區域,以免看到漏光導致對比下降
Vpixel > Vcom
++++ ----
Vpixel 負極性驅動 Vpixel < Vcom
Frame Inversion
+#43;+++
----
++++
----
++++
----
column Inversion
+-+-
-+-+
+-+-
-+-+
+-+-
-+-+
+-+-
-+-+
2-line Inversion
TFT-LCD显示原理及驱动介紹
主要内容
TFT LCD 簡介 TFT-LCD 面板介紹 TFT-LCD 显示原理 TFT-LCD 基本驅動方式及应用 TFT-LCD 驅動電路架構 補充: MVA显示原理介绍
TFT LCD 簡介
TFT LCD的相關知識
TFT LCD:Thin Film Transistor Liquid Crystal Display。 超薄膜晶体管液晶显示器
.256 Color 8(R)*8(G)*4(B)=256 Color .High Color 32(R)*64(G)*32(B)=65536 Color .Full Color 64(R)*64(G)*64(B)=262144 Color .True Color 256(R)*256(G)*256(B)=16777216 Color
Gray 254 g63
g63
g63
g63
Gray 255 g63
g63
g63
g63
TFT-LCD的穿透率:
TFT-LCD面板的宿命:光学穿透率不佳。
開口率:液晶分子中光線能透過的有效區域的比例。即液晶 分子中有效的透光區域與全部面積的比例,就稱之爲 開口率。
100%
B
開口率=B/A*100%
A
光学穿透率不佳原因: 1,TFT的开口率:约60%以上。 2,CF的滤光效率:约1/3以下。 3,偏光板的极化效率(含两片吸收):约40%上下。 三項相乘60%×1/3× 40%約為8%
Cgs
Δ V = (Vgh-Vgl) •
Cgs
Cgs+Cst +Clc
D
S Cst
Clc
Vst Vcom
(Vd-Vgh)Cgs+(Vd-Vst)Cst+(VdVcom)Clc=
(Vs-Vgl)Cgs+(Vs-Vst)Cst+(VsVcom)Clc
Δ V =Vd-Vs
feed through电压,它的成因主要是因为面板上其它电压的 变化,经由寄生电容或是储存电容,影响到显示电极电压 的正确性.在LCD面板上主要的电压变化来源有3个,分别 是gate driver电压变化,source driver电压变化,以及 common电压变化.而这其中影响最大的就是gate driver电 压变化(经由Cgs或是Cs)。
会因此而加高.
TFT-LCD驅動系統架構及組成
驅動電路三大區塊
Input Signal (LVDS)
GAMMA
TCON
DC/DC
驅動電路三大區塊
DC/DC
Vcc
Converter
Gamma Correction
RGB pixel LVDS
Timing Controller STH
Data Driver
True color
256 color
Dithering
Dithering
To emulate higher color depth with lower color depth data driver
Super frame
F1 F2 F3 F4
= = = =
Dithering Color Loss
Emulation of 8 bit color depth with 6 bit data driver 6 bit color depth : g0 ~ g63
Emulated 8 bit color
bf1
bf2
bf3
bf4
Gray 0
g0
g0
g0
g0
Gray 1
g1
g0
g0
g0
Gray 2
g1
Gm-1 Gm
TFT Source 線 Gate 線 液晶電容 儲存電容
背光模組
背光模組主要是用來提供液晶面板均勻、高亮度的光 源,由於TFT-LCD之非自發光性,因此須利用外加光源如: 發光二極體、冷陰極射線管等。
主要功能:提供液晶面板平面光源,提供適當的 輝度、色度、均齊度、視角等
TFT-LCD 显示原理
g0
g1
g0
Gray 3
g1
g1
g1
g0
…
…
…
…
…
Total color space = 2533
Gray 251 g63
g63
g63
g62
Gray 252 g63
g63
g63
g63
2533/2563 * 100% = 96.5%
Gray 253 g63
g63
g63
g63
-> 3.5% color space loss
Frame inversion
△
Row inversion
×
Column inversion
△
Dot inversion
×
2-line inversion
△
×: bad, △: Normal, ○: Good
Flicker × △ △ ○ ○
TFT 結構
S1 S2 S3
Sn-1 Sn
G1 G2 G3
1 line
Vg
Vgh
ΔV
Vd
Vs
Vcom
Data line
G
Vd
Vs
D S Cst
Cgs Clc
Vcom
Vgl
1 frame
ΔV
VCOM
Transmittance
Vcom
Optimized Vcom for each gray
Vd
液晶本身感受到的電壓是Vcom與
Vs
Gamma電壓之間的壓差。但實際上, 每一灰階是由Vcom與兩正負周期的
VGA
640
480
4/3
SVGA
800
600
4/3
XGA
1024
768
4/3
SXGA
1280
1024
5/4
SVGA+
1400
1050
4/3
UXGA
1600
1200
4/3
150 bits Gate×4 p
300 bits Gate × 4 p
300 bits Source × 8 p
SVGA
600×800×3
+-+-
-+-+
+-+-
-+-+