机械设计基础知识点总结

合集下载

机械设计基础背诵知识点

机械设计基础背诵知识点

机械设计基础背诵知识点机械设计是一门关于机械制造的学科,它涉及到机械零部件的设计、选择、计算和分析等方面的知识。

在机械设计的学习过程中,很多基础的知识点需要我们进行背诵。

下面将介绍一些机械设计基础的知识点。

1. 材料力学材料力学是机械设计的基础。

需要掌握材料的力学性质,包括拉伸强度、屈服强度、硬度等。

还要了解不同材料的特点以及它们的应用范围。

2. 分析力学分析力学是机械设计中的另一个重要知识点。

它涉及到物体的平衡、受力分析以及运动学等内容。

我们需要了解力的合成与分解、力矩的概念、平衡条件等基本概念。

3. 等效应力与疲劳在机械设计中,常常需要进行结构的强度计算。

等效应力理论是常用的一种计算方法,它可以将多个不同方向的应力合成为一个等效应力。

此外,疲劳是机械设计中非常重要的一个问题,我们需要了解疲劳寿命、疲劳裕度等概念。

4. 轴线零件设计轴线零件设计是机械设计中的一个重要内容。

我们需要了解轴线零件的选择与计算,包括轴的强度与刚度计算、连接方式的选择等。

5. 机械传动机械传动是机械设计中常见的一种结构形式。

我们需要了解不同传动装置的特点与适用范围,包括齿轮传动、带传动等。

6. 节气部件设计节气部件设计是机械设计中与流体传动相关的一个内容。

我们需要了解不同节气部件的设计原理与计算方法,包括调节阀、安全阀等。

7. 设备安装与调试设备安装与调试是机械设计中的最后一个环节,我们需要了解设备的安装方式以及调试过程中的一些注意事项。

上述只是机械设计中的一部分基础知识点,希望能够对你在学习机械设计过程中有所帮助。

机械设计是一个广阔的领域,需要我们不断学习与积累,才能够设计出高质量的机械产品。

50个机械设计基础知识点

50个机械设计基础知识点

50个机械设计基础知识点1.刚体力学:研究物体在作用力下的平衡和运动。

2.静力学:研究物体在静止状态下的力学性质。

3.动力学:研究物体在运动状态下的力学性质。

4.运动学:研究物体的运动特性,如速度、加速度和位移。

5.力学系统:由若干物体组成,并且相互作用,受到外界力的作用。

6.力的合成:通过矢量相加的方法计算多个力的合力。

7.力的分解:将一个力分解为多个力的合力。

8.平衡:物体受到的合力和合力矩均为零。

9.功:力在物体上产生的位移所做的功。

10.能量:物体的能力做功的量度。

11.弹性力:物体受到变形后,恢复原状的力。

12.摩擦力:物体在运动或静止时受到的阻力。

13.运动学链:由多个刚体连接而成的机构,用来进行运动传递和转换。

14.齿轮传动:利用齿轮的互相啮合实现运动传递和转换。

15.杠杆机构:利用杠杆的原理实现力的放大或缩小的机构。

16.曲柄连杆机构:利用曲柄和连杆的结构实现运动转换。

17.铰链机构:通过铰链连接物体的机构,实现固定、旋转或滑动。

18.滑块机构:由滑块和导轨构成的机构,实现直线运动。

19.传动比:用来衡量运动传递的效率。

20.齿轮比:齿轮传动中两个齿轮的旋转速度比值。

21.离合器:用来连接或分离两个旋转物体的装置。

22.制动器:用来减速、停止或固定运动物体的装置。

23.轴承:用来支撑和减小机械运动中的摩擦力的装置。

24.轴线:用来连接和支撑旋转物体的直线。

25.键连接:通过键连接来实现轴线和轴承的固定。

26.螺纹连接:通过螺纹连接实现两个物体的拧紧或松开。

27.轴承间隙:轴承内外圈之间的间隙,用来调整摩擦力和轴承的转动。

28.轴向力:作用于轴线方向上的力。

29.径向力:作用于轴线垂直方向上的力。

30.弹簧:用来储存和释放能量的装置。

31.拉伸强度:材料抵抗拉伸破坏的能力。

32.压缩强度:材料抵抗压缩破坏的能力。

33.硬度:材料抵抗划伤或穿透的能力。

34.拉伸试验:测试材料的拉伸性能和强度。

(完整word版)《机械设计基础》知识点汇总.

(完整word版)《机械设计基础》知识点汇总.

机械设计基础》知识点汇总1、具有以下三个特征的实物组合体称为机器。

(1)都是人为的各种实物的组合。

(2)组成机器的各种实物间具有确定的相对运动。

(3)可代替或减轻人的劳动,完成有用的机械功或转换机械能。

2、机构主要用来传递和变换运动。

机器主要用来传递和变换能量。

3、零件是组成机器的最小单元,也是机器的制造单元,机器是由若干个不同的零件组装而成的。

各种机器经常用到的零件称为通用零件。

特定的机器中用到的零件称为专用零件。

4、构件是机器的运动单元,一般由若干个零件刚性联接而成,也可以是单一的零件。

若从运动的角度来讲,可以认为机器是由若干个构件组装而成的。

根据功能的不同,一部完整的机器由以下四部分组成:1. 原动部分:机器的动力来源。

2. 工作部分:完成工作任务的部分。

3. 传动部分:把原动机的运动和动力传递给工作机。

4. 控制部分:使机器的原动部分、传动部分、工作部分按一定的顺序和规律运动,完成给定的工作循环。

5、物体间机械作用的形式是多种多样的,力对物体的效应取决于力的大小、方向和作用点,这三者被称为力的三要素。

公理1 二力平衡公理作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等,方向相反,且作用在同一条直线上。

对于变形体而言,二力平衡公理只是必要条件,但不是充分条件。

公理2 加减平衡力系公理在已知力系上加上或者减去任意平衡力系,并不改变原力系对刚体的作用。

推论1 力的可传性原理作用在刚体上某点的力,可以沿着它的作用线移动到刚体内任意一点,并不改变该力对刚体的作用效应。

公理 3 力的平行四边形公理作用在刚体上同一点的两个力,可以合成为一个合力。

合力的作用点也在该点,合力的大小、方向,由这两个力为边构成的平行四边形的对角线确定。

推论2 三力平衡汇交原理:作用在刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则第三个力的作用线通过汇交点。

公理4 作用与反作用公理两物体间的作用力与反作用力总是同时存在,且大小相等、方向相反、沿同一条直线,分别作用在这两个物体上。

机械设计知识点大全

机械设计知识点大全

机械设计知识点大全在机械设计领域,有许多重要的知识点需要掌握。

这些知识点包括机械设计的基础原理、设计过程中需要考虑的因素、常见的机械元件和系统等。

本文将为您详细介绍机械设计的各个方面知识点,以帮助您更好地理解和运用机械设计技术。

一、机械设计基础原理1. 牛顿力学原理:涉及质点、刚体的平衡与运动问题,用于分析力学系统。

2. 静力学和动力学:用于分析物体受力平衡和运动的原理和方法。

3.材料力学:研究材料的强度、刚度、韧性等力学性能,为机械设计提供基础。

4.热力学:研究热与功、能量转换及热力学循环等问题,在机械设计中用于分析热机工作原理。

5.流体力学:研究流体在力的作用下的运动规律,常用于设计气体和液体传动系统。

二、机械设计的过程与方法1.产品规划与概念设计:明确产品的功能、性能需求及设计目标,并进行初步设计。

2.结构设计:根据产品功能、布局及成本要求设计出合理的结构。

3.零部件设计:设计各个零部件的形状、尺寸和参数,满足产品要求。

4.装配设计:设计零部件的相互位置、配合关系和装配工艺,以保证整体的质量和性能。

5.材料选择与加工工艺:选择适当的材料,确定加工工艺,确保产品的质量和可制造性。

6.试验验证与优化:通过试验和仿真验证设计方案,针对问题进行调整和优化。

三、常见机械元件1.轴:用于传递力和转动运动的零件。

2.齿轮与传动:用于传递动力和运动的装置,提供不同速度和扭矩的转动。

3.联轴器:用于连接轴与轴之间,传递转矩和运动。

4.连接件:如螺栓、螺母、销等,用于连接零部件。

5.轴承:用于支撑和定位转动轴的零件。

6.弹簧:用于存储和释放弹性势能,实现缓冲和减震的作用。

7.气动元件:如气缸、阀门等,用于控制气体流动和压力的元件。

四、机械系统1.机械传动系统:包括齿轮传动、带传动、链传动等,用于传递运动和动力。

2.液压传动系统:利用液体传递压力和能量,实现力的放大和控制。

3.气动传动系统:利用气体传递压力和能量,实现力的放大和控制。

机械设计基础知识点总结

机械设计基础知识点总结

绪论:机械:机器与机构的总称。

机器:机器是执行机械运动的装置,用来变换或传递能量、物料、信息。

机构:是具有确定相对运动的构件的组合。

用来传递运动和力的有一个构件为机架的用构件能够相对运动的连接方式组成的构件系统统称为机构。

构件:机构中的(最小)运动单元一个或若干个零件刚性联接而成。

是运动的单元,它可以是单一的整体,也可以是由几个零件组成的刚性结构。

零件:制造的单元。

分为:1、通用零件,2、专用零件。

一:自由度:构件所具有的独立运动的数目称为构件的自由度。

运动副:使两构件直接接触并能产生一定相对运动的可动联接。

高副:两构件通过点或线接触组成的运动副称为高副。

低副:两构件通过面接触而构成的运动副。

根据两构件间的相对运动形式,可分为转动副和移动副。

F = 3n- 2PL-PH机构的原动件(主动件)数目必须等于机构的自由度。

复合铰链:虚约束:重复而不起独立限制作用的约束称为虚约束。

计算机构的自由度时,虚约束应除去不计。

局部自由度:与输出件运动无关的自由度,计算机构自由度时可删除。

二:连杆机构:由若干构件通过低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。

铰链四杆机构:具有转换运动功能而构件数目最少的平面连杆机构。

整转副:存在条件:最短杆与最长杆长度之和小于或等于其余两杆长度之和。

构成:整转副是由最短杆及其邻边构成。

类型判定:(1)如果:lmin+lmax≤其它两杆长度之和,曲柄为最短杆;曲柄摇杆机构:以最短杆的相邻构件为机架。

双曲柄机构:以最短杆为机架。

双摇杆机构:以最短杆的对边为机架。

(2)如果:lmin+lmax>其它两杆长度之和;不满足曲柄存在的条件,则不论选哪个构件为机架,都为双摇杆机构。

急回运动:有不少的平面机构,当主动曲柄做等速转动时,做往复运动的从动件摇杆,在前进行程运行速度较慢,而回程运动速度要快,机构的这种性质就是所谓的机构的“急回运动”特性。

压力角:作用于C点的力P与C点绝对速度方向所夹的锐角α。

机械设计基础知识总结

机械设计基础知识总结

机械设计基础知识总结机械设计是机械工程领域中的重要分支之一,它涉及到机械结构的设计、材料的选择、运动学和动力学的分析等方面。

下面将对机械设计的基础知识进行总结。

一、机械设计的基本原则1.安全性:机械设计必须确保使用过程中的安全性,防止发生意外事故。

2.可靠性:机械设计应具有良好的可靠性,能够正常工作并满足使用要求。

3.经济性:机械设计应尽量节约成本,减少材料的使用量及制造成本,同时提高性能和效率。

4.美观性:机械设计应考虑外观美观,符合人机工程学原则,提高产品的市场竞争力。

5.可维修性:机械设计应考虑易于维修,方便进行保养和维修工作。

二、机械设计的基本步骤1.定义设计目标和需求:明确设计的目标和需求,包括产品的功能、性能要求、使用环境等。

2.进行初步设计:根据设计目标和需求,进行初步的设计概念提出,并进行初步的尺寸和材料选择。

3.进行详细设计:在初步设计的基础上进行详细设计,包括各部件的尺寸确定、结构设计、运动学和动力学分析等。

4.进行仿真和分析:利用计算机辅助设计软件进行仿真和分析,验证设计方案的可行性和性能。

5.制作工程图纸:根据详细设计结果制作工程图纸,包括装配图、零件图和工艺图等。

6.样机制作和测试:根据工程图纸制作样机,并进行测试和验证,检查设计方案的可行性和性能是否符合要求。

7.进行设计修改和优化:根据样机测试结果和用户反馈,进行设计修改和优化,改进不足之处,以使设计方案更加完善。

三、机械设计的基本原理和方法1.结构设计原理:机械设计中的结构设计原理主要包括受力分析、刚度和强度计算等。

在设计过程中,要保证机械结构具有足够的刚度和强度,能够承受所需要的受力。

2.动力学原理:机械设计中的动力学原理主要包括速度、加速度、动量和能量等方面的计算。

通过动力学分析,可以了解机械系统在运动过程中所涉及的各种因素,为设计提供理论基础。

3.材料选择原理:机械设计中的材料选择原理主要包括强度、刚度、耐磨性、耐腐蚀性和可加工性等方面的考虑。

《机械设计基础》重点总结

《机械设计基础》重点总结

《机械设计基础》重点总结机械设计基础是一门研究机械中常用机构和通用零部件工作原理、结构特点、设计方法以及机械传动系统设计的学科。

它是机械工程类专业的重要基础课程,对于我们理解和掌握机械系统的设计与应用具有重要意义。

下面我将为大家总结这门课程的重点内容。

一、平面机构的结构分析1、运动副及其分类运动副是指两构件直接接触并能产生相对运动的活动连接。

根据接触形式的不同,运动副分为低副和高副。

低副包括转动副和移动副,高副则包括齿轮副、凸轮副等。

2、平面机构的运动简图用简单的线条和符号来表示机构的组成和运动情况的图形称为机构运动简图。

绘制机构运动简图时,要准确表示出各构件之间的相对运动关系和运动副的类型。

3、平面机构的自由度计算自由度是指机构具有独立运动的数目。

平面机构的自由度计算公式为:F = 3n 2PL PH,其中 n 为活动构件的数目,PL 为低副的数目,PH 为高副的数目。

机构具有确定运动的条件是自由度等于原动件的数目。

二、平面连杆机构1、铰链四杆机构的基本类型铰链四杆机构包括曲柄摇杆机构、双曲柄机构和双摇杆机构。

其类型取决于各杆的长度关系和机架的选择。

2、铰链四杆机构的演化形式通过改变构件的形状、相对长度以及运动副的尺寸等,可以将铰链四杆机构演化成曲柄滑块机构、导杆机构、摇块机构和定块机构等。

3、平面连杆机构的运动特性包括急回特性、压力角和传动角等。

急回特性可以提高工作效率,压力角越小、传动角越大,机构的传动性能越好。

三、凸轮机构1、凸轮机构的类型按凸轮的形状可分为盘形凸轮、移动凸轮和圆柱凸轮;按从动件的端部形状可分为尖顶从动件、滚子从动件和平底从动件。

2、凸轮机构的运动规律常用的运动规律有等速运动规律、等加速等减速运动规律、余弦加速度运动规律和正弦加速度运动规律等。

不同的运动规律适用于不同的工作场合。

3、凸轮机构的设计设计凸轮机构时,需要根据工作要求确定凸轮的基圆半径、滚子半径、从动件的行程和运动规律等参数。

机械设计基础笔记知识点

机械设计基础笔记知识点

机械设计基础笔记知识点一、机械设计概论1. 机械设计的定义和作用机械设计是指以人工制作的机械装置为研究对象,通过综合运用机械学、工程力学等知识,进行构思、设计和分析等工作,以满足特定的技术要求和经济要求。

2. 机械设计的基本原则和设计流程机械设计的基本原则包括适应性原则、合理性原则、先进性原则等,并按照设计流程依次进行项目论证、需求分析、方案设计、详细设计、制造和试验等阶段。

二、材料力学基础1. 材料的力学性能指标材料的力学性能指标主要包括强度、刚度、韧性、疲劳性能等。

其中强度是材料在受力时所能承受的最大应力,刚度是材料在受力时所表现出来的抗变形能力,韧性是材料在发生破坏前能吸收的能量,疲劳性能是材料在循环受力下出现破坏的抗性。

2. 应力和应变材料受到外力作用时,内部会产生相应的应力和应变。

应力是单位面积上的力的大小,应变是材料单位长度的变形量。

常见的应力形式包括拉应力、压应力、剪应力等。

三、机械零件设计1. 连接零件的设计连接零件是机械装置中起连接部件间传递力和传递运动的作用。

常见的连接方式有螺栓连接、销连接、键连接等。

在连接零件设计中,需要考虑连接强度、刚度、可拆卸性和工艺性等因素。

2. 轴的设计轴是机械装置上用来传递动力和转动运动的零件。

轴的设计需要考虑强度、刚度、平衡性和传递功率等因素。

轴的材料一般选用高强度的合金钢。

3. 螺纹的设计螺纹是机械装置中常用的连接方式之一。

螺纹的设计需要确定螺纹规格、螺纹传递力、螺纹疲劳寿命和螺纹的配合等参数。

四、机械传动设计1. 齿轮传动的设计齿轮传动是机械装置中常用的传动方式之一。

齿轮传动设计需要确定齿轮的模数、齿轮的参数、齿轮的传动比和齿轮的轴向力等。

2. 带传动的设计带传动是利用带传递动力和运动的方式。

带传动设计需要确定带的类型、传动比和带轮的尺寸等。

3. 链传动的设计链传动是一种静止的链条将动力传递给另一部分。

链传动设计需要确定链条的参数、链轮的尺寸等。

机械设计基础知识点总结

机械设计基础知识点总结

机械设计基础知识点总结机械设计是机械工程学科中的重要分支,主要研究机械产品的设计、制造和运行等方面的知识。

机械设计基础知识点涉及到机械工程学科的多个方面,包括机械零件的设计、机械系统的设计、机械结构的设计等。

下面是机械设计基础知识点的总结。

1.机械设计基本原理机械设计的基础原理包括受力分析、材料力学、热传导、流体力学等。

受力分析是机械设计的基础,需要了解常用的力学概念和力的作用方式。

材料力学研究材料的性能和材料的强度。

热传导研究物质的热流动规律。

流体力学研究流体的性质和流动规律。

2.机械材料机械设计需要使用各种机械材料,包括金属材料、塑料材料、复合材料等。

了解各种材料的特性和适用范围,选择合适的材料进行设计。

3.机械零件设计机械零件设计是机械设计的重要内容,需要了解各种机械零件的结构和功能。

常见的机械零件包括螺栓、螺母、齿轮、轴承等。

了解各种零件的设计原则和计算方法,能够进行合理的零件设计。

4.机械系统设计机械系统是由若干机械零件组成的一个整体,需要满足特定的要求。

机械系统设计需要考虑系统的结构、功能、运动学和动力学等方面。

了解机械系统设计的原则和方法,能够进行系统的整体设计。

5.机械结构设计机械结构设计是机械设计的核心内容,包括机械零件的结构和连接方式。

了解机械结构设计的原则和方法,能够合理地设计机械结构。

6.机械工艺机械设计需要考虑实际的制造工艺,了解各种机械加工工艺的原理和方法。

包括铸造、锻造、冲压、焊接、切削等工艺。

合理选择和应用工艺,可以提高产品的制造效率和质量。

7.机械装配与调试机械设计需要进行装配和调试,了解机械装配的原理和方法,能够进行合理的装配和调试。

包括装配工艺、检测装配精度和调试工艺等方面的知识。

8.机械设计软件机械设计中常用的软件包括CAD(计算机辅助设计)、CAM(计算机辅助制造)和CAE(计算机辅助工程)等。

了解这些软件的功能和使用方法,能够提高机械设计的效率和质量。

机械设计基础知识点整理[52页]

机械设计基础知识点整理[52页]

机械设计基础知识点整理[52页]
一、材料力学
1.应力、应变、杨氏模量、泊松比、屈服强度、延伸率、硬度、断裂韧性等基本概念;
2.各种材料的特性、选材原则;
3.杆件、轴件、皮带悬挂、齿轮传动等常见零部件的强度计算。

二、机械传动
1.基本传动链、链轮、链条等概念;
2.齿轮传动的计算、设计、选型、装配;
3.皮带传动的计算、设计、选型、使用及维护。

三、机械零件
1.机械连接件的种类、用途及计算;
2.机械弹簧的种类、原理、选用及计算;
3.机械密封件的种类、原理及选用;
4.机械减振器的原理、种类及计算。

四、机械制图
1.机械制图的基本知识、图形符号、图形语言和表达方法;
2.机械零件的精度和公差、公差设计原则;
3.常用机械零件的标准化、规范化和统一化图纸的编绘。

五、机械设计基础
1.机械设计的原则、方法、步骤、标准;
2.机械设计中的力学、材料、动力学、工艺、制造等基础知识;
3.机械设计的应用领域、发展趋势和展望。

六、机械加工工艺
1.机械加工工艺的基本概念、种类及基本加工方法;
2.机械加工工艺在机械设计制造中的应用;
3.计算加工余量、过切量、切削速度等加工参数。

以上为机械设计的基础知识点整理,对于学习和掌握机械设计的同学们来说,这些知识点是必须要掌握的基础知识,只有在掌握这些基础知识的基础上,才能够更好地进行机械设计、制造和使用。

机械设计基础必考知识点

机械设计基础必考知识点

机械设计基础必考知识点机械设计是机械工程学科中的重要分支,它涉及到机械零件、机械装置和机械系统的设计与计算。

在机械设计的学习过程中,掌握一些基础的知识点是非常关键的。

下面将介绍一些机械设计基础必考的知识点。

一、材料力学材料力学是机械设计的基础,它研究材料的力学性能和应用。

在机械设计过程中,需要了解材料的力学性质,包括弹性力学、塑性力学、疲劳寿命等。

此外,还需要了解常见材料的力学参数,如弹性模量、屈服强度、断裂韧性等。

二、机械零件设计机械零件设计是机械设计中的核心内容。

在进行机械零件设计时,需要掌握合理的尺寸和公差配合。

合理的尺寸设计能够保证机械零件的功能与性能,而公差配合的合理选择则能够保证机械零件的精度要求。

三、机械装置设计机械装置设计是指将多个机械零件组合起来,形成一个具有特定功能的装置。

在进行机械装置设计时,需要了解机械传动的基本原理和机械传动的选择。

此外,还需要考虑机械装置的稳定性和可靠性。

四、机械系统设计机械系统设计是指将多个机械装置组合起来,形成一个能够完成特定工作的系统。

在进行机械系统设计时,需要考虑系统的工作效率、能量传递和控制等问题。

此外,还需要进行系统的动力学分析和热力学分析。

五、机械制图机械制图是机械设计中必不可少的一环。

在进行机械制图时,需要使用合适的绘图工具,如AutoCAD等。

掌握常用的图形符号和表达方法是进行机械制图的基础。

六、机械CAD设计机械CAD设计是使用计算机辅助设计软件进行机械设计。

在进行机械CAD设计时,需要熟练掌握相应的软件操作技巧,并能够进行三维建模和装配等工作。

综上所述,以上介绍了机械设计基础必考的知识点,包括材料力学、机械零件设计、机械装置设计、机械系统设计、机械制图和机械CAD设计等。

掌握这些知识点,能够为机械设计提供基础支持,提高设计的准确性和可靠性,同时也能够为学习深入的机械设计知识打下坚实的基础。

机械设计基础知识点总结

机械设计基础知识点总结

机械设计基础知识点1、循环应力下,零件的主要失效形式是疲劳断裂。

疲劳断裂过程:裂纹萌生、裂纹扩展、断裂2、疲劳断裂的特点:▲σmax ≤σB 甚至σ max ≤σS▲疲劳断裂是微观损伤积累到一定程度的结果▲断口通常没有显著的塑性变形。

不论是脆性材料,还是塑性材料,均表现为脆性断裂。

更具突然性,更危险。

▲断裂面累积损伤处表面光滑,而折断区表面粗糙。

3、应力集中产生的主要原因:零件截面形状发生的突然变化。

有效应力集中系数总比理论应力集中系数小4、影响疲劳强度的主要因素一.应力集中的影响1.应力集中产生的主要原因:零件截面形状发生的突然变化2.名义应力σ和实际最大应力σmax3.理论应力集中系数与有效应力集中系数二.尺寸效应1.零件尺寸越大,疲劳强度越低2.尺寸及截面形状系数εα、ετ三.表面状态的影响1.零件的表面粗糙度的影响2.表面质量系数β四.表面处理的影响1.零件表面施行不同的强化处理的影响2.表面质量系数βq五.弯曲疲劳极限综合影响系数5、可能发生的应力变化规律应力比为常数r=C 绝大多数转轴的应力状态平均应力为常数σm=C 振动着的受载弹簧最小应力为常数σmin=C 紧螺栓连接受轴向载荷 6、6、不稳定变应力规律性按疲劳损伤累积假说进行疲劳强度计算非规律性用统计方法进行疲劳强度计算7、提高机械零件疲劳强度的措施▲尽可能降低零件上应力集中的影响▲在不可避免地要产生较大应力集中的结构处,可采用减载槽来降低应力集中的作用▲综合考虑零件的性能要求和经济性,采用具有高疲劳强度的材料及适当的热处理和各种表面强化处理▲适当提高零件的表面质量,特别是提高有应力集中部位的表面加工质量,必要时表面作适当的防护处理▲尽可能地减少或消除零件表面可能发生的初始裂纹的尺寸,对于延长零件的疲劳寿命有着比提高材料性能更为显著的作用(探伤检验)8、在工程实际中,往往会发生工作应力小于许用应力时所发生的突然断裂,这种现象称为低应力脆断。

机械设计知识点总结

机械设计知识点总结

机械设计知识点总结一、机械设计的理论基础机械设计的理论基础主要包括材料力学、理论力学、热力学等方面的知识。

这些理论知识是机械设计的基础,只有掌握了这些知识,才能够进行合理的机械设计。

在机械设计中,材料力学是非常重要的,因为材料的选择对机械产品的性能有很大影响。

在材料力学方面,需要了解材料的力学性能参数,比如弹性模量、屈服强度、抗拉强度等。

同时,还需要了解不同材料的特性和用途,比如金属材料、塑料材料、橡胶材料等的特性和适用范围。

理论力学是机械设计的另一个重要基础,它包括刚体力学、弹性力学、断裂力学等方面的知识。

在机械设计中,需要用到这些理论知识来计算和分析机械零件的受力情况,以保证机械零件的强度和刚度。

此外,热力学也是机械设计的重要理论基础,因为在机械设计中,经常需要考虑热量的传递和能量的转化问题。

掌握了这些理论基础知识,才能够进行合理的机械设计。

二、机械设计的基本原则机械设计的基本原则包括结构简单、性能稳定、可靠耐用等。

在机械设计中,结构简单是非常重要的,因为采用简单的结构可以降低制造成本,提高机械产品的可靠性。

而且,结构简单也有利于维修和维护,提高了机械产品的使用寿命和可靠性。

性能稳定是指机械产品在工作时,能够稳定地完成任务,在设计中需要充分考虑机械产品的性能稳定性。

在机械设计中,需要考虑使用环境,生产条件以及预期的机械产品性能等多个因素,来保证机械产品的性能稳定。

可靠耐用是机械设计的另一个基本原则,机械产品在设计时需要考虑机械产品的使用寿命和可靠性,采用合适的材料和工艺,来保证机械产品的可靠性和耐用性。

这些基本原则是机械设计的指导原则,只有遵循这些原则,才能够设计出合理的机械产品。

三、机械设计中用到的材料在机械设计中,用到的材料有金属材料、塑料材料、橡胶材料等。

金属材料是机械设计中最常用的材料,因为金属材料具有良好的机械性能和导热性能,适用于制造机械零件。

常用的金属材料包括碳钢、合金钢、不锈钢、铝合金、铜合金等。

机械设计基础知识点整理

机械设计基础知识点整理

机械设计基础知识点整理1. 机械设计概述机械设计是指通过设计方法和原则,以满足特定需求为目标,创造出适用于特定用途的机械装置的过程。

机械设计过程涉及到各种基础知识点,下面将对其中一些重要的知识点进行整理和概述。

2. 材料选择在机械设计中,材料的选择十分重要。

不同的材料具有不同的性能和特点,直接影响着机械零件的使用寿命和性能。

常见的机械材料有金属材料、聚合物材料和复合材料等。

在选择材料时,需要考虑材料的强度、硬度、韧性、耐腐蚀性等因素。

3. 运动和传动机械装置的运动和传动是机械设计中的重要内容。

通过运动和传动可以实现机械装置的功能。

常见的运动和传动方式有直线运动、旋转运动、齿轮传动、皮带传动等。

在设计中需要考虑运动的平滑性、传动的效率和准确性等因素。

4. 零件设计机械设计中的零件设计是指对机械装置的各个零部件进行设计和布置。

零件设计需要考虑零件的功能要求、结构强度、装配性和易制造性等因素。

在设计中,需要进行零件的尺寸和形状计算,并进行合理的布局和组合。

5. 制图和标注制图和标注是机械设计中的重要环节。

通过制图可以将设计的思路表达出来,使得他人能够理解和制造出符合要求的机械装置。

常见的制图方式有平面图、剖视图、工程图等。

在制图时,需要合理选择图纸比例、标注符号和尺寸标注等。

6. 设计评估和优化在机械设计过程中,设计评估和优化是不可忽视的环节。

通过设计评估可以验证设计方案的合理性和可行性,避免出现设计缺陷和错误。

设计评估可以利用数值计算、仿真分析和实验验证等方法。

同时,在设计过程中还要进行不断的优化,使得设计方案更加合理和优化。

以上是机械设计基础知识点的一些整理和概述。

机械设计是一个广泛而深入的领域,需要不断学习和实践才能提高设计能力。

希望这份文档对你有帮助。

机械设计基础复习总结

机械设计基础复习总结

机械设计基础复习总结一、机械制图1.制图常用符号的掌握:如螺纹、齿轮、轴等常用制图符号的画法和要求。

2.视图投影方法的理解:了解各种视图的画法和画布方法,如三视图、正投影、斜投影等。

3.尺寸标注的要求:尺寸标注要精确、清晰、规范,要避免尺寸标注冲突和歧义。

对于特殊形状的零件,还要会选择合适的标注方法。

4.配合标准的理解:掌握基本配合的命名方法和要求,如紧配、松配、过盈配等。

二、机械零件设计1.零件结构设计要求:对于需求提出明确的机械零件,要合理确定零件的结构,满足机械设计的要求,如强度、刚度、耐磨等。

2.零件的材料选择:对于确定了零件的结构后,要根据其工作条件和其它要求选择合适的材料。

3.零件的加工工艺设计:掌握零件加工的基本工艺,如车削、切割、焊接等,了解加工的工序和工艺要求。

4.零件的装配设计:装配设计要保证零件之间的配合精度,避免干涉和间隙过大。

三、机械装配设计1.装配方式的选择:根据机械装置和结构的要求,选择合适的装配方式,如销销装配、螺纹连接等。

2.装配工艺的设计:了解装配的基本工艺,掌握工序和工艺要求。

要注意装配过程中可能出现的问题和解决方法。

3.装配误差和公差的控制:了解装配过程中可能产生的误差和公差的控制要求,明确各零件之间的配合公差。

四、机械设计的重要原则和方法1.机械设计的公差控制原则:明确设计目标,根据设计要求制定合理的公差控制方案,保证产品性能和质量。

2.材料选择的原则:根据机械设计的工作条件、载荷要求和耐磨性等要求,选择合适的材料。

3.设计的创新性和可实施性:要求不只是复制现有的设计,而是要有一定的创新意识,设计出能够实施的方案。

五、机械设计基础常见错误和解决方法1.标注错误:在机械制图中,尺寸标注错误是一种常见问题。

解决方法是仔细检查标注的准确性,并根据标准进行修正。

2.装配设计错误:装配设计中常常会遇到零件干涉、配合间隙过大等问题。

解决方法是进行合理的配合分析和设计,查找并排除问题。

机械基础知识点总结机械设计基础知识点归纳

机械基础知识点总结机械设计基础知识点归纳

机械基础知识点总结机械设计基础知识点归纳1.材料力学(1)杨氏模量:是材料弹性变形与应力的比值,反映材料的刚度。

(2)应力应变关系:弹性应力应变关系是描述材料在弹性范围内,应变与应力之间的关系。

(3)塑性应变:指材料在一定应力下发生塑性变形的应变。

(4)蠕变:指材料在长时间作用下,温度较高的条件下发生的塑性变形。

(5)疲劳:指在循环应力作用下,材料会发生很小的变形或破裂的现象。

(6)冲击:指材料在突然受到较大应力作用时发生的短暂的变形或破坏。

2.制图和标志(1)有关制图:包括机械零件的投影方法、剖视图、断面图等内容。

(2)机械标志:包括尺寸标注、公差标注等。

3.运动学(1)运动分析:机械运动的分析与描述,包括速度、加速度等。

(2)运动关系:包括直线运动、转动运动的关系,如位移、速度、加速度的计算与关系。

4.动力学(1)动力学分析:机械系统的力学分析方法,包括受力分析、运动方程的建立等。

(2)牛顿定律:牛顿的三大运动定律,描述了物体运动与受力之间的关系。

5.机械设计与结构(1)机械设计:包括机械元件的设计、机械系统的设计等。

(2)机构设计:描述机械元件之间的相对运动关系的设计。

(3)结构设计:机械元件的外形设计、支撑方式、安装方式等。

6.机械零件与加工工艺(1)机械零件:包括轴、轴套、齿轮、联轴器等。

(2)零件加工工艺:包括车削、铣削、磨削、冲压等。

7.机械传动与控制(1)机械传动:包括齿轮传动、带传动、链传动等。

(2)机械控制:包括摇杆、凸轮、连杆机构等。

8.液压与气动传动(1)液压传动:液体作为传动介质的传动方式,包括液压缸、液压马达等。

(2)气动传动:气体作为传动介质的传动方式,包括气缸、气动阀等。

9.机械制造工艺(1)机械制造:包括铸造、锻造、焊接、热处理等。

(2)数控加工:数控机床的操作、编程与加工工艺。

以上是机械设计的一些基础知识点的总结和归纳,对于机械设计师来说,掌握这些知识点是非常重要的基础。

机械设计基础知识点总结归纳

机械设计基础知识点总结归纳

欢迎共阅《机械设计基础》知识点总结1. 构件:独立的运动单元/零件:独立的制造单元机构:用来传递运动和力的、有一个构件为机架的、用构件间能有确定相对运动的连接方式组成的构件系统(机构=机架(1个)+原动件(≥1个)+从动件(若干)) 机器:包含一个或者多个机构的系统注:从力的角度看机构和机器并无差别,故将机构和机器统称为机械2. 机构运动简图的要点:1)构件数目与实际数目相同2)运动副的种类和数目与实际数目相同3)运动副之间的相对位置以及构件尺寸与实际机构成比例(该项机构示意图不需要)3. 4. F =35. I ) II ) III ) IV )6. θ7. 8. 9. 1III )10. 压力角的大小与凸轮基圆尺寸有关,基圆半径越小,压力角α越大(当压力角过大时可以考虑增大基圆的半径)11. 凸轮给从动件的力FF ’’(F ’’=F ’tan α) 12. 凸轮机构的自锁现象:在α角增大的同时,F ’’大于有用分力F ’生自锁,【α】在摆动凸轮机构中建议35°-45°,【α机构中建议30°,【α】在回程凸轮机构中建议70°-8013. 凸轮机构的运动规律与冲击的关系:I 律——刚性冲击2)等加等减速(二次多项式)——无冲击(适用于高速凸轮机构)II )三角函数运动规律:1)余弦加速度(简谐)运动规律——柔性冲击2)正弦加速度(摆线)运动规律——无冲击III )改进型运动规律:将集中运动规律组合,以改善运动特性 14. 凸轮滚子机构半径的确定:I )轮廓内凹时:T a r +=ρρII )轮廓外凸时:T a r -=ρρ(当0=-=T a r ρρ时,轮廓变尖,出现失真现象,所以要使机构正常工作,对于外凸轮廓要使T r >min ρ)注:平底推杆凸轮机构也会出现失真现象,可以增大凸轮的基圆半径来解决问题15. 齿轮啮合基本定律:设P 为两啮合齿轮的相对瞬心(啮合齿轮公法线与齿轮连心线21O O 交点),12i =16. 17. 表示18. 19. 标准安装时的中心距2121r r r c r a f a +⇒=++=20. 渐开线齿轮的加工方法:1)成形法(用渐开线齿形的成形刀具直接切出齿形,例如盘铣刀和指状铣刀),成形法的优点:方法简单,不需要专用机床;缺点:生产效率低,精度差,仅适用于单件生产及精度要求不高的齿轮加工2)范成法(利用一对齿轮(或者齿轮与齿条)互相啮合时,其共轭齿阔互为包络线的原理来切齿的),常见的刀具例如齿轮插刀(刀具顶部比正常齿高出m c *,以便切出顶隙部分,刀具模拟啮合旋转并轴向运动,缺点:只能间断地切削、生产效率低)、齿条插刀(顶部比传动用的齿条高出m c *,刀具进行轴向运动,切出的齿轮分度圆齿厚和分度圆齿槽宽相等,缺点:只能间断地切削、生产效率低)、齿轮滚刀(其在工作面上的投影为一齿条,能够进行连续切削)21. 最少齿数和根切(根切会削弱齿轮的抗弯强度、使重合度ε下降):对于α=20°和*a h =1的正常齿制标准渐开线齿轮,当用齿条加工时,其最小齿数为17(若允许略有根切,正常齿标准齿轮的实际最小齿数可取14)如何解决根切?变位齿轮可以制成齿数少于最少齿数而无根切的齿轮,可以实现非标准中心距的无侧隙传动,可以使大小齿轮的抗弯能力比较接近,还可以增大齿厚,提高轮齿的抗弯强度(以切削标准齿轮时的位置为基准,刀具移动的距离xm 称为变位量,x 称为变为系数,并规定远离轮坯中心时x 为正值,称为正变位,反之为负值,称为负变位)22. 轮系的分类:定轴轮系(轴线固定)、周转轮系(轴有公转)、复合轮系(两者混合)=m i 1 23.24. 26.飞轮转动惯量的选择:δω2maxm A J =注:1)δωωω22min 2max min max max )(21m J J E E A =-=-=(m ax A 为最大功亏,即飞轮的动能极限差值,m ax A 的确定方法可以参照书本99页)2)2minmax ωωω+=m (m ω为主轴转动角速度的算数平均值)3)mωωωδminmax -=(δ为不均匀系数)27.(刚性)回转件的平衡:目的是使回转件工作时离心力达到平衡,以消除附加动压力,尽可能减轻有害的机械振动。

机械设计基础知识总结通用3篇

机械设计基础知识总结通用3篇

机械设计基础知识总结通用3篇1、简洁机器组成:原动机局部、执行局部、传动局部三局部组成。

2、运动副:使构件直接接触又能保持肯定形式的相对运动的连接称为运动副。

高副:凡为点接触或线接触的运动副称为高副。

低副:凡为面接触的运动副称为低副。

3、局部自由度:对整个机构运动无关的自由度称为局部自由度。

自由度:构件的独立运动称为自由度。

平面机构运动简图:说明机构各构件间相对运动关系的简洁图形称为机构运动简图。

4 一般螺纹牙型角为α=60°梯形螺纹牙型角为α=30°矩形螺纹的牙型是正方形。

传递效率最高的螺纹牙型是矩形螺纹(正方形)。

自锁性最好的是三角螺纹牙型。

5 常用的防松方法有哪几种?(1)摩擦防松(2)机械防松(3)不行拆防松。

6 平键如何传递转矩?平键是靠键与键槽侧面的挤压传递转矩。

7 单圆头键用于薄壁构造、空心轴及一些径向尺寸受限制的场合。

8 零件的轴向移动采纳导向平键或滑键。

9 联轴器与离合器有何共同点、不同点?联轴器与离合器共同点:联轴器和离合器是机械传动中常用部件。

它们主要用来连接轴与轴,或轴与其他回转零件以传递运动和转矩。

不同点:在机器工作时,联轴器始终把两轴连接在一起,只有在机器停顿运行时,通过拆卸的方法才能使两轴分别;而离合器在机器工作时随时可将两轴连接和分别。

10 有补偿作用的联轴器属于挠性联轴器类型。

11 挠性联轴器有哪些形式?解:挠性联轴器分为无弹性元件的挠性联轴器和有弹性元件的联轴器。

无弹性元件的挠性联轴器有以下几种(1)十字滑块联轴器(2)齿式联轴器(3)万向联轴器(4)链条联轴器有弹性元件的挠性联轴器又分为(5)弹性套柱销联轴器(6)弹性柱销联轴器(7)轮胎式联轴器12 离合器分牙嵌式离合器和摩擦式两大类。

13 钢卷尺里面的弹簧采纳的是螺旋弹簧。

汽车减震采纳的是板弹簧。

14 铰链四杆机构有哪些根本形式?各有何特点?解:铰链四杆机构有三种根本形式(1)曲柄摇杆机构(2)双摇杆机构(3)双曲柄机构。

机械设计基础知识点总结

机械设计基础知识点总结

机械设计基础知识点总结机械设计是指根据物体的用途和需求,利用力学、材料学等相关知识,设计出能够满足要求的机械产品或设备。

下面将从机械设计的基本原理、机械零件的设计、机械动力传动等方面进行总结。

1.机械设计基本原理(1)静力学基本原理:包括平衡状态、力的作用点、力的合成与分解、力的分布等。

(2)运动学基本原理:包括平面运动与空间运动、速度与加速度、几何运动与连续运动等。

(3)动力学基本原理:包括质点的运动方程、惯性力、作用力与反作用力、能量守恒定律、动量守恒定律等。

2.机械零件的设计(1)轴的设计:根据承载工况、传动功率和转速等要求确定轴的材料、直径和长度等。

(2)联接件的设计:包括轴承、齿轮、键、销、螺纹等。

设计时要考虑力的传递效果、零件的寿命和可维修性等。

(3)阀门的设计:根据流体的特性和工作条件,选择适当的阀门类型和材料,以确保流体的控制效果。

(4)弹簧的设计:根据所受载荷、工作环境和弹簧材料等因素,确定弹簧的直径、圈数、螺距和螺纹等参数。

(5)联轴器的设计:根据传动功率、转速和工作环境等要求,选择适当的联轴器类型和材料,以确保传动效果和可靠性。

3.机械动力传动(1)带传动:包括平带传动、V带传动、齿轮带传动等。

设计时要考虑传动效率、速比、中心距等因素。

(2)齿轮传动:根据传动功率、转速比和工作环境等要求,选择适当的齿轮类型和材料,以确保传动效果和可靠性。

常见的齿轮有直齿轮、斜齿轮、蜗杆等。

(3)链传动:包括链条传动、滚子链传动等。

设计时要考虑链条选择、链轮选择和传动效果等因素。

(4)轴承:包括滚动轴承和滑动轴承。

设计时要考虑承载能力、摩擦和磨损等因素。

4.机械工程材料(1)常用金属材料:如钢、铝、铜等。

要根据机械设计的要求,选择合适的材料进行设计。

(2)非金属材料:如塑料、橡胶、陶瓷等。

要根据工作条件和使用要求选择合适的材料。

(3)复合材料:是由两个或多个不同材料按一定比例组合而成。

设计时要考虑材料的强度、重量和成本等因素。

机械设计课本知识点汇总

机械设计课本知识点汇总

机械设计课本知识点汇总机械设计是机械工程领域中的一个重要学科,涵盖了广泛的知识点。

本文将为大家汇总机械设计课本中的一些重要知识点,以供参考。

一、机械设计基础知识1. 材料力学:包括材料力学的基本概念,应力、应变、弹性模量、屈服强度等。

2. 绘图基础:了解机械设计中常用的绘图符号、尺寸标注、投影方法等。

3. 机械制图:学习机械设计中的常用图形,如剖视图、立体图、装配图等。

4. 轴系和公差:了解轴系的概念、公差的计算方法等重要内容。

二、机械零件设计1. 连接零件:包括螺栓、销、轴等常用连接零件的设计,以及设计时应考虑的安全系数。

2. 传动零件:学习机械传动中的齿轮、带传动、链传动等各种传动零件的设计方法。

3. 轴承设计:了解轴承的基本原理,学习轴承的选择和计算方法。

4. 弹簧设计:学习弹簧的类型、选取和计算方法,以及弹簧在机械设计中的应用。

三、机构设计1. 机构的分类:学习常见机构的分类和特点,如链传动机构、减速机构等。

2. 平面机构设计:包括平面机构的数学模型、运动分析和合成等内容。

3. 空间机构设计:了解空间机构的设计方法和运动规律。

4. 减振和控制:学习机械设计中减振和控制技术的原理和应用。

四、机械设计原理1. 机械运动学:了解机械运动学的基本概念、运动参数的计算方法等。

2. 机械静力学:学习机械静力平衡、动态平衡和力学性能的计算方法。

3. 机械动力学:包括机械动力学的基本原理、能量传递与控制、动力分析和设计等内容。

4. 机械热力学:了解机械系统的能量转换原理、热力学循环和效率计算等。

五、机械设计应用1. 机械工程材料:学习常见机械工程材料的性能特点和应用范围。

2. 工程设计软件:了解常用的机械设计软件,如CAD、Solidworks 等,并学会使用它们进行机械设计。

3. 机械加工工艺:学习机械零件的加工方法和工艺流程,了解不同加工方式的优缺点。

4. 机械设计案例:学习一些经典的机械设计案例,了解不同设计思路和方法的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.构件:独立的运动单元/零件:独立的制造单元机构:用来传递运动和力的、有一个构件为机架的、用构件间能有确定相对运动的连接方式组成的构件系统(机构=机架(1个)+原动件(≥1个)+从动件(若干))机器:包含一个或者多个机构的系统注:从力的角度看机构和机器并无差别,故将机构和机器统称为机械1. 机构运动简图的要点:1)构件数目与实际数目相同2)运动副的种类和数目与实际数目相同3)运动副之间的相对位置以及构件尺寸与实际机构成比例(该项机构示意图不需要)2. 运动副(两构件组成运动副):1)高副(两构件点或线接触)2)低副(两构件面接触组成),例如转动副、移动副3. 自由度(F )=原动件数目,自由度计算公式:为高副数目)(为低副数目)(为活动构件数目)(H H L L P P P P n n F --=23 求解自由度时需要考虑以下问题:1)复合铰链2)局部自由度3)虚约束4. 杆长条件:最短杆+最长杆≤其它两杆之和(满足杆长条件则机构中存在整转副)I ) 满足杆长条件,若最短杆为机架,则为双曲柄机构 II ) 满足杆长条件,若最短杆为机架的邻边,则为曲柄摇杆机构III ) 满足杆长条件,若最短杆为机架的对边,则为双摇杆机构IV ) 不满足杆长条件,则为双摇杆机构5. 急回特性:摇杆转过角度均为摆角(摇杆左右极限位置的夹角)的大小,而曲柄转过角度不同,例如:牛头刨床、往复式输送机急回特性可用行程速度变化系数(或称行程速比系数)K 表示 11180180180//21211221+-︒=⇒-︒+︒=====K K t t t t K θθθϕϕψψωω θ为极位夹角(连杆与曲柄两次共线时,两线之间的夹角)6. 压力角:作用力F 方向与作用点绝对速度c v 方向的夹角α7. 从动件压力角α=90°(传动角γ=0°)时产生死点,可用飞轮或者构件本身惯性消除8. 凸轮机构的分类及其特点:I)按凸轮形状分:盘形、移动、圆柱凸轮(端面) II )按推杆形状分:1)尖顶——构造简单,易磨损,用于仪表机构(只用于受力不大的低速机构)2)滚子——磨损小,应用广3)平底——受力好,润滑好,用于高速转动,效率高,但是无法进入凹面 III )按推杆运动分:直动(对心、偏置)、摆动 IV)按保持接触方式分:力封闭(重力、弹簧等)、几何形状封闭(凹槽、等宽、等径、主回凸轮)9. 凸轮机构的压力角:从动件运动方向与凸轮给从动件的力的方向之间所夹的锐角α(凸轮给从动件的力的方向沿接触点的法线方向)压力角的大小与凸轮基圆尺寸有关,基圆半径越小,压力角α越大(当压力角过大时可以考虑增大基圆的半径)10. 凸轮给从动件的力F和使从动件压紧导路的有害分力F ’’(F ’’=F ’11. 凸轮机构的自锁现象:在α角增大的同时,F 摩擦力大于有用分力F ’即发生自锁,【α】在摆动凸轮机构中建议35°-45°,【α】在直动凸轮机构中建议30°,【α】在回程凸轮机构中建议70°-80°12. 凸轮机构的运动规律与冲击的关系:I )多项式运动规律:1)等速运动(一次多项式)运动规律——刚性冲击2)等加等减速(二次多项式)运动规律——柔性冲击3)五次多项式运动规律——无冲击(适用于高速凸轮机构) II )三角函数运动规律:1)余弦加速度(简谐)运动规律——柔性冲击2)正弦加速度(摆线)运动规律——无冲击 III )改进型运动规律:将集中运动规律组合,以改善运动特性13. 凸轮滚子机构半径的确定:为滚子半径、为理论轮廓的曲率半径、为工作轮廓的曲率半径T a r ρρI )轮廓内凹时:T a r +=ρρ II )轮廓外凸时:T a r -=ρρ(当0=-=T a r ρρ时,轮廓变尖,出现失真现象,所以要使机构正常工作,对于外凸轮廓要使T r >min ρ)注:平底推杆凸轮机构也会出现失真现象,可以增大凸轮的基圆半径来解决问题14. 齿轮啮合基本定律:设P 为两啮合齿轮的相对瞬心(啮合齿轮公法线与齿轮连心线21O O 交点),12122112b b r r P O P O i ===ωω(传动比需要恒定,即需要P O PO 12为常数)15. 齿轮渐开线(口诀):弧长等于发生线,基圆切线是法线,曲线形状随基圆,基圆内无渐开线啮合线:两啮合齿轮基圆的内公切线啮合角:节圆公切线与啮合线之间的夹角α’(即节圆的压力角)16. 齿轮的基本参数:(弧长)弧长)齿槽宽齿厚、——齿根圆、——齿顶圆kk f f a a e s d r d r ( 基圆上的弧长)法向齿距(周节)齿距(周节):(b n k k k p p e s p =+=f a h h 高度)齿根高(分度圆到齿根高度)齿顶高(分度圆到齿顶分度圆:人为规定(标准齿轮中分度圆与节圆重合),分度圆参数用r 、d 、e 、s 、p=e+s 表示(无下标)B h h h f a )齿宽(轮齿轴向的厚度全齿高+= 轮齿的齿数为zmz r mz d p m p zp d zp d m 21,,///====⇒==有故定义只能取某些简单的值,,人为规定:分度圆的周长模数ππππ齿轮各项参数的计算公式:mz d =)短齿制正常齿齿顶高系数.80,1(****===a a a a a h h h m h h).3025.0()(*****==+=c c c m c h h a f 短齿制正常齿顶隙系数m c h h h h a f a )2(**+=+=m h z h d d a a a )2(2*+=+= m c h z h d d a f f )22(2**--=-=17. 分度圆压力角α=arcos (b r /r )(b r 为基圆半径,r 为分度圆半径)所以ααcos cos mz d d b== 所以ααπαππcos cos cos p m zmz z d p p bb n ===== 18. 齿轮重合度:表示同时参加啮合的轮齿的对数,用ε(ε≥1才能连续传动)表示,ε越大,轮齿平均受力越小,传动越平稳19. m c c c e s *21,00==-为标准值即顶隙即理论上齿侧间隙为标准安装时的中心距2121r r r c r a fa +⇒=++= 20. 渐开线齿轮的加工方法:1)成形法(用渐开线齿形的成形刀具直接切出齿形,例如盘铣刀和指状铣刀),成形法的优点:方法简单,不需要专用机床;缺点:生产效率低,精度差,仅适用于单件生产及精度要求不高的齿轮加工2)范成法(利用一对齿轮(或者齿轮与齿条)互相啮合时,其共轭齿阔互为包络线的原理来切齿的),常见的刀具例如齿轮插刀(刀具顶部比正常齿高出m c *,以便切出顶隙部分,刀具模拟啮合旋转并轴向运动,缺点:只能间断地切削、生产效率低)、齿条插刀(顶部比传动用的齿条高出m c *,刀具进行轴向运动,切出的齿轮分度圆齿厚和分度圆齿槽宽相等,缺点:只能间断地切削、生产效率低)、齿轮滚刀(其在工作面上的投影为一齿条,能够进行连续切削)21. 最少齿数和根切(根切会削弱齿轮的抗弯强度、使重合度ε下降):对于α=20°和*a h =1的正常齿制标准渐开线齿轮,当用齿条加工时,其最小齿数为17(若允许略有根切,正常齿标准齿轮的实际最小齿数可取14)如何解决根切?变位齿轮可以制成齿数少于最少齿数而无根切的齿轮,可以实现非标准中心距的无侧隙传动,可以使大小齿轮的抗弯能力比较接近,还可以增大齿厚,提高轮齿的抗弯强度(以切削标准齿轮时的位置为基准,刀具移动的距离xm 称为变位量,x 称为变为系数,并规定远离轮坯中心时x 为正值,称为正变位,反之为负值,称为负变位)22. 轮系的分类:定轴轮系(轴线固定)、周转轮系(轴有公转)、复合轮系(两者混合) 一对定轴齿轮的传动比公式:ab b a b a ab z z n n i ===ωω 对于(定轴)齿轮系,设输入轴的角速度为1ω,输出轴的角速度为m ω,所有主动轮齿数的乘积所有从动轮齿数的乘积==m m i ωω11 齿轮系中齿轮转向判断(用箭头表示):两齿轮外啮合时,箭头方向相反,同时指向或者背离啮合点,即头头相对或者尾尾相对;两齿轮内啮合时,箭头方向相同蜗轮蜗杆判断涡轮的转动方向:判断蜗杆的螺纹是左旋还是右旋,左旋用左手,右旋用右手,用手顺着蜗杆的旋转方向把握蜗杆,拇指指向即为涡轮的旋转方向周转轮系(包括只需要一个原动件的行星轮系和需要两个原动件的差动轮系)的传动比:所有主动轮齿数的乘积至转化轮系从所有从动轮齿数的乘积至转化轮系从)(K G K G n n n n n n i H H K H H G H K H G HGK ±=--== 注:不能忘记减去行星架的转速,此外,判断G 与K 两轮的转向是否相同,如果转向相同,则最后的结果符号取“+”,如果转向相反,则结果的符号取“-”复合轮系的传动比计算,关键在于找出周转轮系,剩下的均为定轴轮系,计算时要先名明确传递的路线是从哪一个轮传向下一个轮23. (周期性)速度波动:当外力作用(周期性)变化时,机械主轴的角速度也作(周期性的)变化,机械的这种(有规律的、周期性的)速度变化称为(周期性)速度波动(在一个整周期中,驱动力所做的输入功和阻力所作的输出功是相等的,这是周期性速度波动的重要特征)24. 调节周期性速度波动的常用方法是在机械中加上一个转动惯量很大的回转件——飞轮(选择飞轮的优势在于不仅可以避免机械运转速度发生过大的波动,而且可以选择功率较小的原动机)对于非周期性的速度波动,我们可以采用调速器进行调节(机械式离心调速器,结构简单,成本低廉,但是它的体积庞大,灵敏度低,近代机器多采用电子调速装置)26.飞轮转动惯量的选择:δω2m ax m A J =注:1) δωωω22min 2max min max max )(21m J J E E A =-=-=(max A 为最大功亏,即飞轮的动能极限差值,max A 的确定方法可以参照书本99页)2)2min max ωωω+=m (m ω为主轴转动角速度的算数平均值) 3)mωωωδmin max -=(δ为不均匀系数) 27.(刚性)回转件的平衡:目的是使回转件工作时离心力达到平衡,以消除附加动压力,尽可能减轻有害的机械振动。

(平面)平衡的方法:安装平衡质量,使得配重对轴的离心力(或质径积)的矢量和与要平衡的重量的离心力(或质径积)矢量和为0注:对于一些轴向尺寸较小的回转件,如叶轮,飞轮,砂轮等,可近似地认为其质量分布在同一平面内,但是对于一些轴向尺寸较大的回转件,如多缸发动机曲柄,电动机转子,汽轮机转子和机床主轴等,其质量分布于多个平面内,不可以看作在同一平面内进行质量平衡的计算28.螺纹的用途:1)链接2)传动螺纹参数:S=nP(S 为导程,P 为螺距,n 为螺旋线数,注:P为相邻两牙在中径线上对应两点间的轴向距离,S 为同一条螺旋线上的相邻两牙在中径线上对应两点的轴向距离)关于螺纹升角:为中径22,tan d d nP πψ=螺纹的类型:1)矩形螺纹(牙侧角β=0°)2)非矩形螺纹(牙侧角β≠0°):三角形螺纹(牙型角α=60°为国家标准普通螺纹,牙型角α=55°为管螺纹)、梯形螺纹(牙型角α=75°,牙侧角β=15°)、锯齿形螺纹(牙型角α=33°,牙侧角β=3°)螺纹的效率(有效功与输入功的比):螺旋副的效率仅与螺纹升角ψ有关,锯齿形螺纹的牙侧角比梯形螺纹的牙侧角小,所以锯齿形螺纹的效率比梯形螺纹的效率高,但是只适用于承受单方向的轴向载荷自锁条件:1)矩形螺纹当斜面倾角小于摩擦角时,发生自锁2)非矩形螺纹,当螺纹升角小于等于当量摩擦角时发生自锁 注:用于连接的紧固螺纹必须满足自锁条件,为牙侧角)为摩擦系数,当量摩擦角ββρf f (,cos arctan '= 29.螺纹链接的基本类型:1)螺栓连接(螺栓和螺母配合)①普通螺栓连接:螺栓与孔之间有间隙,孔中不切制螺纹,加工简便,成本低,应用最广②铰制孔用螺栓连接:其螺杆外径与螺栓孔的内径具有同一基本尺寸,螺栓与孔之见没有空隙,并常采用过渡配合,它适用于承受垂直螺栓轴线的横向载荷2)螺钉连接(螺钉直接旋入螺纹孔,省去螺母):结构简单,但是不能经常拆装,经常拆装会使连接件的螺纹被磨损而失效3)双头螺柱连接:连接较厚的被连接件,或者为了结构紧凑而采用盲孔的连接,该连接允许多次拆装而不损坏被连接件4)紧定螺钉连接:固定两零件的相对位置,并可传递不大的力或者转矩常见的螺纹紧固件:螺栓(有多种头部形状)、双头螺柱(有座端和螺母端两个端)、(紧固)螺钉(末端有平端、锥端、圆尖端)、螺母、垫圈(增大被连接件的支承面积以减小接触的挤压应力)30.预紧:对于不承受轴向工作载荷的螺纹,轴向的力即为预紧力螺纹连接的拧紧力矩T等于克服螺纹副相对转动的阻力矩T1和螺母支承面上的摩擦阻力矩T2之和为了充分发挥螺栓的工作能力和保证预紧可靠,螺栓的预紧应力一般可达材料屈服极限的50%~70%,小直径的螺栓装配时应施加小的拧紧力矩,否则容易将螺栓杆拉断,力矩的大小通常由经验判断,但是为了保证质量可以选择测力矩扳手或者定力矩扳手31.防松:连接用的三角形螺纹具有自锁性,一般情况下不会发生脱落,但是在冲击、振动、变载的作用下,预紧力可能在某一瞬间消失,另外高温螺纹连接有可能导致变形脱落,所以要进行防松常用的防松措施:①弹簧垫片:反弹力使螺纹间保持压紧力和摩擦力②对顶螺母:两个螺母的对顶作用,使得螺栓始终受到附加的拉力和附加的摩擦力,结构简单,适用于低速重载的场合③尼龙圈锁紧螺母:螺母中嵌有尼龙圈,拧上后尼龙圈内孔被胀大,箍紧螺栓④槽型螺母开口销⑤圆螺母用带翅垫片⑥止动垫片:垫片折边以固定螺母和被连接件的相对位置⑦其它方法:用冲头冲2-3点防松、粘合剂涂于螺纹旋合后粘合剂固化粘合达到防松效果32.齿轮失效形式:1)轮齿折断2)齿面点蚀3)齿面胶合4)齿面磨损5)齿面塑性变形①轮齿折断:一般发生在齿根处,因为齿根处受到的弯曲应力最大,淬火钢或铸铁制成的齿轮(闭式硬齿面齿轮)容易发生这种现象②齿面点蚀:最先出现在齿面节线处,细小裂纹扩展后颗粒剥落造成,通常发生在闭式软齿面齿轮上③齿面胶合:发生在齿顶、齿根等相对速度较大处,高速重载运动中,摩擦产生高温引润滑油失效,齿面金属粘连,相对运动时较软的齿面沿滑动方向被撕下形成沟纹(解决方法:1)提高齿面硬度2)减小齿面粗糙度3)增加润滑剂的粘度(低速)4)加抗胶合剂)④齿面磨损:1)磨粒磨损:颗粒进入齿面间引起磨粒磨损,开式传动中难以避免,齿阔变形,导致噪声和振动,最终传动失效2)跑合磨损:新制造的齿轮表面不光洁,刚开始运转时会有磨损,使得表面变光洁,跑合结束后应该清洗并更换润滑油⑤齿面塑性变形:重载导致齿面局部塑性变形,使齿阔失去正确的齿形,在过载严重和启动频繁的传动中常见33.齿轮的接触强度由齿轮的模数和齿数乘积mz 决定,mz 越大,接触强度越大齿轮的弯曲强度由齿轮的模数m 决定34.齿轮径向力判断:所有齿轮的径向力都指向齿轮的轴心 齿轮圆周力向力判断:圆周力都沿齿轮旋转地切线方向,主动轮的圆周力与转动方向相反,从动轮圆周力与转动方向相同齿轮轴向力判断(斜齿轮有,直齿轮没有):对于圆锥齿轮,轴向力从小端指向大端,判断一般斜齿轮主动轮的轴向力可用左右手法则,左旋用左手,右旋用右手,用对应的手四指沿主动轮的转向把握齿轮,拇指方向即为轴向力的方向,从动轮的轴向力方向与主动轮轴向力方向即可注:一对齿轮中,一齿轮的轴向力与另一齿轮的径向力是反作用里,也就是说等大(表示圆周力表示轴向力表示径向力t a r F F F //)35.轴:轴的作用是支撑旋转的机械零件,如齿轮、带轮、链轮、凸轮等轴的分类:1)按承受的载荷分:①转轴:传递扭矩又承受弯矩(减速器转轴)②只传递扭矩(卡车底部的传动轴)③只承受弯矩2)按轴的形状分:①直要求轴的设计:1)为了便于安装,轴一般设计成从轴端逐渐向中间增大的阶梯状,装零件的轴端应该有倒角,需要磨削的轴端有砂轮越程槽,车螺纹的轴端应该有退刀槽2)零件在轴向上的定位由轴肩或者套筒确定3)零件在轴向上的固定由轴肩、套筒、螺母或轴端挡圈(轴端上的零件多使用轴端挡圈固定)来实现(如果套筒过长或者无法使用套筒固定时可以采用双螺母进行固定),在轴向力比较小的时候还可以使用弹性挡圈或紧定螺钉实现4)周向固定大多采用键、花键或过盈配合等连接形式来实现轴设计时的注意点:①键槽应该设计成统一加工直线(即键槽应该在同一直线上),尽可能使用同一键槽截面②轴承上不能开键槽③轮毂上的键槽要开通④轴肩不能够过高(不能够高于轴承的内圈,方便抓取)⑤轴的直径要合适,使套筒、螺母等零件能够进入⑥键不能够太长(例如利用键固定齿轮,则键的长度不能超过齿轮的宽度⑦上述轴的设计中的一些其它要点36.(滚动)轴承的类型:I)按照承受载荷的方向(或接触角)分:1)向心轴承(主要用于承受径向力):①径向接触轴承(α=0°,只能承受径向载荷)②角接触轴承(0°<α≤45°)2)推力轴承(主要用于承受轴向力):①角接触轴承(45°<α<90°)②轴向接触轴承(α=90°,只能承受轴向载荷)II)按照滚动体的形状分:1)球轴承2)滚子轴承:①圆柱滚子轴承②圆锥滚子轴承③球面滚子轴承④滚针轴承注:滚动体与轴承外圈接触处的法线与垂直于轴承轴心线的平面之间的夹角为公称接触角α37.1)轴承的承载能力:相同尺寸外形下滚子轴承的承载能力比球轴承的承载能力高(前者约为后者的1.5-3倍,但是当轴承内径≤20mm时,两者差不多,但是球轴承价格较低2)轴承的极限转速:转速过高时,高温使润滑失效,滚动体回火或者胶合破坏,提高极限转速可以采取提高轴承精度、适当加大间隙、改善润滑和冷却条件等措施3)角偏差:由于安装误差或者轴变形会引起内外圈中心线发生相对倾斜,倾斜角称为角偏差,可以采用调心球轴承来保证正常运转。

相关文档
最新文档