高考数学 圆锥曲线复习课

合集下载

第08讲 直线与圆锥曲线的位置关系(八大题型)(课件)高考数学一轮复习(新教材新高考)

第08讲 直线与圆锥曲线的位置关系(八大题型)(课件)高考数学一轮复习(新教材新高考)
2

2
2
【解析】当 ≥ 0时,曲线 −
= 1,即 − =
9
4
9
4
3
一条渐近线方程为: = 2 ,直线与渐近线平行;
当 <
2
0时,曲线
9


4
=
2
1,即
9
2
+
4
画出曲线和直线的图像,如图所示:
根据图像知有2个公共点.
故选:B
1,双曲线右半部分;
= 1,椭圆的左半部分;
).
题型突破·考法探究
次方程,则直线与圆锥曲线相交⇔Δ > 0;直线与圆锥曲线相切⇔Δ = 0;
直线与圆锥曲线相离⇔Δ < 0.
特别地,①与双曲线渐近线平行的直线与双曲线相交,有且只有一个交点.
②与抛物线的对称轴平行的直线与抛物线相交,有且只有一个交点.
知识梳理·基础回归
知识点2:弦长公式
已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),
是,则弦的中点轨迹方程是

【答案】 = 2 2 − 7 −2或 4
【解析】设 1 , 1 、 2 , 2 ,中点 , ,
则1 + 2 = 2.
∵ : − 1 − + 5 = 0,∴ 过定点 1, −5 ,
+5
∴ = =
(3)了解抛物线与双曲线的定义、几何图形和标准方程,以及它们的简单几何性质.
(4)通过圆锥曲线与方程的学习,进一步体会数形结合的思想.
02
稿定PPT
稿定PPT,海量素材持续更
新,上千款模板选择总有一
款适合你
03
知识梳理·基础回归

高考数学复习第九章解析几何9.8.1直线与圆锥曲线文市赛课公开课一等奖省优质课获奖课件

高考数学复习第九章解析几何9.8.1直线与圆锥曲线文市赛课公开课一等奖省优质课获奖课件

由xy22=+-y2m= 1 x1+,b
消去 y,得
12+m12x2-2mbx+b2-1=0.
39/43
因为直线 y=-m1 x+b 与椭圆x22+y2=1 有两个不同的交点,
所以 Δ=-2b2+2+m42>0.①
将线段 AB 中点 Mm22m+b2,mm2+2b2代入直线方程 y=mx+12解 得 b=-m22m+22.②
6/43
[典题 1] (1)[2017·甘肃兰州检测]若直线 mx+ny=4 和
圆 O:x2+y2=4 没有交点,则过点(m,n)的直线与椭圆x92+y42
=1 的交点个数为( B )
A.至多一个 B.2
C.1
D.0
7/43
[解析] ∵直线 mx+ny=4 和圆 O:x2+y2=4 没有交点,∴
解得 k=-12.
31/43
故此弦所在的直线方程为 y-1=-12(x-1), 即 x+2y-3=0. 解法二:易知此弦所在直线的斜率存在,所以设斜率为 k, A(x1,y1),B(x2,y2), 则xx441222+ +yy222221= =11, ,① ② ①-②得x1+x24x1-x2+y1+y22y1-y2=0,
24/43
(1)求椭圆 C 的方程; (2)当△AMN 的面积为 310时,求 k 的值.
a=2, 解:(1)由题意得ac= 22,
a2=b2+c2, 解得 b= 2,所以椭圆 C 的方程为x42+y22=1.
y=kx-1, (2)由x42+y22=1,
25/43
得(1+2k2)x2-4k2x+2k2-4=0.
35/43
[解析] 设 A(x1,y1),B(x2,y2), 抛物线方程为 y2=2px, 则yy1222==22ppxx21., 两式相减可得 2p=yx11- -yx22×(y1+y2) =kAB×2=2,解得 p=1, ∴抛物线 C 的方程为 y2=2x.

高中数学《圆锥曲线-复习课》课堂实录

高中数学《圆锥曲线-复习课》课堂实录

圆锥曲线复习课(一)课堂实录一、创设情境、引入课题1.圆锥曲线的实际背景.[师]我们知道用平面截圆锥,通过改变平面与圆锥轴线的夹角,可得到不同的截口曲线.如用一个垂直于圆锥的轴的平面截圆锥,截口曲线是什么?[生] 圆[师] 改变平面与圆锥轴线的夹角,截口曲线又是什么?(播放动画)[生]椭圆、双曲线、抛物线[师]用不同的平面去截圆锥,可得到的截口曲线分别是:圆、椭圆、双曲线、抛物线,我们把它们统称为圆锥曲线.圆锥曲线与科研、生产及人类生活有着紧密的关系,它在刻画现实世界和解决实际问题中有重要作用.2.圆锥曲线在高考中的地位[师]在近几年的高考中圆锥曲线试题一直稳定在三(或二)个选择题,一个填空题,一个解答题,分值约为30分左右, 占总分值的20%,是高考重点考查内容.今天我们就一起来复习这部分的内容.(板书课题)3.展示本章知识框架.[师]首先我们来看看本章的知识框架(出示幻灯片5)本章我们学习了三大圆锥曲线的定义、标准方程及几何性质,本节课我们重点复习三大圆锥曲线的定义.二、复习建构[师]请同学们快速完成问题1并通过问题1回顾三大圆锥曲线的定义.(出示幻灯片7)问题1[生]第(1)小问的轨迹是椭圆,第(2)小问的轨迹是双曲线,第(3)小问的轨迹是抛物线.[师]很好!请说明理由.[生] 根据三大圆锥曲线的定义而得到的.[师]若将第(1)小问的6改为4,第(2)小问的2改为4,它们的轨迹又是什么?(出示幻灯片8、9)[生]线段和射线(学生回顾归纳,教师补充特殊情况)(出示幻灯片10)1、P 为动点,F 1、F 2为定点,L 为定直线椭圆:| PF 1 |+ | PF 2 |=2a(2a>|F 1F 2| )当2a=|F 1F 2|时,轨迹是线段F 1F 2双曲线: | | PF 1 |-| PF 2 | | =2a(2a<|F 1F 2| )当2a=|F 1F 2|时,轨迹是两条射线;212122(2,0),(2,0)6,2,2F F P PF PF P PF PF P PF P x P -+===-1已知:,为平面内一动点(1)若则的轨迹是?(2)若-则的轨迹是?(3)若等于点到直线的距离,则的轨迹是?抛物线:| PF2 |=d(P到定直线L的距离)F2不在L上当F2在L上时,轨迹是直线三、探索研究、归纳猜想[师]通过对问题1的交流及对定义的回顾,椭圆、双曲线的定义是用动点与两定点的距离的和(或差)的形式给出的,而抛物线的定义则用动点与定直线距离的比的形式给出的,椭圆和双曲线的定义能否也用动点与定直线距离的比的形式给出呢?[生]可以、不可以(大部分同学说可以,少部分同学说不可以)[师]好,到底可不可以呢?请同学们完成问题2(出示幻灯片11)问题2:点(,)M x y与定点(4,0)F的距离和它到直线25:4l x=的距离的比是常数45,求点M的轨迹.(46P例6)[师]请罗婷给大家展示一下.[生][师] 罗婷讲得很有条理,请你告诉大家你求的椭圆方程中的?,?,?a b c=== [生]5,3,4a b c===[师]大家观察这个定点(4,0)F恰好是什么?定直线是什么?常数45又是什么?[生]焦点、准线、离心率[师]现在把这个常数45换成54,改变相应的定点和定直线,动点的轨迹又是什么?[生]双曲线[师]好,请大家快速的检证一下,完成变式(出示幻灯片13)(学生快速检证,果然是双曲线)变式:点(,)M x y与定点(5,0)F的距离和它到直线16:5l x=的距离的比是常数54,求点M的轨迹.(59P例5)22224,545925225125910M lMFdx yx yM→==+=+=∴解:由题意知:即将上式两边平方化简得:即是长轴为,短轴为6的椭圆[师] 对比问题2和变式,你有什么发现?(出示幻灯片15)[生] 椭圆和双曲线的定义也能用动点与定直线距离的比的形式给出.[师]请大家结合这两个特殊问题以及抛物线的定义猜想一般圆锥曲线的另外一种定义.(学生归纳,教师补充)(出示幻灯片16、教师板书) 归纳猜想2.M 为动点,F 为定点,l 为定直线()M l MFe F l d →=∉(1) 0<e<1轨迹为椭圆;(2) e=1轨迹为抛物线;(3) e>1轨迹为双曲线[师]三大圆锥曲线还有其它的生成方式吗?请同学们完成问题3(出示幻灯片17)问题3:设点A ,B 的坐标分别是(5,0),(5,0)-.直线AM ,BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹的方程.(41P 例3) [师]请宋阳给大家展示一下.[生][师] 宋阳同学讲得很好,很有条理,大家有没有补充的?[生]因为两直线的斜率存在,所以5x ≠±[师]很好,若将问题3中的“49-”改为“59-或69-”,动点的轨迹又是什么? [生]依然是椭圆[师] 很好,若将问题3中的的“49-”改为“49”;或将“斜率之积” 改为“斜率的差”动点的轨迹又是什么?请大家完成变式一、二(出示幻灯片18)变式一:点A ,B 的坐标分别是(5,0),(5,0)-.直线AM ,BM 相交于点M ,且它们的斜率之积是49,试求点M 的轨迹方程.(55P 探究) 变式二:点A ,B 的坐标分别是(1,0),(1,0)-.直线AM ,BM 相交于点M ,且直2244,95591100259AM BM y y k k x x x y =-=-+-+=解:设点M 的坐标为(x,y),由题意知即化简,得点M 的轨迹方程为线AM 的斜率与直线BM 的斜率的差是2,求点M 的轨迹方程.(74P B 组第3题)[师]请周月同学给大家展示一下[生] 变式一 变式二[师] 周月同学讲得非常清晰,同时也考虑了5x ≠±,1x ≠±的情况,很不错.[师]对比问题3和变式,你有什么发现?(出示幻灯片19)[生]当动点与两定点所确定的直线的斜率之积为负数时,动点的轨迹是椭圆,为正数时,轨迹是双曲线,当动点与两定点所确定的直线的斜率之差为常数时,动点的轨迹是抛物线.(学生自主归纳,教师补充)归纳猜想(出示幻灯片20、教师板书)3.M 为动点,A 、B 为定点若(0,1)AM BM k k a a a ⋅=<≠-且,轨迹是椭圆若(0)AM BM k k a a ⋅=>,轨迹是双曲线若(0)AM BM k k a a -=≠,轨迹是抛物线思考:若AM BM k k a ÷=轨迹是什么?若AM BM k k a +=轨迹是什么?(出示幻灯片21)四、反思小结、优化认知1.本节课你有哪些收获?2.圆锥曲线的生成方式是否是唯一的,还可以用什么来刻画圆锥曲线?3.本节课我们用到了哪些数学思想和方法?[师] 本节课我们练习的题目,全部来自教材中的例题和习题,通过对它们的研究和对比,我们又对圆椎曲线的定义进行了再认识,我们发现生成圆椎曲线的方式并不是唯一的,可用动点和两定点距离的差与和的形式给出,也可用动点和两定点所确定直线斜率的形式呈现,也可以用动点和定点及定直线距离的比值给出,课后希望大家阅读教材相关内容,加强对圆锥曲线的认识.五、作业回馈,落实目标(出示幻灯片22)2244,(5)95591(5)100259AM BM y y k k x x x x y x ==≠±+--=≠±解:设点M 的坐标为(x,y),由题意知即化简,得点M 的轨迹方程为22,2(1)111(1)AM BM y y k k x x x y x x -=-=≠±+-=-+≠±解:设点M 的坐标为(x,y),由题意知即化简,得点M 的轨迹方程为1.阅读教材,回归定义.(1)阅读教材5051P ,“用几何画板探究点的轨迹:椭圆”(2)阅读教材76P ,“圆锥曲线的离心率与统一方程” 2.80P A 组第10题,B 组第5题,62P B 组第3题 42P 第4题。

高考数学专题圆锥曲线复习市赛课公开课一等奖省名师优质课获奖课件

高考数学专题圆锥曲线复习市赛课公开课一等奖省名师优质课获奖课件

12b2=0,∵椭圆与直线 x+ 3y+4=0 有且仅有一个交点,
∴ Δ= (8 3b2)2- 4×4(b2+ 1)(- b4+ 12b2)= 0, 即 (b2+
4)·(b2-3)=0,∴b2=3,长轴长为 2 b2+4=2 7.
答案 C
7/49
3. 过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共
的方程为 y=2ba2cx-2ba2c2,故 Qac2,2a.
由题设知,ac2=4,2a=4,解得 a=2,c=1.
故椭圆方程为x42+y32=1.
13/49
法二 设直线 x=ac2与 x 轴交于点 M.由条件知,
P-c,ba2.因为△PF1F2∽△F2MQ,所以||FP2FM1||=||FM1FQ2||, b2
(1)求圆锥曲线方程,普通是依据已知条件建 立方程组求a,b值;(2)研究直线和圆锥曲线位置关系,普 通转化为研究其直线方程与圆锥曲线方程组成方程组解个 数.
15/49
【训练 1】 (2012·福建)如图,椭圆 E:xa22+by22 =1(a>b>0)的左焦点为 F1,右焦点为 F2, 离心率 e=12.过 F1 的直线交椭圆于 A、B 两点,且△ABF2 的周长为 8. (1)求椭圆E方程; (2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P, 且与直线x=4相交于点Q.试探究:在坐标平面内是否存在 定点M,使得以PQ为直径圆恒过点M? 若存在,求出点 M坐标;若不存在,说明理由.
x2-x12+y2-y12 = 1+k2 |x1 - x2| = 1+k12·|y1-y2|.(抛物线的焦点弦长|AB|=x1+x2+p
=si2np2θ,θ 为弦 AB 所在直线的倾斜角).

(统考版)2023高考数学二轮专题复习:圆锥曲线的定义、方程与性质课件

(统考版)2023高考数学二轮专题复习:圆锥曲线的定义、方程与性质课件
________.
3 6
4
答案:
x2
(2)[2022·新高考Ⅱ卷]已知直线l与椭圆6 Nhomakorabeay2
+ =1在第一象限交于A,
3
B两点,l与x轴、y轴分别交于M,N两点,且|MA|=|NB|,|MN|=2 3,
x+ 2y-2 2=0
则l的方程为______________.
归纳总结
直线与圆锥曲线关系的求解技巧
18
16
2
x
y2
C. + =1
3
2
答案:B
x2
y2
B. + =1
9
8
2
x
D. +y2=1
2
(2)[2022·贵州毕节模拟预测]如图,唐金筐宝钿团花纹金杯出土于西
安,这件金杯整体造型具有玲珑剔透之美,充分体现唐代金银器制作
的高超技艺,是唐代金银细工的典范之作.该杯主体部分的轴截面可
以近似看作双曲线C的一部分,若C的中心在原点,焦点在x轴上,离
(1)对于弦中点问题常用“根与系数的关系”或“点差法”求解,在
使用根与系数的关系时,要注意使用条件Δ>0,在用“点差法”时,
要检验直线与圆锥曲线是否相交.
(2)椭圆
x2
a2
y2
+ 2
b
=1(a>b>0)截直线所得的弦的中点是P(x0,y0)(y0≠0),
b2 x0
则直线的斜率为- 2 .
a y0
x2
c
a
2c
2a
= 7m,所以C的离心率e= = =
F1 F2
PF1 − PF2

7m
7

2024届高考一轮复习数学课件(新人教B版):圆锥曲线中定点与定值问题

2024届高考一轮复习数学课件(新人教B版):圆锥曲线中定点与定值问题

得 y2=83,
∴y=±2
6 3.
结合题意可知
M1,-2
3
6,N1,2
3
6,
∴过
M
且平行于
x
轴的直线的方程为
y=-2
6 3.
易知点 T 的横坐标 xT∈0,32,
直线 AB 的方程为 y-(-2)=-132---0 2×(x-0),即 y=23x-2,
由y=-2 3 6, y=32x-2
得 xT=3- 6,
设线段MN的中点为T(x0,y0), 则 x0=x1+2 x2=-4+3k3k2,y0=kx0+1=4+43k2, 线段 MN 的垂直平分线的斜率为-1k, 方程为 y-4+43k2=-1kx+4+3k3k2,
令 x=0,解得 y=4+13k2,即为点 H 的纵坐标,
∴|FH|=1-4+13k2=341++3kk22,
(2)若经过点P(t,0)的直线l与椭圆C交于A,B两点,实数t取何值时以AB 为直径的圆恒过点M ?
由(1)知M(2,0), 若直线l的斜率不存在,则直线l的方程为x=t(-2<t<2),
此时 At,
2-t22,Bt,-
2-t22,
由M→A·M→B=0
得t-2,
2-t22·t-2,-
2-t22=0,
1234
设直线MN的方程为y=kx+1,代入x2=4y, 得x2-4kx-4=0,所以x1x2=-4, 所以点P在y=-1上,结论得证.
1234
2.已知双曲线 C 的渐近线方程为 y=± 33x,且过点 P(3, 2). (1)求C的方程;
因为双曲线 C 的渐近线方程为 y=± 33x, 则可设双曲线的方程为x92-y32=λ(λ≠0), 将点 P(3, 2)代入得99-23=λ,解得 λ=13, 所以双曲线 C 的方程为x32-y2=1.

2024届高考一轮复习数学课件(新人教B版):圆锥曲线中探索性与综合性问题

2024届高考一轮复习数学课件(新人教B版):圆锥曲线中探索性与综合性问题
1234
(2)在抛物线E上任取与原点不重合的点A,过A作抛物线E的切线交x轴 于点B,点A在直线x=-1上的射影为点C,试判断四边形ACBF的形状, 并说明理由.
1234
设A(x0,y0),则过A作抛物线E的切线为y-y0=k(x-x0), 即 x=y-k y0+x0, 代入 y2=4x,整理得 ky2-4y+4y0-ky20=0, 因为此直线与抛物线相切,所以 Δ=4(4-4ky0+k2y20)=0, 即(ky0-2)2=0,解得 k=y20, 所以过 A 的切线为 y-y0=y20(x-x0),
=kx-p2, 联立抛物线方程得 k2x2-(k2p+2p)x+k24p2=0,
Δ=(k2p+2p)2-k4p2>0, 设 A(x1,y1),B(x2,y2),x1+x2=k2pk+2 2p=2kp2 +p, 此时|AB|=x1+x2+p=2kp2 +2p>2p,
显然当直线AB的斜率不存在时,|AB|的值最小, 即2p=4,解得p=2, ∴抛物线E:y2=4x.
第八章 直线和圆、圆锥曲线
§8.13 圆锥曲线中探索性 与综合性问题
题型一 探索性问题
例 1 (2023·南通模拟)已知双曲线 C:ax22-by22=1(a>0,b>0)的离心率为 2,
且过点
315,
2.
(1)求双曲线C的标准方程;
依题意ac=2, 35a2-b22=1,
结合 c2=a2+b2,
所以抛物线C的标准方程为x2=4y.
(2)不过点M的直线l与抛物线C相交于A,B两点,若直线MA,MB的斜率 之积为-2,试判断直线l能否与圆(x-2)2+(y-m)2=80相切?若能,求 此时直线l的方程;若不能,请说明理由.

2025年高考数学总复习课件71第八章第八节第3课时圆锥曲线中的范围、最值问题

2025年高考数学总复习课件71第八章第八节第3课时圆锥曲线中的范围、最值问题
号,可以转化为函数方法求最值.
第3课时
圆锥曲线中的范围、最值问题
核心考点
提升“四能”
课时质量评价
x2 y2
(2024·临沂模拟)已知椭圆C: 2 + 2 =1(a>b>0)的左、右焦点分别为F1,F2,离
a b
6
2 3
,直线x= 2被C截得的线段长为
.
3
3
(1)求C的方程;
心率为
c
6
c2 2
2
2
1
利用基本不等式求最值
x2 y2
【例4】如图,椭圆 2 + 2 =1(a>b>0)的左、右顶点分别
a b
为A,B,过左焦点F(-1,0)的直线与椭圆交于C,D两点
(其中C点位于x轴上方),当CD垂直于x轴时,|CD|=3.
(1)求椭圆的方程;
x2 y2
解:因为椭圆 2 + 2 =1(a>b>0)的左焦点为F(-1,0),所以a2-b2=1.
解:因为e= = ,所以 2 = ,所以c2= a2.又b2=a2-c2=a2- a2 = a2,
a
3
a
3
3
3
3
2
2
2
2 -2
x
+3
y

a

a
所以椭圆的标准方程为x2+3y2=a2.由൝
解得y=±

3
x= 2,
由题可知2
a2-2
3
2 3
x2 2
2

,解得a =3,所以椭圆C的方程为 +y =1.
3
3
第3课时
圆锥曲线中的范围、最值问题
核心考点

高考二轮复习数学课件(新高考新教材)第2讲圆锥曲线的定义方程与性质

高考二轮复习数学课件(新高考新教材)第2讲圆锥曲线的定义方程与性质

答案 A
解析 如图所示,抛物线C:y2=4x的焦点坐标为F(1,0),过C上一点M作其准线
的垂线,垂足为N,若∠NMF=120°,可得|MF|=|MN|,∠NFO=∠FNM=30°.
4 3
又由|DF|=2,所以|NF|= 3 ,在等腰三角形
MNF 中,可
4
得|MF|= .
3

4
M(x0,y0),根据抛物线的定义,可得|MF|=x0+1=3,解
解析 设椭圆C的左焦点为F1,如图,连接AF1,BF1,因为|OA|=|OB|,|OF1|=|OF|,
所以四边形AF1BF为平行四边形.
又 AF⊥BF,所以四边形
π
AF1BF 为矩形,所以∠F1AF= ,则
2
|OF1|=|OF|=|OA|=2 3.
由直线 y=
π
3x 可知∠AOF=3,则|AF|=|OF|=|OA|=2
||
p=3.
P 在 x 轴的
突破点二 圆锥曲线的几何性质
命题角度1 圆锥曲线的几何性质
x2 y2
x2 y2
[例 2—1]已知双曲线 C1: 2 − 2 =1(a>0,b>0)以椭圆 C2: + =1 的焦点为顶
4
3
a
b
点,左、右顶点为焦点,则双曲线 C1 的渐近线方程为(
A. 3x±y=0
B.x± 3y=0
.
答案 (1)ACD
(2)4
解析 (1)由题意知,m>0 且 m2-1>0.由已知可得 2 --1=1,解得 m=2 或 m=1(舍去负值),故椭圆
2
C 的方程为 3
2
+ 2 =1.

2025届高中数学一轮复习《圆锥曲线最值与范围问题》ppt

2025届高中数学一轮复习《圆锥曲线最值与范围问题》ppt

高考一轮总复习•数学
第9页
圆锥曲线中最值的求法 (1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来 解决,这就是几何法. (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函 数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及单 调性法等.
5-82=2.
第23页
高考一轮总复习•数学
第24页
圆锥曲线中取值范围问题的五种常用解法 (1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间 的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围. (5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数 的取值范围.
第22页
高考一轮总复习•数学
即 16y20<(x0-4)2. 因为x420+y20=1,所以y02x-02 1=-14, 所以 5x20-8x0>0,解得 x0>85或 x0<0. 因为 0<x0≤2,所以85<x0≤2, 所以 EF=2 r2-d2=2 x40-12-4xy002=2 5-x80≤2 所以该圆被 x 轴截得的弦长|EF|的最大值为 2.
所以|AB|= 1+14 x1+x22-4x1x2= 解得 p=2(负值舍去).
1+14 8p-22-4=4 15,
高考一轮总复习•数学
第6页
(2)由题知,直线 MN 的斜率不为 0,设直线 MN 的方程为 x=my+b,由(1)知,抛物线
C 的方程

2025届高中数学高考复习学案:圆锥曲线中的证明与探索性问题

2025届高中数学高考复习学案:圆锥曲线中的证明与探索性问题

圆锥曲线中的证明与探索性问题会用直线与圆锥曲线中有关知识解决证明与探索性问题,提高学生分析问题、解决问题的能力.关键能力·题型剖析题型一证明问题例1(12分)[2023·新课标Ⅱ卷]已知双曲线C的中心为坐标原点,左焦点为(-25,0),离心率为5.(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.思路导引(1)由题意求出a,b→C的方程(2)设直线方程→与C联立→消去y→韦达定理→写出直线MA1,NA2的方程→联立消去y→解得x,即交点的横坐标为定值→点P在定直线上.[满分答卷·评分细则]解析:(1)设双曲线方程为x2a2−y2b2=1(a>0,b>0),由焦点坐标得c=25,由e=c a=5得a=2,b=c2−a2=4,→正确求出a,b,c得2分∴双曲线方程为x24−y216=1.→正确写出双曲线方程得1分2由1可得A1−2,0,A22,0,→正确写出左、右顶点A1,A2的坐标得1分设M(x1,y1),N(x2,y2),显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12.→正确设出直线MN的方程得1分my−4−y216=1得(4m2-1)y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2−1,y1y2=484m2−1,→正确消去x得到关于y的一元二次方程,写出Δ及y1+y2、y1y2的表达式得2分直线MA1的方程为y=y1x1+2(x+2),直线NA2的方程为y=y2x2−2(x-2)→正确写出直线MA1,NA2的方程得1分联立直线方程y=+2,y2消去y得x+2x−2=121=m·484m2−1−2·32m4m2−1+2y1m×484m2−1−6y1=−16m4m2−1+2y148m4m2−1−6y1=-13,→正确得出x+2x−2=-13得3分可得x=−1,即x p=−1,@所以点P在定直线x=−1上.→正确解出x=-1,下结论得1分题后师说圆锥曲线证明问题的类型及求解策略(1)圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何要素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直;二是证明直线与圆锥曲线中的一些数量关系相等或不等.(2)解决证明问题时,主要根据直线与圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明.巩固训练1[2023·北京卷]已知椭圆E:x2a2+y2b2=1(a>b>0)A、C分别是E的上、下顶点,B,D分别是E的左、右顶点,|AC|=4.(1)求E的方程;(2)设P为第一象限内E上的动点,直线PD与直线BC交于点M,直线PA与直线y=-2交于点N.求证:MN∥CD.题型二探索性问题例2[2024·河南郑州模拟]已知椭圆x2a2+y2b2=1(a>b>0)的离心率为12,F为椭圆的右焦点,A 为椭圆的下顶点,A与圆x2+(y-2)2=1上任意点距离的最大值为3+3.(1)求椭圆的方程;(2)设点D在直线x=1上,过D的两条直线分别交椭圆于M,N两点和P,Q两点,点F到直线MN和PQ的距离相等,是否存在实数λ,使得|DM|·|DN|=λ|DP|·|DQ|?若存在,求出λ的值,若不存在,请说明理由.题后师说存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.巩固训练2[2024·江西南昌模拟]已知抛物线C:y2=2px(p>0)的焦点为F,A,B分别为C上两个不同的动点,O为坐标原点,当△OAB为等边三角形时,|AB|=83.(1)求C的标准方程;(2)抛物线C在第一象限的部分是否存在点P,使得点P满足PA +PB =4PF ,且点P到直线AB的距离为2?若存在,求出点P的坐标及直线AB的方程;若不存在,请说明理由.高考大题研究课十圆锥曲线中的证明与探索性问题关键能力·题型剖析巩固训练1解析:依题意,得e =ca=53,则c =53a ,又A ,C 分别为椭圆上、下顶点,|AC |=4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.解析:因为椭圆E 的方程为x 29+y 24=1,所以A (0,2),C (0,-2),B (-3,0),D (3,0),因为P 为第一象限E 上的动点,设P (m ,n )(0<m <3,0<n <2),则m 29+n 24=1,易得k BC =0+2−3−0=-23,则直线BC 的方程为y =-23x -2,k PD =n−0m−3=nm−3,则直线PD 的方程为y =n(x -3),联立y 23−2,y 3解得x =3n+2m−6y =−12n 3n+2m−6,即而k P A =n−2m−0=n−2m,则直线PA 的方程为y =n−2mx +2,令y =-2,则-2=n−2mx +2,解得x =−4m n−2,即−2,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN −12n3n+2m−6+2=−6n 2+4mn−8m+249n 2+8m 2+6mn−12m−36=−6n 2+4mn−8m+249n 2+72−18n 2+6mn−12m−36=−6n2+4mn−8m+242=23,又k CD=0+23−0=23,即k MN=k CD,显然,MN与CD不重合,所以MN∥CD.例2解析:由题意可知e=c a=12,A(0,-b),又A到圆上距离最大值为2-(-b)+1=3+b=3+3,∴b=3.又a2=b2+c2,c a=12,解得a2=4,b2=3.故椭圆方程为x24+y23=1.解析:若D点与F点重合,则λ不存在,若D点与F点不重合,∵点F到直线MN和PQ的距离相等,且F在直线x=1上,∴k MN+k PQ=0,设D(1,m),由题意可知直线MN,PQ的斜率均存在且不为0,设直线MN的方程为y-m=k1(x-1),(k1≠0),由y−m=k1x−1,3x2+4y2=12,得412+3x2+(8k1m-8k2)x+412+4m2-8k1m-12=0,设M(x M,y M),N(x N,y N),则x M+x N=812−812,x M·x N=412+42-81-12412+3,又|DM|-1,D=1+12|x N-1|,|DM|·|DN|=(1+k12)|(x M-1)(x N-1)|=(1+k12)|x M x N-(x M+x N)+1|=1+12设直线PQ的方程为y-m=k2(x-1)(k2≠0),同理可得|DP|·|DQ|=1+22又k1=-k2,∴|DM|·|DN|=|DP|·|DQ|,故λ=1.所以存在这样的λ=1,使得|DM |·|DN |=λ|DP |·|DQ |.巩固训练2解析:由对称性可知当△OAB 为等边三角形时,A ,B 两点关于x 轴对称,当△OAB 为等边三角形时,△OAB |=12,由题意知点(12,43)在C 上,代入y 2=2px ,得(43)2=24p ,解得p =2,所以C 的标准方程为y 2=4x .解析:由(1)知F (1,0),根据题意可知直线AB 的斜率不为0,设直线AB 的方程为x =ky +m ,A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),联立x =ky +m ,y 2=4x ,得y 2-4ky -4m =0,所以Δ=16k 2+16m >0,即k 2+m >0,且y 1+y 2=4k ,y 1y 2=-4m ,所以x 1+x 2=k (y 1+y 2)+2m =4k 2+2m ,由PA +PB =4PF ,得(x 1-x 0,y 1-y 0)+(x 2-x 0,y 2-y 0)=4(1-x 0,-y 0),所以x 1+x 2−4=−2x 0,y 1+y 2=−2y 0,所以x 0=2−m −2k 2,y 0=−2k ,即P (2-m -2k 2,-2k ),又点P 在C 上,所以4k 2=4(2-m -2k 2),即3k 2+m =2,①所以k 2+m =k 2+2-3k 2=2(1-k 2)>0,解得-1<k <1,又点P 在第一象限,所以-2k >0,所以-1<k <0.又点P 到直线AB 的距离d 1+k 2,化简得m 2-2m =k 2,②联立①②解得m 13,k 或m 13k =(舍去),或m =2k =0(舍去).此时点P (79,直线AB 的方程为3x +7y +1=0.。

广东专用2024版高考数学总复习:圆锥曲线中的最值或范围问题课件

广东专用2024版高考数学总复习:圆锥曲线中的最值或范围问题课件
设 的面积为 ,所以 ,当且仅当 时等号成立,此时满足 .故 面积的最大值为 .
【点拨】求与直线或与圆锥曲线有关的某个量的取值范围问题,依据已知条件建立关于该量的函数表达式,转化为求函数值域问题,要正确确定定义域.应注意到的是本例第(1)问使用了判别式法求参数范围.
变式1 如图,在平面直角坐标系 中,已知等轴双曲线 的左顶点为 ,过右焦点 且垂直于 轴的直线与 交于 , 两点,若 的面积为 .
由 得 .因为点 为 与 的一个交点,所以 ,解得 .所以 .直线 的方程变形为 ,设原点到直线 的距离为 ,则 .所以 .
(方法一) .设 ,则 .所以
.因为 (当且仅当 时,等号成立).所以 面积的最大值为 .(方法二) .设 ,则 .所以 .
第八章 平面解析几何
综合突破五 圆锥曲线的综合问题第1课时 圆锥曲线中的最值或范围问题
核心考点 精准突破
课时作业 知能提升
规范答题——解析几何解答题
考点一 构造函数求最值或范围问题
例1 已知椭圆 上两个不同的点 , 关于直线 对称.
(1) 求实数 的取值范围;
解:如图,由题意知 ,可设直线 的方程为 , , .由
(2) 当点 在 轴上方时,过点 作 轴的垂线与 轴相交于点 ,设直线 与双曲线 相交于不同的两点 , ,若 ,求实数 的取值范围.
, ,又 ,所以 ,所以 (由题意取负),所以直线 的斜率为 .代入 式,得 ,所以 ,所以 ,又 ,所以 的取值范围为 .
【点拨】若题设中给出直线(曲线)与曲线有公共点或无公共点的条件时,可以通过联立消元,得到一元二次方程,进而用判别式法得到不等关系代入求范围.
[答案] (方法一)设切点 ,因为 ,所以 ,则在点 处的切线方程为 ,化简得 ,令 ,得 .

高考数学复习知识点讲解教案第54讲 圆锥曲线热点问题-第2课时 定点、定值、探索性问题

高考数学复习知识点讲解教案第54讲 圆锥曲线热点问题-第2课时 定点、定值、探索性问题

设直线: = − 4 + 2 ≠ 0 ,由ቐ 2
4
2

− [ − 4 +
∵ 1 ,2
2
2
为方程
2
2] −4
2
2] −4
∴ − [ − 4 + 2] −4 = 1 −

2
0
2
= 1,
= 0,
− [ − 4 +
2

பைடு நூலகம்
2
4
2
− [ 0 − 4 + 2] −4 = 1 −
1
− ,为定值.
3
=
1
− ,
3
=
1 −1 2 +2 + 2 −1 1 +2
1 2 +2 1 +2 +4
=
[总结反思]
圆锥曲线中的定值问题的常见类型及解题策略:
(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式、
化简即可得出定值.
(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利
−8 2+
2 =
3 2 +4
8 2+2− 2
1 +
,
所以൞
1 2 =
31
2
3 2 +4
,
且1 2 + 2 1 =
,
+ 3, 1 ,则 31 + 6 − 1 , 1 ,
则直线的方程为 − 2 =
1 −2
31 +6−1 −2
− 2 ,
−24
等式恒成立.此时要将关于与,的等式进行变形,直至易于找到0 ,0 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习课:圆锥曲线
1. 一定要重视椭圆、双曲线、抛物线(注:抛物线只有一个定义)第一定义,有很多题可以转化为定义去做。

例如:
(1) 求与圆49)5(2
2=++y x 和圆1)5(22=+-y x 相切的点的轨迹方程
(2) 求与圆49)5(2
2=++y x 相切且过点(5,0)的点的
轨迹方程 (3) 21,F F 是双曲线)0,0(122
22>>=-b a b
y a x 的左、右焦点,M ,N 是左、右顶点,P 是双曲线上的一点,且
21F PF ∆的内切圆与21F F 切于点T.求T 的坐标
(4) 试在抛物线x y 42
=上找一点P ,使其到焦点F 的距离
与到A (2,1)的距离之和最小。

求该点坐标
2. 一定要重视椭圆、双曲线、抛物线(注:抛物线只有一个定义)第二定义: (1)已知椭圆15
292=+y x 内有一点A (1,1),21,F F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1)求1PF PA +的最大值、最小值及对应的点P 坐标(2)求22
3PF PA +的最小值及对应的点P 的坐标
(2)推导椭圆、双曲线、抛物线的焦半径公式非常方便
(3)特别重视抛物线的定义:①(1)AB 为抛物线2
x y =上的动弦,且
|AB|=a (a 为常数,且1≥a ),求弦AB 中点M 离准线最近的距离
(2)在(1)中如把1≥a 改成0<a<1,问问题有如何解答? ② 一条直线l 经过抛物线)0(42>=p px y 的焦点F 与抛物线交于
P 、Q 两点,过P 、Q 点分别向准线引垂线PR 、QS ,垂足为R 、S ,如果|PF|=a ,|QF|=b ,M 为RS 的中点.求||MF|的值
3. 圆锥曲线的标准方程及其性质:
(1) 圆锥曲线的标准方程及其简单的几何性质一定要非常的熟
悉.一般方程、椭圆系方程、(122
22=-+-k
b y k a x ,(0,0,02
2>->->>k b k a b a )焦点相同)共轭双曲线(1,122222222=-=-a
x b y b y a x )、以直线x a b y -+=为渐近线的双曲线系方程()0(22
22≠=-m m b
y a x ) (2) 要会描述非标准位置的圆锥曲线:①给你一个非标准位置的圆
锥曲线,你能说出它的焦点、顶点坐标,准线方程,以及能进
一步地求出它的离心率(曲线01368342
2=+---y x y x
的焦点、顶点坐标、准线方程)
②能写出平移后的非标准位置圆锥曲线方程(把抛物线042=--y x y 按向量→
a 平移,使其焦点与椭圆
116)1(25)1(2
2=++-y x 的右焦点重合,求向量→a ) (3) 圆锥曲线的参数方程在解决最值方面有独特的应用
(4) 求圆锥曲线方程是经常考查的一个很重要的方面(推广一下就
是求点的轨迹方程问题),方法:选形式、定系数
4. 直线与圆锥曲线的位置关系:(在这里我们把圆包括进来)
1. 首先会判断直线与圆锥曲线是相交、相切、还是相离的
①直线与圆:一般用点到直线的距离跟圆的半径相比
②直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离
③直线与双曲线、抛物线有自己的特殊性
2. ①求弦所在的直线方程
②根据其它条件求圆锥曲线方程
3. 已知一点A 坐标,一直线与圆锥曲线交于两点P 、Q ,且中点为
A ,求P 、Q 所在的直线方程
4. 已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某
个值的取值范围(或者是圆锥曲线上否存在两点关于直线对称) ● 椭圆、双曲线、抛物线着三种曲线有许多共性,也有许多不同之处,
既要记住它们的共同指出也要分清它们各自的特点
● 抛物线独有的性质:
例1:过抛物线焦点F 的直线与抛物线)0(22>=p px y 交于两点
),(),(2211y x B y x A ,且A 、B 在准线上的射影分别为C 、D ,则2212
214p y y p x x -=⋅=⋅,
p DF CF CFD 21||190=+=∠
例2:过抛物线)0(22>=p px
y 的顶点,任意作两条相互垂直的弦0A 、0B (1)求证:AB 交抛物线对称轴上一定点(2)求A 、B 中点轨迹方程
● 求椭圆、双曲线的离心率是经常考查的知识点
● 注重基础知识、基本方法、基本技能,看书本→把笔记、质量监测弄
懂、弄透即可。

相关文档
最新文档