圆周运动实例分析

合集下载

圆周运动的实例分析

圆周运动的实例分析

物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0

R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反

圆周运动的实例分析

圆周运动的实例分析

圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。

它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。

本文将通过分析两个具体实例来说明圆周运动的特点和应用。

实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。

车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。

根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。

当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。

相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。

这种以车轮为例的圆周运动,为我们提供了便利的交通工具。

实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。

这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。

地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。

地球公转的周期是365.24天,也就是一年的长度。

这个周期的长短决定了季节的变化和地球上生物的繁衍。

除了以上两个实例,圆周运动还广泛应用于其他领域。

例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。

这些旋转运动都是圆周运动的实例。

在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。

球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。

总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。

不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。

圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。

6.4圆周运动的实例分析1(火车转弯)

6.4圆周运动的实例分析1(火车转弯)
c大. 当于火火车车行转驶弯速所度需V的<向V0心时力,重,火力车与力.
N
向心 F力
G
火车弯道内低外高,这样的设计有什么道理?
1.铁路弯道的特点:弯道处外轨 略高于 内轨
2.火车转弯时铁轨对火车的支持力不是竖直向 上的,而是斜向弯道的 内侧 .支持力与重力的 合力指向 圆心 .
火车质量为m在倾角为θ、半径为r的轨道上转 弯时,若铁轨不受侧向压力,求此时火车的 这个速度多大?
mgtan m v2
第4节 生活中的圆周运动
实例一:旋转秋千
1、“旋转秋千”中揽绳跟中心 轴的夹角与哪些因素有关? 2、体重不同的人做在秋千上旋 转时,揽绳与中心轴的夹角相 同吗?

F合
mg
实例二:火车转弯
在铁道弯道处,稍微留意一下, 就能发现内、外轨道的高度略 有不同。你能解释其中的原因 吗?
一、火车转弯
如果轨道高度相同,火车转弯向心力谁来提供? 如果铁道弯道的内外轨一样高,火车转弯时, 由外轨对轮缘的弹力提供向心力,由于质量太 大,因此需要很大的向心力,靠这种方法得到 向心力,不仅铁轨和车轮极易受损,还可能使 火车侧翻.
r
v gr tan
高速公路转弯处和场地自行车比赛的赛道,路 面往往有一定的倾斜度。说说这样设计的原因。
拓展:改变速度
讨论:
a. 当火车转弯所需的向心力完全由重力 与轨道对它的支持力的合力提供时,轮 缘与内外轨均无测向压力,此时火车行 使的速度称为理想行驶速度V0.
F = mV20/R.
b. 当火车行驶速度V> V0 时,重力与支持 的合力不足以提供火车转弯所需的向心 力,火车轮缘与外轨相互挤压,外轨对轮缘 有测向压力.

匀速圆周运动实例分析

匀速圆周运动实例分析

18
第19页/共31页
【例题1】如图所示,一质量为m=2kg的小球,在半径大小
为R=1.6m的轻绳子作用下在竖直平面内做圆周运动。
(1)小球恰好经过最高点的速度V2=?此时最低点要给 多大的初速度V1=?(2)若在最低点的速度V1=10m/s, 则在最高点绳的拉力为多大?
T
解:(1)依题意得,物体恰好经过最高点,mg提供做
3、汽车过凹形桥时,车对桥的压力大于 自身重力。此时汽车处于超重状态。
3
第4页/共31页
例一 、当汽车通过桥面粗糙的拱形桥顶时拱形桥顶的速度为10m/s
时,车对桥顶的压力为车重的3/4,如果汽车行驶至该桥顶时刚好不
受摩擦力作用,则汽车通过桥顶时速度应为 ( B )
A、25m/s
B、20m/s
C、15m/s
离心运动本质: (1)离心现象的本质是物体惯性的表现。 (2)离心运动是物体逐渐远离圆心的一 种物理现象。
15
第16页/共31页
离心运动的应用:
1、洗衣机脱水桶
原理:利用离心运动把附 着在衣物上的水分甩掉。
解释当:脱水桶快速转动时,
衣物对水的附着力F不足以
ν
提供水随衣服转动所需的向 心力 F,于是水滴做离心运 动,穿过网孔,飞到脱水桶
一、汽车过拱形桥
在各种公路上拱形桥是常 见的,质量为m的汽车在 拱桥上以速度v前进,桥 面的圆弧半径为R,分析 汽车通过桥的最高点时对 桥面的压力。
问题:汽车通过桥顶时重力G和支持 力N相等吗,为什么?
1
第2页/共31页
分析:
1、当汽车在桥面上运动到最高点时,重力G和桥的支持 力N在一条直线上,它们的合力是使汽车做圆周运动的向 心力F向。

圆周运动的实例分析

圆周运动的实例分析

F NG圆周运动实例分析一、变速圆周运动1.速度特点:速度的_______都变化的圆周运动.2.受力特点:合力方向______圆心,合力________(是或不是)向心力. 3.合力的作用(1)合力沿速度方向的分量F t 产生切向加速度,F t =ma t ,它只改变速度的_______. (2)合力沿半径方向的分量F n 产生向心加速度,F n =ma n ,它只改变速度的________.(3)F 合与v 夹角θ大于90°时,速率变________,当F 合与v 夹角θ小于90°时,速率变________. 【提示】 (1)当合力F 合指向圆心时(F t =0),F 合即为向心力F n ,故匀速圆周运动是变速圆周运动的特例. (2)对变速圆周运动,向心力是合力沿半径方向的分力,即F 向=F n =m v 2R =mω2R ,此时F 合≠m v 2R ≠mω2R .二、离心运动和向心运动 1.离心运动(1)定义:做圆周运动的物体,在所受合外力突然消失(F 合=0)或不足以提供圆周运动________的情况下,就做逐渐远离圆心的运动.(2)本质:做圆周运动的物体,由于本身的惯性,总有沿着________飞出去的倾向. (3)受力特点:(F 为合外力提供的向心力) 当F =_______时,物体做匀速圆周运动; 当F =0时,物体沿_______飞出;当F <________时,物体逐渐远离圆心.如图所示. 2.向心运动当提供向心力大于做圆周运动所需向心力时,即F >mrω2,物体渐渐________.如图所示. 三、圆周运动实例分析1、分析步骤: 1 确定圆周平面 2 确定圆心 3 受力分析4 明确向心力来源5 依据两个动力学方程写表达式6 运用必要的数学知识 2、汽车过凸形桥和凹形桥如图1所示,汽车受到重力G 和支持力F N ,合力提供汽车过桥所需的向心力。

假设汽车过桥的速度为v ,质量为m ,桥的半径为r ,rmv F G N 2=-。

高中物理必修二第二章圆周运动2.3圆周运动的实例分析(共13张)

高中物理必修二第二章圆周运动2.3圆周运动的实例分析(共13张)
3、应用与防止
【典例1】 如图所示,质量m=2.0×104 kg的汽车 以不变的速率先后驶过凹形桥面和凸形桥面,两 桥面的圆弧半径均为20 m.如果桥面承受的压力 不得超过3.0×105 N,则: (1)汽车允许的最大速度是多少? (2)若以所求速度行驶,汽车对桥面的最小压力是 多少?(g取10 m/s2)
mg tan m 2r
αl
T
r l sin
解得:
g
l cos
O rF
mg
cos g l 2
夹角与角速度和绳长有关,而与所乘坐的人体重无关
三、火车转弯
轮缘
问题3:火车在转弯时,若内外轨是相平的,铁 轨如何对火车提供水平方向的向心力?
外轨对轮缘的弹力为火车转
FN
弯提供向心力
设计方案有什么不足呢?
G F弹
优化方案
FN
F
外侧
mg
θ
内侧
例题:某铁路转弯处的圆弧半径是300m,两铁轨 之间的距离是1.435m。若规定火车通过这个弯道 的速度是72km/h,则内外铁轨的高度差应该是多 大才能使火车转弯是内外铁轨均不受轮缘的挤压?
解:对火车分析
mg tan m v2
R
解得:tan v2
【典例2】 在公路转弯处,常采用外高内低的斜面 式弯道,这样可以使车辆经过弯道时不必大幅减速, 从而提高通行能力且节约燃料.若某处有这样的弯 道,其半径为r=100 m,路面倾角为θ ,且tan θ =0.4,取g=10 m/s2. (1)求汽车的最佳通过速度,即不出现侧向摩擦力 时的速度. (2)若弯道处侧向动摩擦因数μ =0.5,且最大静摩 擦力等于滑动摩擦力,求汽车的最大速度.
gR

【原创】第3节 圆周运动实例分析(分类精析)

【原创】第3节 圆周运动实例分析(分类精析)

旋转秋千(1)
问题:“旋转秋千”中的缆绳跟中心轴的夹 角与哪些因素有关?
旋转秋千(2)

分析见后页
分析:小球做圆锥摆时细绳长l,与竖直方向成α角,求 小球做匀速圆周运动的角速度ω。 解:小球受力: 竖直向下的重力G 沿绳方向的拉力T
αl
T O
小球的向心力:由 T 和 G 的合力提供
F合 mg tan
思维拓展
v
思考与讨论 地球可以看做一个巨大的拱形桥。汽车 沿南北行驶,不断加速。请思考: (1)会不会出现这样的情况:速度大到一 定程度时,地面对车的支持力是0? (2)此时汽车处于什么状态? (3)驾驶员与座椅间的压力是多少? (4)驾驶员躯体各部分间的压力是多少? (5)驾驶员此时可能有什么感觉?
汽车通过不同曲面的问题分析
一辆质量m=2.0 t的小轿车,驶过半径R=90 m 的一段圆弧形桥面,g取10m/s2 ,求: (1)若桥面为凹形,汽车以20m/s的速度 通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以10m/s的速度 通过桥面最高点时,对桥面压力是多大? (3)汽车以多大速度通过凸形桥面顶点时, 对桥面刚好没有压力?

火车拐弯问题分析(1)
火车拐弯问题分析(2)
(1)内外轨道一样高
N
(2)外轨高于内轨
N
F
G G
两种情况下向心力分别由谁提供?
火车拐弯问题分析 (3) 当外轨略高于内轨时
F合=F向
v mg tan m r
2

h
G
பைடு நூலகம்
N
F
v gr tan

火车拐弯的理想速度值是多少?
火车拐弯问题分析(4)

高三物理圆周运动实例分析试题答案及解析

高三物理圆周运动实例分析试题答案及解析

高三物理圆周运动实例分析试题答案及解析1.如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F一v2图象如图乙所示。

不计空气阻力,则A.小球的质量为B.当地的重力加速度大小为C.v2=c时,杆对小球的弹力方向向下D.v2=2b时,小球受到的弹力与重力大小不相等【答案】AC【解析】A、在最高点,若v=0,则N=mg=a;若N=0,则,解得,,故A正确,B错误;C、由图可知:当v2<b时,杆对小球弹力方向向上,当v2>b时,杆对小球弹力方向向下,所以当v2=c时,杆对小球弹力方向向下,所以小球对杆的弹力方向向上,故C正确;D、若c=2b.则,解得N=a=mg,故D错误.【考点】圆周运动及牛顿定律的应用。

2.如图所示,质量M=2kg的滑块套在光滑的水平轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于="4" m/s,g取10m/s2。

水平状态,现给小球一个竖直向上的初速度v(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向。

(2)若解除对滑块的锁定,试求小球通过最高点时的速度大小。

(3)在满足(2)的条件下,试求小球击中滑块右侧轨道位置点与小球起始位置点间的距离。

【答案】(1)2N(2)2m/s(3)【解析】(1)设小球能通过最高点,且此时的速度为,在上升过程中,因只有重力做功,小球的机械能守恒。

则①②设小球到达最高点时,轻杆对小球的作用力为F,方向向下,则③由②③式,得④由牛顿第三定律可知,小球对轻杆的作用力大小为,方向竖直向上。

(2)解除锁定后,设小球通过最高点时的速度为,此时滑块的速度为V。

在上升过程中,因系统在水平方向不受外力作用,水平方向的动量守恒。

以水平向右的方向为正方向,有⑤在上升过程中,因只有重力做功,系统的机械能守恒,则⑥由⑤⑥式,得⑦(3)设小球击中滑块右侧轨道的位置点与小球起始位置点间的距离为,滑块向左移动的距离为,任意时刻小球的水平速度大小为,滑块的速度大小为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由G和N的合力提供
α
G
【例题1】火车铁轨转弯处外轨略高于内轨的原因是( BD)
A.为了使火车转弯时外轨对于轮缘的压力提供圆周运 动的向心力
B.为了使火车转弯时的向心力由重力和铁轨对车的弹 力的合力提供
C.以防列车倾倒造成翻车事故 D.为了减小火车轮缘与外轨的压力
(3)什么情况下可以使铁轨和轨缘之间的挤压
N
v2
v2
F合 N mg m R
N mg m R
mg
随V的增大,N如何变化?N逐渐增大
拓展:汽车以恒定的速率v通过半径为r的凹型桥面,如图 所示,求汽车在最底部时对桥面的压力是多少?
解:汽车通过底部时,受力情况如图。
N
由牛顿第二定律:
N - mg = m v2 r
N = m(g + v2 ) r
匀 速圆 周运动 实例分析
水平面内的匀速圆周运动
一、水平面内匀速圆周运动
1、圆锥摆: 2、火车转弯: 3、汽车转弯:
讨论小球做圆锥摆运动时所需的向心力
F拉
l
F向
mg
r l sin F向 mg tan
F向 mg tan
F向

mg
tan
1、铁轨
讨论火车转弯时所需向心力
2、轮对结构
H
L
当火车转弯时的速率等于V规定(临界速度)时, 内、外轨道对车轮(轮缘)都没有侧压力
当火车转弯时的速率小于V规定(临界速度)时,内 轨道对车轮(轮缘)有侧压力
当火车转弯时的速率大于V规定(临界速度)时, 外轨道对车轮(轮缘)有侧压力
1、水平路面上:
【例题2】汽车在半径为r的水平弯道上转弯,如果汽车与 地面的动摩擦因数为μ,那么汽车不发生侧滑的最大速率 是多大?
在C点:N

mg

m
v2 C
R
在B点:N

m
v2 B
R
O
质点被一轻杆拉着在 竖直面内做圆周运动
小球经过最低点的时候杆对小 球的拉力为多少?
T
T - mg = m v2
R
mg
v2
T = m(g + )
R
过最高点的最小速度是多大? V=0
F
小球以速度V经过最高点的时候杆
mg
对小球的拉力为多少?
v2 F + mg = m
小球,以O点为圆心,在竖直平面内做圆周运动,如图所
示,小球通过最高点时的速度为2m/s,取g=10m/s2,则
此时轻杆OA将( B ) A.受到6.0N的拉力
N
mA
B.受到6.0N的压力
mg
C.受到24N的拉力
O
D.受到54N的拉力
小结:
• 解决圆周运动问题关键在于找出向心力的 来源.
• 向心力公式、向心加速度公式虽然是从匀 速圆周运动这一特例得出,但它同样适用 于变速圆周运动.
【例题1】用一轻杆栓着质量为m的物体,在竖直平面内做 圆周运动,则下列说法正确的是( A 、)B、D
A.小球过最高点时,杆子的张力可以为零
B.小球过最高点时的最小速度为零
C.小球刚好过最高点是的速度是 gR
D.小球过最高点时,杆子对小球的作用力可以与球所受的 重力方向相反
R
【例题1】长度为0.5m的轻质细杆,A端有一质量为3kg的
v2 N mg m
R
mg
随V的增大,N如何变化?N逐渐减少
当汽车速度多大时,N=0,此时汽车会如何运动?
v gR (临界速度) N 0
当v gR时汽车离开拱桥做平抛 运动
当V=0 N=mg
例一、质量为m的汽车以恒定的速率v通过半径为
r的拱桥,如图所示,求汽车在桥顶时对路面的压力是
消失呢?
N
h是内外轨高度差,

L是轨距
h
L
注意这时的向心
F 力是水平的

G
F=mgtanα≈mgsinα=mgh/L
mg h = m v02 LR
v0 =
= m v02 R
Rgh L
Rgh v0 = L
在实际中,铁轨修好之后h、R、 L一定,又g是定值,所以火车拐弯 时的车速是一定值
(4)当火车行驶速率v>v0时,
N
汽车转弯时规定速度应是多大?
α
Fn
m g
竖直平面内的变速圆周运动
1、竖直平面内圆周运动的类型: (1)、拱形桥问题:
(2)、轻杆支撑型的圆周运动: (3)、轻绳牵拉型的圆周圆心在无穷远处 mg
F向心

mg

N

m
v2 R

0
N= mg
N
v2 F合 mg N m R
半径方向受到的摩擦力分别为f甲和f乙。以下说法正确的是
(A )
A.f甲小于f乙 B.f甲等于f乙 C.f甲大于f乙 D.f甲和f乙大小均与汽车速率无关
摩托车过弯道
2、倾斜路面上:
所以汽车在转弯的地方,路面也是外高内 低,靠合力提供向心力。
【例题1】如图所示,公路转弯处路面跟水平面之间的倾角
α=150,弯道半径R=40m,求:
3、内外轨道一样高时:
直道行使时,火车受力情况:重力、铁轨的支持力、机车 的牵引力、空气及铁轨的阻力。轮缘并不与铁轨相互作用。
在水平弯道上转弯时,
向心力 F 由外侧轨道对外轮轮缘
N
的压力提供
根据牛顿第二定律F=m V2 可知
N
R
火车质量很大
外轨对轮缘的弹力很大
G
外轨和外轮之间的磨损大, 铁轨容易受到损坏
T
解:(1)依题意得,物体恰好经过最高点,mg提供做
mg
向心力。mg=m v22 R
,v 2
=
gR = 4m / s
O T
根据机械能守恒得:1 2
mv12
=
1 2
mv22
+
mg 2R
得:V 1
=
4
5m / s
mg
(2)若在最低点V1=10m / s,则根据机械能守恒得:
1 2
mv12
=
1 2
mv22
多少?
N
解:汽车通过桥顶时,受力情况如图。
h
汽车通过桥顶时:
由牛顿第二定律:
mg N m v2 r
N m(g v2 )
FN’
G
r
r
由牛顿第三定律:
O
N / N m(g v2 )
r
注意:汽车过N桥' =的速N度=不m得(太g大- ,否v2则rN)’将消失,汽车将飞离桥面.
例题3、质量是1×103kg的汽车驶过一座拱桥,已 知桥顶点桥面的圆弧半径是90m,g=10m/s2。 求: (1 )汽车以15 m/s的速度驶过桥顶时,汽车对桥 面的压力; (2) 汽车以多大的速度驶过桥顶时,汽车对桥面 的压力为零?
R
R
v2 F = m - mg
R
过最高点的速度VO为多大时?杆对球的作用力消失
当v0 = gR,N = 0
当v < v0时,F<0,杆对物有向上的支持力.
当v > v0时, F > 0杆对物有向下的拉力.
·O
质点在竖直放置的光 滑细管内做圆周运动
总结:
(1)V=0是小球是否过最高点的临界条件。 (2)v = gR是拉力还是推力的临界条件。 V> gR是拉力 V < gR是推力
+
mg 2 R
V2 = 6m / s
由向心力公式得:T+mg=m v22 R
T = 25N
A
A
在A点
:
mg

N

m
v
2 A
R
D
(1)当N 0, v Rg (临界速度)
N
mg
B
NN
(2)当N 0, v Rg , N m v2 mg
C
R
mg
(3)当v gR时,物体离开圆轨道做曲线 运动
N/
=
N
=
m(g +
v2 )
r
h
G
N’
小节:此问题中出现的汽车对桥面的 压力大于或小于车重的现象,是发生 在圆周运动中的超重或失重现象
质量为m的汽车以速度V通过半径为R的凹型桥。它经桥 的最低点时对桥的压力为多大?比汽车的重量大还是小? 速度越大压力越大还是越小?
解: 根据牛顿第二定律
F向=N1
G =m
V2 R
R
N1
=m
V2 R
+G
由上式和牛顿第三定律可知
O
N1
V
( 1 )汽车对桥的压力N1´= N1
G
(2)汽车的速度越大
汽车对桥的压力越大
比较三种桥面受力的情况
N
v2
N = G- m
G
r
N
v2 N = G+ m
r
G N
N=G
G
·O
质点在细绳作用下在竖 直面内做圆周运动
最高点:mg T m v2
v2 umg = m
r
v = ugr
汽车在水平路面转弯做圆周运动时,也需 要向心力,问这个向心力由什么力提供的?
是由地面给的静摩擦力提供向心力的。
【例题1】在水平面上转弯的汽车,向心力是( B )
A、重力和支持力的合力 B、静摩檫力 C、滑动摩檫力 D、重力、支持力和牵引力的合力
【例题3】汽车甲和汽车乙质量相等,以相等的速率沿同 一水平弯道做匀速圆周运动,甲车在乙车的外侧。两车沿
相关文档
最新文档