圆弧圆柱蜗杆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆弧圆柱蜗杆(ZC蜗杆)传动是一种非直纹面圆柱蜗杆,在中间平面上蜗杆的齿廓为凹圆弧,与之相配的涡轮齿廓为凸圆弧,如图7-6所示。
这种蜗杆的传动特点是:
a.蜗杆与蜗轮两共轭齿面是凹凸啮合,增大了综合曲率半径,因而单位齿面接触应力减小,接触强度得以提高。
b.瞬时啮合时的接触线方向与相对滑动速度方向的夹角(润滑角)大,易于形成和保持共轭齿面间的动压油膜,使摩擦系数减小,齿面磨损小,传动效率可达95%以上。
c.在蜗杆强度不削弱的情况下,能增大涡轮的齿根厚度,使涡轮轮齿的弯曲强度增大。
d.传动比范围大(最大可以达到100),制造工艺简单,重量轻。
e.传动中心距难以调整,对中心距误差的敏感性强。
§7.2 普通圆柱蜗杆传动的主要参数和几何尺寸
如图6-1所示,在中间平面上,普通圆柱蜗杆传动就相当于齿条与齿轮的啮合传动。故此,在设计蜗杆传动
时,均取中间平面上的参数(如模数、压力角)和尺寸(如齿顶圆、分度圆等)为基准,并沿用齿轮传动的计算关系,其主要依据是国家标准GB10087-88和GB10088-88。
一、普通圆柱蜗杆传动的主要参数及选择
普通圆柱蜗杆传动的主要参数有:模数m、压力角 a 、蜗杆头数z1和涡轮齿数z2及蜗杆的直径d1 等。进行蜗杆传动设计时,首先要正确地选择参数。这些参数之间是相互联系地,不能孤立地去确定,而应该根据蜗杆传动地工作条件和加工条件,考虑参数之间地相互影响,综合分析,合理选定。
1、模数m和压力角
蜗杆传动的尺寸计算与齿轮传动一样,也是以模数m作为计算的主要参数。在中
间平面内蜗杆传动相当于齿轮和齿条传动,蜗杆的轴向模数和轴向压力角分别与涡轮的端面模数和端面压力角相等,为此将此平面内的模数和压力角规定为标准值,标准模数见书中所附表格,标准压力角为 a =20° 。
2、蜗杆的分度圆直径d1
在蜗杆传动中,为了保证蜗杆与配对蜗轮的正确啮合,常用与蜗杆相同尺寸的蜗轮滚刀来加工与其配对的涡轮。这样,只要有一种尺寸的蜗杆,就需要一种对应的涡轮滚刀。对同一模数,可以有很多不同直径的蜗杆,因而对每一模数就要配备很多蜗轮滚刀。显然,这样很不经济。
为了限制涡轮滚刀的数目及便于滚刀的标准化,就对每一标准模数规定了一定数量的蜗杆分度圆直径d1 ,而把比值 称为蜗杆直径系数。 由于d1与m 均已取为标准值,故q 就不是整数,见表格所示。
3、蜗杆头数z1
蜗杆头数z1可根据要求的传动比和效率来选定。单头蜗杆传动的传动比可以较大,但效率较低。如果要提高效率,应增加蜗杆的头数。但蜗杆头数过多,又会给加工带来困难。所以,通常蜗杆头数取为1、2、4、6。
4、导程角γ
蜗杆的直径系数q 和蜗杆头数z1选定之后,蜗杆分度圆柱上的导程角γ也就确定了,如图7-8所示。
显然有:
其中: Pz 为蜗杆的导程,Pa 为蜗杆的轴向齿距
由上面的公式
m d q 1
可知,当m 一定时,q 增大,则d1变大,蜗杆的刚度给强度相应提高,因此m 较小时,q 选较大值;又因为q 取小值时,γ增大,效率随之提高,故在蜗杆刚度允许的情况下,应尽可能选小的q 值。
5、传动比和齿数比u
通常蜗杆为主动件,蜗杆与蜗轮之间的传动比为i
其中:z2为蜗轮的齿数
6、蜗杆传动的标准中心距
设计普通圆柱蜗杆减速装置时,在按接触强度或弯曲强度确定了中心距之后,再进行蜗杆蜗轮参数的配置
7、蜗杆传动的正确啮合条件
从上述可知,蜗杆传动的正确啮合条件为:蜗杆的轴向模数与蜗轮的端面模数必须相等;蜗杆的轴向压力角与蜗轮的端面压力角必须相等;两轴线交错90°时,蜗杆分度圆柱的导程角与蜗轮分度圆柱螺旋角等值且方向相同。
★选择蜗杆头数z1时,主要考虑传动比、效率和制造三个方面。从制造方面看,头数越多,蜗杆的制造精度要求越高;从提高效率方面看,头数越多,效率越高;若要求自锁,应选择单头;从提高传动效比出发,也应该选择较少的头数。换言之,如果要求传动比一定,z1较少,则z2也较少,这样蜗杆传动结构就紧凑。因此,在选择z1和z2时要全面分析上述因素。
一般来说,在动力传动中,在考虑结构紧凑的前提下,应很好的考虑提高效率。所以,当传动比较小时,宜采用多头蜗杆,而在传递运动要求自锁时,常选用单头蜗杆。通常推荐采用值:当
I =8~14时,选z1=4; i =16~28时,选z1=2; i =30~80时,选z1=1;
★为了避免加工蜗轮时产生根切,当z1=1时,选z2≥17;当z1=2时,选z2≥27。对于动力传动,为保证传动的平稳性,选z2≥28,一般取z2=32~63为宜。蜗轮直径越大,蜗杆越长时,则蜗杆刚度小而易于变形,故z2≤80为宜。对于分度机构,传动比和齿数不受此限制。
★必须指出:蜗杆传动的传动比不等于蜗轮蜗杆的直径之比,也不等于蜗杆与蜗轮的分度圆直径之比。
★一般圆柱蜗杆传动减速装置的传动比的公称值按下列选择:5、7.5、10、12.5、15、20、25、30、40、50、60、70、80。其中10、20、40和80为基本传动比,应优先选用。
二、普通圆柱蜗杆传动的主要参数及选择
其几何尺寸按教材上表格中列出公式进行计算。同学们下去要认真熟悉公式。 为了便于组织生产,减少箱体尺寸规格,有利于标准化、系列化,GB10085-88中对一般蜗杆传动减速装置的中心距a (mm )推荐如下系列:
q z d m z d m z d p z d p a z 11111111tan =====ππππγm z q d d a )(21)(21221+=+=
40、50、63、80、100、125、160、(180)、220、(225)、250、(280)、315、(335)、400、(450)、500
注:括号内尺寸尽量不用
§7.3蜗杆传动的强度计算与设计
一.蜗杆传动的失效形式、设计准则及材料选择
1、失效形式
和齿轮传动一样,蜗杆传动的失效形式主要有:胶合、磨损、疲劳点蚀和轮齿折断等。由于蜗杆传动啮合面间的相对滑动速度较大,效率低,发热量大,再润滑和散热不良时,胶合和磨损为主要失效形式。
2、设计准则
由于蜗轮无论在材料的强度和结构方面均较蜗杆弱,所以失效多发生在蜗轮轮齿上,设计时只需要对蜗轮进行承载能力计算。由于目前对胶合与磨损的计算还缺乏适当的方法和数据,因而还是按照齿轮传动中弯曲和接触疲劳强度进行。蜗杆传动的设计准则为:闭式蜗杆传动按蜗轮轮齿的齿面接触疲劳强度进行设计计算,按齿根弯曲疲劳强度校核,并进行热平衡验算;开式蜗杆传动,按保证齿根弯曲疲劳强度进行设计。
3、蜗杆和蜗轮材料的选择
由失效形式知道,蜗杆、蜗轮的材料不仅要求有足够的强度,更重要的是具有良好的磨合(跑合)、减磨性、耐磨性和抗胶合能力等。
常用的材料可以看书上表中给出的材料。
一般来说:蜗杆一般是用碳钢或合金钢制成。高速重载蜗杆常用15Cr 或20Cr 、20CrMnTi 等,并经渗碳淬火;也可以40、45或40Cr 并经淬火。这样可以提高表面硬度,增加耐磨性。通常要求蜗杆淬火后的硬度为40~55HRC ,经氮化处理后的硬度为55 ~62HRC 。一般不太重要的低速中载的蜗杆,可采用40、45钢,并经调质处理,其硬度为220~300HBS 。 常用的蜗轮材料为铸造锡青铜(ZCuSn10P1、ZCuSn5Pb5Zn5),铸造铝铁青铜(ZCuAl1010Fe3)及灰铸铁(HT150、HT200)等。锡青铜耐磨性最好,但价格较高,用于滑动速度大于3m/s 的重要传动;铝铁青铜的耐磨性较锡青铜差一些,但价格便宜,一般用于滑动速度小于4m/s 的传动;如果滑动速度不高(小于2m/s ),对效率要求也不高时,可以采用灰铸铁。为了防止变形,常对蜗轮进行时效处理。
相对滑动速度为:
5、蜗杆传动精度等级的选择
圆柱蜗杆传动在GB10089-88中规定了12个精度等级,1级精度最高,12级精度最低。对于动力蜗杆传动,一般选用6~9级。
γ
cos 1
2221v v v v s =+=