新人教版初二年级数学下册期中辅导题

合集下载

新人教版八年级数学下册期中考试卷及答案【A4打印版】

新人教版八年级数学下册期中考试卷及答案【A4打印版】

新人教版八年级数学下册期中考试卷及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a3a+=﹣a3a+,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣3 2.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2 5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为()A.-1 B.1 C.2 D.37.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.21273=___________.3.因式分解:a3﹣2a2b+ab2=________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、D5、B6、A7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-23、a (a ﹣b )2.4、()()2a b a b++.5、36、8三、解答题(本大题共6小题,共72分)1、4x=2、11a-,1.3、(1)12b-≤≤;(2)24、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、(1)略(2)等腰三角形,理由略6、(1)2元;(2)至少购进玫瑰200枝.。

人教版数学八年级下册《期中考试试卷》附答案

人教版数学八年级下册《期中考试试卷》附答案

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1. 如下图是一次函数y=kx+b图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-12. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x15. 某一次函数的图象经过点()1,2,且y随x的增大而减小,则这个函数的表达式可能是()A 24y x =+ B. 24y x =-+ C. 31y x D. 31y x -=-6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=17. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 58. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( )A. 丁B. 丙C. 乙D. 甲9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是( )A. 10和7B. 5和7C. 6和7D. 5和610. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是911. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是( ).A. 5,5B. 5,6C. 6,6D. 6,512. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大二.填空题13. 对于正比例函数23m y mx -=,y 的值随x 的值减小而减小,则m 的值为_______.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数 3 4 5 6人数20 15 10 5那么这50名学生平均每人植树__________棵.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;x 时,求y的值.(2)当322. 如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10 9 8 8 10 9乙10 10 8 10 7 9根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.26. 某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?答案与解析一.选择题1. 如下图是一次函数y=kx+b的图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-1[答案]C[解析]分析:本题利用一次函数的图像和性质得出结论即可.解析:通过图像,可知函数经过( -1,-2 ),( 3,1),图像的性质可以看出y随x的增大而增大∴当y<-2时,x<-1. 故选C.点睛:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.[答案]B[解析][分析]根据图象分别确定的取值范围,若有公共部分,则有可能;否则不可能.[详解]根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.[点睛]本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.[答案]B[解析]试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x1[答案]D[解析][分析]由k=-1<0,可得出y随x的增大而减小,再根据y1<y2<y3,即可得出x1>x2>x3.[详解]解:∵一次函数y=﹣x﹣1中k=﹣1<0,∴y随x的增大而减小,又∵y1<y2<y3,∴x1>x2>x3.故选:D .[点睛]本题考查了一次函数的性质,根据k <0找出y 随x 的增大而减小是解题的关键.5. 某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A. 24y x =+B. 24y x =-+C. 31y xD. 31y x -=-[答案]B[解析][分析]设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.[详解]设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴0k <,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .[点睛]本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=1[答案]A[解析][分析]直接利用一次函数的定义分析得出答案.[详解]解:∵一次函数y=(m-2)x n-1+3是关于x的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A.[点睛]此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.7. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 5[答案]B[解析][分析]此题涉及的知识点是众数,根据众数的定义就可以判断得出结果[详解]一组数据中出现次数最多的那个数值,就是众数,根据题意,数据中出现最多的是2,所以众数是2,故选B[点睛]此题重点考察学生对于众数的理解和应用,掌握众数就是数据中出现次数最多的数是解题的最佳方法.8. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A. 丁B. 丙C. 乙D. 甲[答案]B[解析][分析]先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.[详解]∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.[点睛]本题考查了方差:一组数据中各数据与它们平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A. 10和7B. 5和7C. 6和7D. 5和6[答案]D[解析]分析:将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.详解:将这组数据按从小到大排列为:5,5,5,6, 7,7,10,∵数据5出现3次,次数最多,∴众数为:5;∵第四个数为6,∴中位数为6,故选D.点睛:本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.10. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是9 [答案]C[解析][分析]根据中位数、平均数、众数、极差的概念求解.[详解]解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=915 6 ,众数是87,极差是97﹣87=10.故选C.[点睛]本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.11. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是().A. 5,5B. 5,6C. 6,6D. 6,5[答案]B[解析][分析]根据众数、中位数的定义分别进行解答即可.[详解]解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选:B.[点睛]本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩的平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大[答案]D[解析][分析]根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.[详解]甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.[点睛]本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二.填空题13. 对于正比例函数23my mx -=,y 的值随x 的值减小而减小,则m 的值为_______.[答案]-2[解析][分析] 根据正比例函数的意义,可得答案.[详解]解:∵y 的值随x 的值减小而减小,∴m <0,∵正比例函数23my mx -=,∴m 2-3=1,∴m=-2,故答案为:-2[点睛]本题考查正比例函数的定义.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空 ()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .[答案] (1). 20 (2). 3[解析][分析](1)根据图象确定出A 、B 两地间的距离以乙两人所用的时间,然后根据速度=路程÷时间求出两人的速度; (2)根据图象即可判断甲比乙晚到B 地的时间.[详解](1)由图可知,A. B 两地间的距离为20km ,从A 地到B ,乙用的时间为2−1=1小时,乙的速度是40÷1=40km/h ,故B 选项错误; (2)由图可知,甲4小时到达B 地,乙1小时到达B 地,所以,甲比乙晚到3小时.故答案为20,3.[点睛]本题考查函数的图像,解题的关键是清楚速度路程时间关系.15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.[答案]10[解析][分析]分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.[详解]∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB 的面积1210102=⨯⨯=. 故答案为10[点睛]本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.[答案](2,7).[解析][分析]根据一次函数图象交点坐标为两个一次函数解析式联立组成的方程组的解,确定一次函数2y x m =-与41y x =-的图象的交点坐标.[详解]解:若二元一次方程组412x y y x m -=⎧⎨=-⎩的解是27x y =⎧⎨=⎩,则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为(2,7).故答案为:(2,7).[点睛]本题考查一次函数与二元一次方程组. 理解一次函数与二元一次方程(组)的关系是解决此类问题的关键.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.[答案]1[解析][分析]根据平均数求得a 的值,然后根据众数求得b 的值后再确定新数据的中位数.[详解]试题分析:∵一组数据1,2,a 的平均数为2,∴1+2+a=3×2解得a=3∴数据﹣l ,a ,1,2,b 的唯一众数为﹣l ,∴b=﹣1,∴数据﹣1,3,1,2,b 的中位数为1.故答案为1.[点睛]本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的值. 18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树__________棵.[答案]4[解析][分析]利用加权平均数的计算公式进行计算即可.[详解]解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为4.[点睛]本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,属于基础题.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.[答案]3[解析][分析]先根据数据的众数确定出x的值,即可得出结论.[详解]∵一组数据:﹣1,3,2,x,5,它有唯一的众数是3,∴x=3,∴此组数据为﹣1,2,3,3,5,∴这组数据的中位数为3.故答案为3.[点睛]本题考查了数据的中位数,众数的确定,掌握中位数和众数的确定方法是解答本题的关键.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试平均成绩不少于80分的目标,他第三次数学考试至少得____分.[答案]82[解析][分析]设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.[详解]设第三次考试成绩为x,∵三次考试的平均成绩不少于80分, ∴7286803x ++≥, 解得:82x ≥,∴他第三次数学考试至少得82分,故答案为:82[点睛]本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;(2)当3x =时,求y 的值.[答案](1)2733y x =+;(2)y 的值是133. [解析][分析](1)设该直线解析式为()0y kx b k =+≠,把(-2,1)和(1,3)代入可得关于k 、b 的二元一次方程组,解方程组求出k 、b 的值即可得答案;(2)把x=3代入(1)中所求的解析式,求出y 值即可得答案.[详解](1)设该直线解析式为()0y kx b k =+≠,∵一次函数图象经过(-2,1)和(1,3)两点,∴213k b k b -+=⎧⎨+=⎩, 解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩. 故该一次函数解析式为:2733y x =+;(2)把3x =代入(1)中的函数解析2733y x =+得:27133333y =⨯+=, ∴3x =时,y 的值是133. [点睛]本题主要考查了待定系数法求一次函数解析式,根据一次函数图象上的点的坐标特征列出方程组求解是解题关键.22. 如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.[答案](1)直线AB 的解析式为y=2x ﹣2,(2)点C 的坐标是(2,2).[解析][分析]待定系数法,直线上点的坐标与方程的.(1)设直线AB 的解析式为y=kx+b ,将点A (1,0)、点B (0,﹣2)分别代入解析式即可组成方程组,从而得到AB 的解析式.(2)设点C 的坐标为(x ,y ),根据三角形面积公式以及S △BOC =2求出C 的横坐标,再代入直线即可求出y 的值,从而得到其坐标.[详解]解:(1)设直线AB 的解析式为y=kx+b ,∵直线AB 过点A (1,0)、点B (0,﹣2),∴k b 0{ b=2+=-,解得k 2{ b=2=-. ∴直线AB 的解析式为y=2x ﹣2.(2)设点C 的坐标为(x ,y ),∵S △BOC =2,∴12•2•x=2,解得x=2. ∴y=2×2﹣2=2.∴点C的坐标是(2,2).23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.[答案](1)x>﹣2;(2)①(1,6);②10.[解析][分析](1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;②将B点代入y2=﹣4x+a中即可求出a值.[详解]解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴不等式kx+b>0的解集是x>﹣2,故答案为x>﹣2;(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴b=4-2k+b=0⎧⎨⎩,得b=4k=2⎧⎨⎩,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1, ∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B 坐标为(1,6);②∵点B (1,6),∴6=﹣4×1+a ,得a =10, 即a 的值是10.[点睛]本题主要考查学生对于一次函数图像性质的掌握程度24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.[答案](1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲 [解析][分析](1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.[详解](1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲[点睛]本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.[答案](1)详见解析;(2)九()1班成绩好些;(3)九()1班的成绩更稳定,能胜出.[解析][分析]()1由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;()2由平均数相等得前提下,中位数高的成绩好解答可得;()3分别计算两班成绩的方差,由方差小的成绩稳定解答.[详解]解:()1九()1班5位同学的成绩为:75、80、85、85、100,其中位数为85分;九()2班5位同学的成绩为:70、100、100、75、80,九()2班平均数为70100100758085(5++++=分),其众数为100分, 补全表格如下:()2九()1班成绩好些,两个班的平均数都相同,而九()1班的中位数高,在平均数相同的情况下,中位数高的九()1班成绩好些.()3九()1班的成绩更稳定,能胜出.()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九分2), ()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦分2), ()()2212S S 九九∴<,九()1班的成绩更稳定,能胜出.[点睛]本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.26. 某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?[答案](1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.[解析]分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a)=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。

期中综合复习模拟测试题(人教版八年级数学下册

期中综合复习模拟测试题(人教版八年级数学下册

人教版八年级数学下册期中综合复习模拟测试题4(附答案)1.若=成立,则x的取值范围是()A.x≠B.x<C.0≤x<D.x≥0且x≠2.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件中不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠C=∠A﹣∠BC.a2+b2=c2D.a:b:c=6:8:103.如图,一根长25m的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m.如果梯子的顶端下滑4m,那么梯子的底端将向滑动()A.15m B.9m C.7m D.8m4.如图,在平行四边形ABCD中,AB=2,点E为平行四边形内一点且∠AED=∠BEC=90°,若∠DEC=45°,则AD的长为()A.3B.2C.D.25.如图,在平面直角坐标系中,点A,B,C的坐标分别是A(1,0),B(﹣1,3),C(﹣2,﹣1),再找一点D,使它与点A,B,C构成的四边形是平行四边形,则点D的坐标不可能是()A.(﹣3,2)B.(﹣4,2)C.(0,﹣4)D.(2,4)6.下列各式中,一定是二次根式的个数为(),,,,,(a≥0),(a<)A.3个B.4个C.5个D.6个7.设x=,y=,则x,y的大小关系是()A.x>y B.x≥y C.x<y D.x=y8.如图,平行四边形ABCD的周长为20,对角线AC,BD相交于点O.点E是CD的中点,BD=6,则△DOE的周长为()A.6B.7C.8D.109.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列五个条件:①∠ADB=∠CBD②DE=BF③∠EDF=∠EBF④∠DEB=∠DFB⑤AE=CF.其中不能判定四边形DEBF是平行四边形的有()A.1个B.2个C.3个D.4个10.如图,在△ABC中,BC=16,点D是△ABC内的一点,BD平分∠ABC,且DB=DC =10,连接AD,∠ADB=90°,则AD的长是()A.6B.7C.8D.11.如图,点E是▱ABCD的边AD的中点,CD、BE的延长线交于点F,DF=4,DE=3,则▱ABCD的周长为()A.6B.8C.20D.2412.下列计算正确()A.﹣=﹣3B.(﹣)2=9C.=±3D.=3 13.如图,△ABC中,∠BAC=45°,AB=AC=8,P为AB边上的一动点,以P A,PC为边作平行四边形P AQC,则线段AQ长度的最小值为()A.6B.8C.D.14.已知x,y都是实数,且y=+﹣2,则y x=.15.如图,正方形网格中,每一小格的边长为1.网格内有△P AB,则∠P AB+∠PBA的度数是.16.现将一支长20cm的金属筷子(粗细忽略不计)放入一个长和宽分别为8cm,6cm的长方体水槽中,要使水完全淹没筷子,则水槽中的水深至少为cm.17.如图,在边长为6的等边三角形ABC中,点D,E分别是AC,BC的中点,连接AE,BD,点G,H分别是AE,BD的中点,连接GH,则GH的长度为.18.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动秒时,以点P、Q、E、F 为顶点的四边形是平行四边形.19.已知=1.536,=4.858.则=.若=0.4858,则x =.20.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为.21.如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=.22.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为.23.如图,△ABC中,BD平分∠ABC,AD⊥BD于点D,AD的延长线交BC于点E,F是AC中点,连接DF,若AB=10,BC=24,则DF的长为.24.在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在x轴上方找到点D,使以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是.25.已知|2021﹣x|+=x,求x﹣20222的值.26.计算:(1)+|2﹣|﹣(π+2021)0;(2)(3+)2+(1+)(1﹣).27.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为62+82=4×52=100,所以这个三角形是常态三角形.(1)若△ABC三边长分别是2,和4,则此三角形常态三角形(填“是”或“不是”);(2)若Rt△ABC是常态三角形,则此三角形的三边长之比为(请按从小到大排列);(3)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,连接CD,若△BCD是常态三角形,求△ABC的面积.28.如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长;(3)求四边形DEFC的面积.29.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,求证:(1)EF=CF;(2)∠DFE=3∠AEF.30.如图,已知四边形ABCD是平行四边形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;(2)过点B作BF⊥AC于点F,连接EF,试判断四边形ADEF的形状,并说明理由.参考答案1.解:由题意得,x≥0,3﹣2x>0,解得,0≤x<,故选:C.2.解:当∠A:∠B:∠C=3:4:5时,则∠C=180°×=75°,同理可得∠A=45°,∠B=60°,故选项A符合题意;当∠C=∠A﹣∠B时,可得∠C+∠B=∠A,又∵∠A+∠B+∠C=180°,∴∠C=90°,故选项B不符合题意;当a2+b2=c2时,则△ABC时直角三角形,故选项C不符合题意;当a:b:c=6:8:10时,a2+b2=c2,则△ABC时直角三角形,故选项D不符合题意;故选:A.3.解;梯子顶端距离墙角地距离为=24(m),顶端下滑后梯子低端距离墙角的距离为=15(m),15﹣7=8(m).故选:D.4.解:如图,取AD,BC的中点M,N,连接MN,ME,NE,则MN=AB=2,在平行四边形ABCD中,AD=BC,AD∥BC,∵AD,BC的中点为M,N,∠AED=∠BEC=90°,∴EM=AD=MD,EN==NC,∴EM=EN,∠E=MED=∠MDE,∠CEN=∠NCE,过点E作EP∥AD交CD于于点P,∴EP∥BC,∴∠MDE=∠DEP,∠NCE=∠PEC,∴∠MED=∠DEP,∠CEN=∠PEC,∴∠MED+∠CEN=∠DEP+∠PEC=∠DEC=45°,∴∠MEN=90°,∴△MEN为等腰直角三角形,∴AD=2ME=2×MN=2.故选:B.5.解:如图所示:观察图象可知,满足条件的点D有三个,坐标分别为(2,4)或(﹣4,2)或(0,﹣4),∴点D的坐标不可能是(﹣3,2),故选:A.6.解:一定是二次根式;当m<0时,不是二次根式;对于任意的数x,x2+1>0,则一定是二次根式;是三次方根,不是二次根式;﹣m2﹣1<0,则不是二次根式;是二次根式;当a<时,2a+1可能小于0,不是二次根式.故选:A.7.解:∵x==3﹣>0,y=<0.∴x>y,故选:A.8.解:∵▱ABCD的周长为20,∴2(BC+CD)=20,则BC+CD=10.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=6,∴OD=OB=BD=3.∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=5+3=8,即△DOE的周长为8.故选:C.9.解:④可以判断四边形DEBF是平行四边形.理由:在OA上取一点E′,使得OE′=OF,连接DE′,BE′.∵OD=OB,OF=OE′,∴四边形DE′BF是平行四边形,∴∠DFB=∠DE′B,∵∠DEB=∠DFB,∴∠DEB=∠DE′B,∴点E与点E′重合,∴四边形DEBF是平行四边形.⑤可以判断四边形DEBF是平行四边形.理由:∵四边形ABCD是平行四边形,∴OD=OB,OA=OC,∵AE=CF,∴OE=OF,∴四边形DEBF是平行四边形,故选:C.10.解:如图,延长AD交BC于点E,过点D作DF⊥BC交BC于点F,∵∠BAD=∠BDE=90°,BD=BD,∠ABD=∠EBD,∴△ABD≌△EBD(ASA),∴AB=BE,∵DF⊥BC,BD=CD,∴BF=FC=BC,∴BF=8,又BD=10,∴DE=6,∵∠BDE=∠BFD=90°,∠DBE=∠FBD,∴BE=,∴AB=,∴AD==,故选:D.11.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠ABE=∠F,∵E是CD的中点,∴AE=DE=3,AD=2DE=6,在△BAE和△FDE中,,∴△BAE≌△FDE(AAS),∴AB=DF=4,∴平行四边形ABCD的周长=2(AB+AD)=2×(4+6)=20.故选:C.12.解:A、﹣=﹣3,故本选项正确;B、(﹣)2=3,故本选项错误;C、=3,故本选项错误;D、==,故本选项错误;故选:A.13.解:∵四边形P AQC是平行四边形,∴AQ=PC,∴要求AQ的最小值,只要求PC的最小值即可,∵∠BAC=45°,AB=AC=8,∴当CP⊥AB时,CP取得最小值,此时CP=AC•sin45°=8×=4,故选:D.14.解:y=+﹣2,则x=3,故y=﹣2,则y x=(﹣2)3=﹣8.故答案为:﹣8.15.解:延长AP到C,使AP=PC,连接BC,∵AP=PC==,同理BC=,∵BP==,∴PC=BC,PC2+BC2=PB2,∴△PCB是等腰直角三角形,∴∠CPB=∠CBP=45°,∴∠P AB+∠PBA=∠CPB=45°,故答案为:45°.16.解:由题意可得,底面长方形的对角线长为:=10(cm),故水槽中的水深至少为:=10(cm),故答案为:10.17.解:∵△ABC是边长为6的等边三角形,∴AC=BC=6,∠ABC=∠BAC=60°,∵点D,E分别是AC,BC的中点,∴AD=BE=3,取AB的中点F,连接GF,HF,∵点G,H分别是AE,BD的中点,∴FG∥BE,FG=BE=,FH∥AD,FH=AD=,∴FG=FH=,∠AFG=∠ABC=60°,∠BFH=∠BAC=60°∴∠HFG=180°﹣∠AFG﹣∠BFH=60°,∴△FGH是等边三角形,∴GH=FG=,故答案为:.18.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6﹣t=9﹣2t或6﹣t=2t﹣9,解得:t=3或t=5.故答案为:3或5.19.解:0.00236是由23.6小数点向左移动4位得到,则=0.04858;0.4858是由4.858向左移动一位得到,则x=0.236.故答案是:0.4858,0.236.20.解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,.∴△BNA≌△BNE(ASA),∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故答案是:.21.解:在平行四边形ABCD中,AB∥CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,∴GF=AE,∵AE=4,∴GF=2.故答案为2.22.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3或a﹣b=﹣3(舍去),故答案是:3.23.解:在△ADB和△EDB中,,∴△ADB≌△EDB(ASA),∴EB=AB=10,AD=DE,∵BC=24,∴CE=BC﹣BE=14,∵AF=FC,AD=DE,∴DF=CE=7,故答案为:7.24.解:观察图象可知,满足条件的点D有两个,坐标分别为(﹣6,5)或(2,5).故答案为:(﹣6,5)或(2,5).25.解:由可知,x﹣2022≥0,解得,x≥2022,原式可化为:x﹣2021+=x,整理得,=2021,∴x﹣2022=20212,∴x=20212+2022,∴x﹣20222=20212+2022﹣20222=(2021+2022)(2021﹣2022)+2022=﹣4043+2022=﹣2021.26.解:(1)+|2﹣|﹣(π+2021)0=3+2﹣1=2+1;(2)(3+)2+(1+)(1﹣)=9+6+2+(1﹣2)=9+6+2+(﹣1)=10+6.27.解:(1)∵22+42=4×()2=20,∴△ABC三边长分别是2,和4,则此三角形是常态三角形.故答案为:是;(2)∵Rt△ABC是常态三角形,∴设两直角边长为:a,b,斜边长为:c,则a2+b2=c2,a2+c2=4b2,则2a2=3b2,故a:b=:,∴设a=x,b=x,则c=x,∴此三角形的三边长之比为:::.故答案为:::;(3)∵Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,△BCD是常态三角形,∴当AD=BD=DC,CD2+BD2=4×62时,解得:BD=DC=6,则AB=12,故AC==6,则△ABC的面积为:×6×6=.当AD=BD=DC,CD2+BC2=4×BD2时,解得:BD=DC=2,则AB=4,故AC=2,则△ABC的面积为:×6×2=6.故△ABC的面积为或6.28.解:(1)在△ABC中,∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE=BC,∵CF=BC,∴DE=CF.(2)∵AC=BC,AD=BD,∴CD⊥AB,∵BC=4,BD=2,∴CD==2,∵DE∥CF,DE=CF,∴四边形DEFC是平行四边形,∴EF=CD=2.(3)过点D作DH⊥BC于H.∵∠DHC=90°,∠DCB=30°,∴DH=DC=,∵DE=CF=2,∴S四边形DEFC=CF•DH=2×=2.29.解:(1)证明:连接CF并延长交BA的延长线于G,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD∵F是AD的中点,∴CF=GF,∵CE⊥AB,∴∠CEG=90°,∴EF=CG=CF=GF,即EF=CF;(2)∵EF=GF,∴∠G=∠FEG,∵AD∥BC,CF=GF,∴AG=AB,∴AF=AG,∴∠G=∠AFG=∠DFC,∵∠CFE=∠G+∠AEF,∴∠DFE=∠CFE+∠DFC=3∠AEF.30.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCA=∠CAB,∵∠EDC=∠CAB,∴∠EDC=∠DCA,∴DE∥AC.(2)解:结论:四边形ADEF是平行四边形.理由:作DH⊥AC于H.∵AC∥DE,∠DEC=90°,∴∠DEC=∠ECF=∠DHC=90°,∴四边形DECH是矩形,∴DH=EC,在△ADH和△CBF中,,∴△ADH≌△BCF,∴DH=BF=CE,∵BF∥CE,∴四边形EFBC是平行四边形.。

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。

2. 3x+5y=10,求y的值。

3. 4x2y=6,求x的值。

4. 5x+3y=15,求y的值。

5. 2x4y=8,求x的值。

6. 3x+5y=10,求y的值。

7. 4x2y=6,求x的值。

8. 5x+3y=15,求y的值。

9. 2x4y=8,求x的值。

10. 3x+5y=10,求y的值。

三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。

人教版数学八年级下册《期中测试卷》及答案

人教版数学八年级下册《期中测试卷》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:1.下列各式:()115x -、43x π-、222x y -、1x x +、25x x,其中分式共有( ) A. 2 B. 3 C. 4 D. 52.如果把分式x yy x +中的x 、y 同时扩大为原来的2倍,那么该分式的值( ) A. 不变 B. 扩大为原来的2倍 C. 缩小为原来的12 D. 缩小为原来的14 3.下列变形从左到右一定正确的是( ). A. 22a a b b -=- B. a ac b bc = C. ax a bx b = D. 22a a b b= 4.下列分式中是最简分式是() A. 221x x + B. 42xC. 211x x --D. 11x x -- 5.若关于x 的方程3111k x x =---有增根,则k 的值为( ). A. 3 B. 1 C. 0 D. -16.若分式2424x x --的值为零,则x 等于( ) A. 0 B. 2 C. ±2 D. ﹣27.已知四边形ABCD 四边分别有a,b,c,d .其中a,c 是对边且a 2+b 2+c 2+d 2=2ac+2bd,则四边形是( )A. 平行四边形B. 对角线相等的四边形C. 任意四边形D. 对角线互相垂直的四边形8. 如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F,垂足为E,连接DF,则∠CDF 等于()A. 50°B. 60°C. 70°D. 80°9.如图,在菱形ABCD 中,6AC cm =,8BD cm =,则菱形AB 边上的高CE 的长是( )A. 245cmB. 485cmC. 5cmD. 10cm10.在等边三角形ABC 中,BC=6cm ,射线AG//BC ,点E 从点A 出发,沿射线AG 以1cm/s 的速度运动,同时点F 从点B 出发,沿射线BC 以2cm/s 的速度运动,设运动时间为t ,当t 为( )s 时,以A ,F ,C ,E 为顶点的四边形是平行四边形?( )A 2 B. 3 C. 6 D. 2或611. 如图,在矩形ABCD 中,O 是BC 的中点,∠AOD = 90°,若矩形ABCD 的周长为30 cm,则AB 的长为( )A. 5 cmB. 10 cmC. 15 cmD. 7.5 cm12.如图,正方形ABCD 和正方形CEFG 边长分别a 和b,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A. 0个B. 1个C. 2个D. 3个二、填空题:13.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为_ ▲ . 14.计算()24a a b b ⎛⎫-÷- ⎪⎝⎭=________________ 15.已知11x y =3,则代数式21422x xy y x xy y----的值为___. 16.已知34(1)(2)12x A B x x x x -=+----,则实数A ___________ B______ 17.已知关于x 方程233x m x x -=--解为正数,求m 的取值范围. 18.如图,正方形ABCD 中,对角线AC ,BD 交于点O ,E 点在BC 上,EG ⊥OB ,EF ⊥OC ,垂足分别为点G ,F ,AC =10,则EG +EF =____.19.矩形的两对角线的夹角为60°,两对角线与两短边之和为36,则对角线的长是________ 20.如图,在△ABC 中,AB =2,AC 2 ,∠BAC =105°,△ABD ,△ACE ,△BCF 都是等边三角形,则四边形AEFD 的面积为__________.三、解答题:21.计算题(1)22142a a a +-- (2)()()02-233-2-3827---+- (3)265222x x x x -⎛⎫÷-- ⎪--⎝⎭(4)先化简2221221,-22,1211x x x x x x x x x ++-⎛⎫+÷+≤≤ ⎪--+-⎝⎭然后从内选取一个合适的整数作为x 的值代入求值22.解下列分式方程(1)231x x =+; (2)21133x x x--=--. 23.如图所示,在□ABCD 中,E 、F 是对角线BD 上的两点,且BE=DF.求证:(1)AE=CF ;(2)AE ∥CF .24.甲、乙两地相距360千米,一辆贩毒车从甲地往乙地接头取货,警方截取情报后,立即组织干警从甲地出发,前往乙地缉拿这伙犯罪分子,结果警车与贩毒车同时到达,将犯罪分子一网打尽.已知贩毒车比警车早出发1小时15分,警车与贩毒车的速度比为4∶3,求贩毒车和警车的速度.25.如图,在矩形ABCD 中,点E 在边CD 上,将该矩形沿AE 折叠,使点D 落在边BC 上的点F 处,过点F 作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.26.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?27. 已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示);(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.答案与解析一、选择题:1.下列各式:()115x -、43x π-、222x y -、1x x +、25x x,其中分式共有( ) A. 2B. 3C. 4D. 5[答案]A[解析][分析]判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. [详解]()115x -、43x π-、222x y -、的分母中都不含有字母,因此都是整式,而不是分式; 1x x +、25x x的分母中含有字母,因此是分式.故分式共有2个.故选:A[点睛]本题考查分式定义,判断式子是否为分式是从原始形式上看,而不是从化简后的结果去看. 2.如果把分式x yy x +中的x 、y 同时扩大为原来的2倍,那么该分式的值( ) A. 不变B. 扩大为原来的2倍C. 缩小为原来的12D. 缩小为原来的14[答案]C[解析] ∵把分式x y xy+中的x 、y 同时扩大为原来的2倍后变为: 2222x y x y +⨯=()24x y xy+=2x y xy +. ∴2222x y x y +⨯是x y xy +的12. 故选C.3.下列变形从左到右一定正确的是( ).A. 22a ab b -=- B. a ac b bc = C. ax a bx b = D. 22a a b b= [答案]C[解析][分析] 根据分式的基本性质依次计算各项后即可解答.[详解]选项A ,根据分式的基本性质,分式的分子和分母都乘以或除以同一个不是0的整式,分式的值不变,分式的分子和分母都减去2不一定成立,选项A 错误;选项B ,当c ≠0时,等式才成立,即()0a ac c b bc =≠,选项B 错误; 选项C ,ax bx 隐含着x ≠0,由等式的右边分式的分子和分母都除以x ,根据分式的基本性质得出ax a bx b =,选项C 正确;选项D ,当a=2,b=-3时,左边≠右边,选项D 错误.故选C .[点睛]本题考查了分式的基本性质的应用,主要检查学生能否正确运用性质进行变形,熟练运用分式的基本性质是解决问题的关键.4.下列分式中是最简分式的是() A. 221x x + B. 42x C. 211x x -- D. 11x x -- [答案]A[解析][分析]最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且注意观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.[详解]解:A.221x x +,分子、分母都不能再分解,且不能约分,是最简分式.故A 选项正确; B. 42x,分式的分子、分母都含有公因式2,它不是最简分式.故B 选项错误; C. 211x x --,把分母分解因式后,分式的分子、分母都含有公因数(x-1),它不是最简分式.故C 选项错误;D. 11x x --,分式的分子、分母都含有公因数(x-1),它不是最简分式.故D 选项错误; 故选:A[点睛]本题考查了最简分式.分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.5.若关于x 的方程3111k x x =---有增根,则k 的值为( ). A. 3B. 1C. 0D. -1[答案]A[解析]试题解析:首先根据解分式方程的方法求出x 的值,然后根据增根为x=1代入方程求出k 的值.将方程的两边同时乘以(x-1)可得:3=x-1+k ,解得:x=4-k ,根据方程有增根可得:x=1,即4-k=1,k=3. 6.若分式2424x x --的值为零,则x 等于( ) A. 0B. 2C. ±2D. ﹣2[答案]D[解析][分析]分式的值是0的条件是:分子为0,分母不为0.[详解]∵x 2-4=0,∴x=±2,当x=2时,2x-4=0,∴x=2不满足条件.当x=-2时,2x-4≠0,∴当x=-2时分式的值是0.故选D .[点睛]本题考查了分式值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7.已知四边形ABCD 的四边分别有a,b,c,d .其中a,c 是对边且a 2+b 2+c 2+d 2=2ac+2bd,则四边形是( ) A. 平行四边形B. 对角线相等的四边形C. 任意四边形D. 对角线互相垂直的四边形[答案]A[解析][分析]将条件式变形为(a-c)2+(b-d)2=0,由非负性质可得a=c,b=d,即可判定.[详解]∵a2+b2+c2+d2=2ac+2bd,∴(a-c)2+(b-d)2=0,∴a=c,b=d,∵a,b,c,d分别为四边形ABCD的四边,即两组对边分别相等,∴其为平行四边形.故选A.8. 如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A. 50°B. 60°C. 70°D. 80°[答案]B[解析]分析:如图,连接BF,在菱形ABCD中,∵∠BAD=80°,∴∠BAC=12∠BAD=12×80°=40°,∠BCF=∠DCF,BC=CD,∠ABC=180°﹣∠BAD=180°﹣80°=100°.∵EF 是线段AB 的垂直平分线,∴AF=BF ,∠ABF=∠BAC=40°.∴∠CBF=∠ABC ﹣∠ABF=100°﹣40°=60°.∵在△BCF 和△DCF 中,BC=CD,∠BCF=∠DCF ,CF=CF,∴△BCF≌△DCF (SAS).∴∠CDF=∠CBF=60°.故选B .9.如图,在菱形ABCD 中,6AC cm =,8BD cm =,则菱形AB 边上的高CE 的长是( )A. 245cmB. 485cmC. 5cmD. 10cm[答案]A[解析][详解]由菱形的性质可得AO=OC=3.BO=DO=4,△ABO 为直角三角形,在Rt △ABO 中,根据勾股定理即可得AB=5,根据菱形的面积=边长乘以高=两对角线乘积的一半可得S=12×6cm×8cm=5cm×CE , 解得CE=245cm ,故答案选A . 考点:菱形的性质.10.在等边三角形ABC 中,BC=6cm ,射线AG//BC ,点E 从点A 出发,沿射线AG 以1cm/s 的速度运动,同时点F 从点B 出发,沿射线BC 以2cm/s 的速度运动,设运动时间为t ,当t 为( )s 时,以A ,F ,C ,E 为顶点的四边形是平行四边形?( )A. 2B. 3C. 6D. 2或6[解析][分析]分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.[详解]①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC-BF=6-2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=6-2t,解得:t=2;②当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF-BC=2t-6(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t-6,解得:t=6;综上可得:当t=2或6s时,以A、C、E、F为顶点四边形是平行四边形.故选D.[点睛]本题考查了平行四边形的判定.此题难度适中,注意掌握分类讨论思想、数形结合思想与方程思想的应用.11. 如图,在矩形ABCD中,O是BC的中点,∠AOD = 90°,若矩形ABCD的周长为30 cm,则AB的长为( )A. 5 cmB. 10 cmC. 15 cmD. 7.5 cm[答案]A[分析]本题运用矩形的性质通过周长的计算方法求出矩形的边长.[详解]解:矩形ABCD中,O是BC中点,∠AOD=90°,根据矩形的性质得到△ABO≌△DCO,则OA=OD,∠DAO=45°,所以∠BOA=∠BAO=45°,即BC=2AB,由矩形ABCD的周长为30cm得到,30=2AB+2×2AB,解得AB=5cm.故选A.12.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有( )A. 0个B. 1个C. 2个D. 3个[答案]D[解析]分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE 与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.详解:①∵四边形ABCD和EFGC都为正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故结论①正确.②如图所示,设BE交DC于点M,交DG于点O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②结论正确.③如图所示,连接BD、EG,由②知,BE⊥DG,则在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③结论正确.故选:D.点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.二、填空题:13.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为_ ▲ .[答案]9.63×10-5[解析]科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数.“0.000 0963”用科学记数法可表示为14.计算()24a a b b ⎛⎫-÷- ⎪⎝⎭=________________ [答案]231a b-[解析][分析]根据分式的乘除运算法则依次计算即可解答. [详解]()24a a b b ⎛⎫-÷- ⎪⎝⎭=2241a ba b ⎛⎫⋅ ⎪-⎝⎭ =231a b-. 故答案为:231a b -. [点睛]本题考查了分式的乘除运算法则,熟练运用分式的乘除运算法则是解决问题的关键.15.已知11x y =3,则代数式21422x xy y x xy y----的值为___. [答案]4[解析][分析] 由11x y-=3,得y x xy -=3即y-x=3xy,然后代入代数式,进行消元,即可得到结论. [详解]解:由11x y-=3,得y x xy -=3即y-x=3xy,x-y=-3xy,则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xy xy xy----=4 故答案为:4[点睛]本题主要考查代数式的求解,利用消元法是解决本题的关键.16.已知34(1)(2)12x A B x x x x -=+----,则实数A ___________ B______ [答案] (1). =1 (2). =2[解析][分析]针对等式右边的方式进行通分相加,然后根据分母相同,得到分子相同,以此建立方程求出答案[详解]()()()()()()212121212A x B x A B Ax A Bx B x x x x x x -+--+-+==------;对比等号两边分式,分母相同,所以分子相同,所以:3A B +=且24A B --=-;解得:12A B ==,故答案为12A B ==,[点睛]本题主要考查分式间的运算,熟练运用法则计算找出规律是关键17.已知关于x 的方程233x m x x -=--解为正数,求m 的取值范围. [答案]m <6且m ≠3[解析][分析]先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求m 的取值范围.[详解]去分母,得x ﹣2(x ﹣3)=m ,解得:x =6﹣m ,∵x >0,∴6﹣m >0,∴m <6,且x≠3,∴m≠3.∴m <6且m≠3.[点睛]解答本题时,易漏掉m≠3,这是因为忽略了x﹣3≠0这个隐含条件而造成的,这应引起同学们的足够重视.18.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC =10,则EG+EF=____.[答案]5[解析][分析]连接OE,根据正方形的性质可得BO=OC=5,再由S△BOE+S△COE=S△BOC即可求得EG+EF的值.[详解]如图,连接OE,∵四边形ABCD是正方形,AC=10,∴AC⊥BD,BO=OC=5,∵EG⊥OB,EF⊥OC,S△BOE+S△COE=S△BOC,∴12•BO•EG+12•OC•EF=12•OB•OC,∴12×5×EG+12×5×EF=12×5×5,∴EG+EF=5.故答案为5.[点睛]本题考查正方形的性质,利用面积法是解决问题的关键,熟练运用等腰三角形底边上一点到两腰的距离之和等于腰上的高这一结论可以使运算过程简单.19.矩形的两对角线的夹角为60°,两对角线与两短边之和为36,则对角线的长是________[解析] [分析]先证明△AOB是等边三角形,得到AB=OA=OB=12AC即可,[详解]解:如图所示:∵四边形ABCD矩形,∴AC=BD,OA=12AC,OB=12BD,∠ABC=90°,AB=CD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB= 12 AC,∵AB+CD+AC+BD=36,∴6AB=36,∴AB=6,AC=12,故答案为12.[点睛]本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质综合运用定理进行推理和计算是解题的关键20.如图,在△ABC中,AB=2,AC=2,∠BAC=105°,△ABD,△ACE,△BCF都是等边三角形,则四边形AEFD 的面积为__________.[答案]2∵△ABD,△ACE 都是等边三角形,∴∠DAB=∠EAC=60°,∵∠BAC=105°∴∠DAE=135°.∵△ABD 和△FBC 都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC .∴在△ABC 与△DBF 中,{BD BADBF ABC BF BC=∠=∠= ,∴△ABC ≌△DBF(SAS),∴,同理可证△ABC ≌△EFC,∴AB=EF=AD=2,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形).∴∠FDA=180°-∠DAE=45°,根据勾股定理可求得平行四边形DAEF 边AD 上的高为1,∴平行四边形AEFD 的面积是211⨯= .点睛:本题综合考查了全等三角形的判定与性质以及等边三角形的性质,平行四边形的判定与性质,综合性比较强,难度较大,有利于培养学生综合运用知识进行推理和计算的能力.三、解答题:21.计算题(1)22142a a a+-- (2)-2-2-+ (3)265222x x x x -⎛⎫÷-- ⎪--⎝⎭(4)先化简2221221,-22,1211x x x x x x x x x ++-⎛⎫+÷+≤≤ ⎪--+-⎝⎭然后从内选取一个合适的整数作为x 的值代入求值[答案](1)12a + ;(2)14-;(3)23x -+;(4)24,81x x -+ [解析][分析](1)通分,化为同分母分式即可进行运算,(2)分别计算负整数指数幂,算术平方根,立方根,零次幂,再合并即可,(3)先计算括号内的减法运算,再把除法转化为乘法,约分即可得到答案,(4)先计算括号内的加法运算,再把除法转化为乘法,约分后再计算最后一步,加法运算,选取一个使原分式有意义的的值代入计算即可.[详解]解:(1)2212242(2)(2)(2)(2)a a a a a a a a a ++=---+-+- 222(2)(2)(2)(2)a a a a a a a ---==+-+- 1,2a =+(2)0-2-2-+ 13(2)14=----+ 1,4=- (3)265222x x x x -⎛⎫÷-- ⎪--⎝⎭22(3)54()222x x x x x --=÷---- 22(3)92(3)2222(3)(3)x x x x x x x x x ----=÷=•----+- 2,3x =-+ (4)22212211211x x x x x x x x ++-⎛⎫+÷+ ⎪--+-⎝⎭211(1)2(1)()11(1)(1)(1)x x x x x x x x x x +-+--=+÷+---+- 22(1)21(1)1x x x x x x --=•+-++ 22211x x x --=+++ 24,1x x -=+ -22x ≤≤,为整数,2,1,0,1,2x ∴=--,又1,0,1,x x x ≠-≠≠当2x =-时,原式=448.21--=-+ [点睛]本题考查的是实数的运算,负整数指数幂,算术平方根,立方根,零次幂,同时考查分式的混合运算,化简求值,掌握以上知识是解题的关键.22.解下列分式方程 (1)231x x =+; (2)21133x x x--=--. [答案](1)2x =(2)无解.[解析][分析](1)将分式方程去分母转化为整式方程,解整式方程得到的值,代入最简公分母检验即可;(2)将分式方程去分母转化为整式方程,解整式方程得到 x 的值,代入最简公分母检验即可. 详解]解:(1)去分母得:223x x +=,解得:2x =,当2x =时,x (x +1)≠0,∴2x =是分式方程的解;(2)去分母得:213x x -+=-,移项合并得:26x =,解得:3x =,当3x =时,x-3=0,∴3x =不是原方程的解,原分式方程无解.[点睛]本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.如图所示,在□ABCD 中,E 、F 是对角线BD 上的两点,且BE=DF.求证:(1)AE=CF ;(2)AE ∥CF .[答案](1)见解析;(2)见解析.[解析][分析](1)欲证AE CF =,只要ABE △≌CDF 即可.由平行四边形性质易求其全等;(2)由ABE △≌CDF 即可得到AE ∥CF ,[详解]:证明:(1)∵四边形ABCD 是平行四边形,∴AB=CD,AB ∥DC.∴∠ABE=∠CDF又BE=DF,∴△ABE ≌△CDF.∴AE=CF.(2)∵△ABE ≌△CDF,∴∠AEB=∠CFD.∴∠AEF=∠CFE.∴AE∥CF.24.甲、乙两地相距360千米,一辆贩毒车从甲地往乙地接头取货,警方截取情报后,立即组织干警从甲地出发,前往乙地缉拿这伙犯罪分子,结果警车与贩毒车同时到达,将犯罪分子一网打尽.已知贩毒车比警车早出发1小时15分,警车与贩毒车的速度比为4∶3,求贩毒车和警车的速度.[答案]警车96千米/小时,贩毒车72千米/小时[解析][分析]设警车的速度为4xkm/h,则贩毒车的速度为3xkm/h,根据警车与贩毒车之间的时间关系建立方程求出其解,即可得出结果.[详解]解:设警车的速度为4xkm/h,则贩毒车的速度为3xkm/h,根据题意得:3605360 443x x+=,解得:x=24,经检验,x= 24 是原方程的根,∴原方程的根为x=24.∴警车的速度为:4×24 = 96(km/h),贩毒车的速度为:3×24 =72(km/h).答:警车的速度为96 km/h,贩毒车的速度为24km/h.[点睛]本题是一道行程问题的应用题,考查了列分式方程解实际问题的运用、分式方程的解法;根据题意列出方程是解决问题的关键,注意检验.25.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.[答案](1)证明见试题解析;(2)35.[解析][分析](1)由折叠的性质,可以得到DG=FG ,ED=EF ,∠1=∠2,由FG ∥CD ,可得∠1=∠3,再证明 FG=FE ,即可得到四边形DEFG 为菱形;(2)在Rt △EFC 中,用勾股定理列方程即可CD 、CE ,从而求出CE DE 的值. [详解]解:(1)证明:由折叠的性质可知:DG=FG ,ED=EF ,∠1=∠2,∵FG ∥CD ,∴∠2=∠3,∴FG=FE ,∴DG=GF=EF=DE ,∴四边形DEFG 为菱形;(2)设DE=x ,根据折叠的性质,EF=DE=x ,EC=8﹣x ,在Rt △EFC 中,222FC EC EF +=,即2224(8)x x +-=,解得:x=5,CE=8﹣x=3,∴CE DE =35.考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.26.如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC .设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F .(1)求证:OE =OF ;(2)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?[答案](1)证明见解析,(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明见解析,(3)当点O在边AC上运动到AC中点时,若∠ACB=90°,四边形AECF为正方形.证明见解析.[解析][分析](1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据AO=CO,EO=FO可得四边形AECF平行四边形,再证明∠ECF=90°利用矩形的判定得出即可;(3)当点O在边AC上运动到AC中点时,若∠ACB=90°,四边形AECF为正方形,首先证明为矩形,再证明AC⊥EF根据对角线互相垂直的矩形是正方形可得结论.[详解](1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:如图,当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∠∠,ACB ACDCE CF分别平分,,∠ECF=90°,∴平行四边形AECF是矩形.(3)当点O在边AC上运动到AC中点时,若∠ACB=90°,四边形AECF为正方形.证明:如图,由(2)可得点O在边AC上运动到AC中点时平行四边形AECF是矩形,∵∠ACB=90°,∴∠2=45°,∵平行四边形AECF是矩形,∴EO=CO,∴∠1=∠2=45°,∴∠MOC=90°,∴AC⊥EF,∴四边形AECF是正方形.[点睛]此题主要考查了等腰三角形的判定,平行四边形,矩形,正方形的判定,掌握以上知识是解题的关键.27. 已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示);(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.[答案](1)10;(2)12-a;(3)不能,理由见解析.[解析][分析](1)过点G作GM⊥BC于M,可以证明△MFG≌△BEF,就可以求出GM的长,进而就可以求出FC,求出面积.(2)证明△AHE≌△MFG.得到GM的长,根据三角形的面积公式就可以求出面积.(3)△GFC的面积不能等于2,根据面积就可以求出a的值,在△BEF中根据勾股定理就可以得到EF,进而在直角△AHE中求出AH.[详解]解:(1)如图1,过点G作GM⊥BC于M.在正方形EFGH中,∠HEF=90°,EH=EF,∴∠AEH+∠BEF=90°.∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF.又∵∠A=∠B=90°,∴△AHE≌△BEF.同理可证△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴11·1021022GFCS FC GM==⨯⨯=.(2)如图2,过点G作GM⊥BC交BC的延长线于M,连接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90°,EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴11·(12)21222GFCS FC GM a a ==-⨯=-.(3)△GFC的面积不能等于2.解法一:∵若S△GFC=2,则12-a=2,∴a=10.此时,在△BEF中,2222EF BE BF=+=-+=.(102)10164在△AHE中,22222=-=-=-=>, AH EH AE EF AE164216012∴AH>AD,即点H已经不在边AD上,故不可能有S△GFC=2.解法二:△GFC的面积不能等于2.∵点H在AD上,∴菱形边EH的最大值为237,∴BF的最大值为221.又∵函数S△GFC=12-a的值随着a的增大而减小,∴S△GFC的最小值为12221-.又∵122212->,∴△GFC的面积不能等于2.[点睛]解决本题的关键是证明三角形全等.。

2020年新人教版八年级数学下册期中复习试题(三)

2020年新人教版八年级数学下册期中复习试题(三)

八年级数学下册 期中复习题 三一、填空题:(每小题3分,共12题,共计36分)1.有下列计算:①632)(m m =;②121442-=+-a a a ;③326m m m =÷;④1565027=÷⨯;⑤31448332122=+-.其中正确的运算有( )A.①②③④⑤B.②③④⑤C.①④⑤D. ①③④⑤2.已知四边形ABCD 是平行四边形,下列结论中不正确的是 ( )A.当AB=AD 时,它是菱形B.当AC=BD 时,它是正方形C.当∠ABC=90°时,它是矩形D.当AC ⊥BD 时,它是菱形3.已知ab <0,则b a 2化简后为( )A.b aB.-b aC.b a -D.b a --4.实数,a b 在数轴上的位置如图2所示,则化简22(1)()a a b b ---+的结果是( )A.1B.b+1C.2aD.12a -5.平行四边形一边长12cm ,那么它的两条对角线的长度可能是( )A.8cm 和16cmB.10cm 和16cmC.8cm 和14cmD.8cm 和12cm6.如图,在平行四边形ABCD 中,AB=3cm,BC=5cm,AC,BD 相交于点O,则OA 取值范围是( )A.1cm <OA <4cmB.2cm <OA <8cmC.2cm <OA <5cmD.3cm <OA <8cm第6题图 第7题图7.如图,在平行四边形ABCD 中,过点C 的直线CE ⊥AB 于E,若∠EAD=53°,则∠BCE 度数为( )A.53°B.37°C.47°D.123°8.如图,在四边形ABCD 中,R,P 分别是BC,CD 上的点,E,F 分别是AP ,RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,下列结论成立的是( )A.线段EF 的长逐渐增大B.线段EF 的长逐渐减小C.线段EF 的长不变D.线段EF 的长与点P 的位置有关第8题图 第9题图 第10题图9.已知△ABC 中,∠ABC=450,AC=4,H 是高AD 和BE 的交点,则线段BH 的长度为( )A.6B.4C.23D.510.如图,矩形ABCD 中,DE ⊥AC 于E,且∠ADE:∠EDC=3:2,则∠BDE 的度数为( )A.36°B.9°C.27°D.18°11.如图,正方形ABCD 边长为8,M 在DC 上,DM=2,N 是AC 上一动点,则DN+MN 最小值为() A.6 B.8 C.10 D.28第11题图 第12题图12.如图,在四边形ABCD 中,∠DAB=∠DCB=900,CB=CD,且AD=3,AB=4,则AC 长为( )A.227 B.5 C.72D.7二、填空题(每小题3分,共6题,共计18分)13.计算2327)3()3(3302-+-++-π=_________14.已知直角三角形两边长分别为3cm 、5cm ,则第三边的长为_________15.平行四边形ABCD 的周长为20cm,对角线AC,BD 相交于点O,若△BOC 的周长比△AOB 的周长大2cm,则CD = cm.16.如图,将矩形ABCD 绕点A 顺时针旋转到矩形A ′B ′C ′D ′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a = .第16题图 第17题图17.如图,在平行四边形ABCD 中,AE ⊥BD,∠EAD=600,AE=2cm ,AC+BD=14cm,则△OBC 周长是18.问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为13105、、,求这个三角形的面积.小明同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图所示,这样不需求△ABC 的高,而借用网格就能计算出它的面积.(1)请你将△ABC 的面积直接填写在横线上 ;(2)若△ABC 三边的长分别为)0,0,(24916222222>>≠+++n m n m n m n m n m 、、,运用构图法可求出这个三角形的面积为三、综合题(共7题,共计66分)19.(本小题8分)在△ABC中,AB,BC,AC三边的长分别为、、,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上(2)画△DEF,DE,EF,DF三边的长分别为、、.①判断三角形的形状,说明理由.②求这个三角形的面积.20.(本小题8分)如图所示的一块地,AD=6m,CD=4m,∠ADC=90°,AB=11m,BC=9m,求这块地的面积.21.(本小题10分)如图,已知ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.22.(本小题10分)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,已知AD=10,CD=4,B′D=2.(1)求证:B′E=BF;(2)求AE的长.23.(本小题10分)如图,以△ABC 的三边为边在BC 的同侧分别作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题:(1)四边形ADEF 是什么四边形?并.说明..理由..(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?(3)当△ABC 满足什么条件时,以A 、D 、E 、F 为顶点的四边形不存在.24.(本小题10分)如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN//BC,设MN 交∠BCA 的平分线于点E,交∠BCA 的外角平分线于点F.(1)探究:线段OE 与OF 的数量关系并加以证明;(2)当点O 在边AC 上运动时,四边形BCFE 会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O 运动到何处,且△ABC 满足什么条件时,四边形AECF 是正方形?25.(本小题10分)如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-3,3).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)求∠EBP的度数和点D的坐标(点D的坐标用含t的代数式表示);(2)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.。

2021-2022学年人教版八年级数学下册期中阶段复习综合练习题(附答案)

2021-2022学年人教版八年级数学下册期中阶段复习综合练习题(附答案)

2021-2022学年人教版八年级数学下册期中阶段复习综合练习题(附答案)一、选择题1.计算的结果是()A.﹣7B.7C.﹣14D.492.下列式子是最简二次根式的是()A.B.C.D.3.以下列各组数为边长,不能构成直角三角形的是()A.7,24,25B.,4,5C.,1,D.40,50,60 4.如图,平行四边形ABCD的周长为20,对角线AC,BD相交于点O.点E是CD的中点,BD=6,则△DOE的周长为()A.6B.7C.8D.105.如图,在4×4的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,AD⊥BC于D,则AD的长为()A.1B.2C.D.6.如图,是一个含30°角的三角板放在一个菱形纸片上,且斜边与菱形的一边平行,则∠1的度数是()A.65°B.60°C.58°D.55°7.已知x+y=﹣5,xy=4,则的值是()A.B.C.D.8.如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF ⊥CD于F,则EF的最小值为()A.B.C.2D.1二.填空题(9.计算:()2=.10.若二次根式有意义,则x的取值范围是.11.计算:|﹣3|﹣=.12.平面直角坐标系中,点P(3,4)到原点的距离是.13.如图,某校攀岩墙的顶部安装了一根安全绳,让它垂到地面时比墙高多出了2米,教练把绳子的下端拉开8米后,发现其下端刚好接触地面,则此攀岩墙的高度是米.14.如图,在正方形ABCD内,以AB为边作等边△ABE,则∠BEG=°.15.如图,在矩形ABCD中,DE⊥CE,∠ADE=30°,DE=4,则这个矩形的周长是.16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形.则下列关于面积的等式:①S A=S B+S C;②S A=S F+S G+S B;③S B+S C=S D+S E+S F+S G,其中成立的有(写出序号即可).三.解析题17.计算:﹣()2+(π﹣2)0﹣+||.18.如图,在菱形ABCD中,过点D分别作DE⊥AB于点E,作DF⊥BC于点F.求证:AE=CF.19.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.20.已知如图,四边形ABCD中,∠B=90°,AB=BC=5,CD=6,AD=8,求这个四边形的面积.21.已知:x=+,y=﹣.求下列各式的值.(1)x2﹣xy+y2;(2)﹣.22.如图,已知四边形ABCD中,AD=2,CD=2,∠B=30°,过点A作AE⊥BC,垂足为E,AE=1,且点E是BC的中点,求∠BCD的度数.23.如图,四边形ABCD中,∠BAD=∠BCD=90°,M、N分别为对角线BD、AC的中点,连接MN,判定MN与AC的位置关系并证明.24.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:BD=DC.(2)若AB=AC时,试证明四边形AFBD是矩形.参考答案一、选择题1.解:=|﹣7|=7.故选:B.2.解:=2,故A不符合题意;=2,故B不符合题意;不能再化简,故C符合题意;==,故D不符合题意.故选:C.3.解:A.∵72+242=252,∴以7、24、25为边能组成直角三角形,故本选项不符合题意;B.∵42+52=()2,∴以4、5、为边能组成直角三角形,故本选项不符合题意;C.∵12+()2=()2,∴以、1、为边能组成直角三角形,故本选项不符合题意;D.∵402+502≠602,∴以40、50、60为边不能组成直角三角形,故本选项符合题意;故选:D.4.解:∵▱ABCD的周长为20,∴2(BC+CD)=20,则BC+CD=10.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=6,∴OD=OB=BD=3.∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=5+3=8,即△DOE的周长为8.故选:C.5.解:由勾股定理得:BC==5,∵S△ABC=4×4﹣×1×2﹣×2×4﹣×4×3=5,∴BC•AD=5,∴AD=5,∴AD=2.故选:B.6.解:如图所示,由题可得DE∥CF,∴∠DCF=∠ADE=60°,∵菱形中,EC平分∠DCF,∴∠DCE=∠DCF=30°,又∵∠A=90°,∴∠1=90°﹣30°=60°,故选:B.7.解:∵x+y=﹣5,xy=4,∴x、y同号,并且x、y都是负数,解得:x=﹣1,y=﹣4或x=﹣4,y=﹣1,当x=﹣1,y=﹣4时,=+=2+=;当x=﹣4,y=﹣1时,+=+=+2=,则的值是,故选:B.8.解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=2,∴EF的最小值为2;故选:B.二.填空题9.解:原式=2021.故答案为:2021.10.解:二次根式有意义,则2021﹣x≥0,解得:x≤2021.故答案为:x≤2021.11.解:原式=3﹣2=.故答案为:.12.解:如图,过P点作PQ⊥x轴于点Q,则∠OQP=90°.∵P(3,4),∴OQ=3,PQ=4.在直角△OPQ中,∵∠OQP=90°,OQ=3,PQ=4,∴OP===5.故答案为:5.13.解:如图:设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=8米,AB2+BC2=AC2,∴x2+82=(x+2)2,解得x=15,∴AB=15.∴攀岩墙的高15米.故答案为:15.14.解:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°.又∵三角形ABE是等边三角形,∴AB=AE=BE,∠EAB=∠ABE=∠AEB=60°.∴∠DAE=∠DAB﹣∠EAB=90°﹣60°=30°,∴AE=AD,∴∠ADE=∠AED=75°,∴∠BEG=180°﹣∠DAE﹣∠AEB=180°﹣75°﹣60°=45°.故答案为:45.15.解:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC.在Rt△ADE中,∵∠A=90°,∠ADE=30°,DE=4,∴AE=DE=2,AD=AE=2.∵DE⊥CE,∠A=90°,∴∠BEC=∠ADE=90°﹣∠AED=30°.在Rt△BEC中,∵∠B=90°,∠BEC=30°,BC=AD=2,∴BE=BC=6,∴AB=AE+BE=2+6=8,∴矩形ABCD的周长=2(AB+AD)=2(8+2)=16+4.故答案为:16+4.16.解:由勾股定理和正方形的性质可知:S A=S B+S C,S B=S D+S E,S C=S F+S G,∴S A=S B+S C=S F+S G+S B,S B+S C=S D+S E+S F+S G,故答案为:①②③.三.解析题17.解:原式=﹣2+1﹣2+2﹣=﹣2+1.18.证明:∵四边形ABCD是菱形,∴AD=CD,∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS),∴AE=CF.19.解:(1)由题意可知:2a﹣1=9,3a+b﹣1=16,∴a=5,b=2,∴a+2b=5+4=9,∴9的平方根是±3,即a+2b的平方根为±3.(2)由题意可知:,∴x=3,∴y=8,∴x+3y=3+24=27,∴27的立方根是3,即x+3y的立方根是320.解:∵∠B=90°,AB=BC=5,根据勾股定理得:AC===10,又∵CD=6,AD=8,∴AC2=102=100,CD2+AD2=62+82=36+64=100,∴CD2+AD2=AC2,∴△ACD为直角三角形,∠ADC=90°,则S四边形ABCD=S△ABC+S△ACD=AB•BC+AD•CD=×5×5+×8×6=49.21.解:(1)∵x=+,y=﹣,∴x+y=(+)+(﹣)=2,x﹣y=(+)﹣(﹣)=2,xy=(+)(﹣)=7﹣5=2,∴x2﹣xy+y2=(x+y)2﹣3xy=28﹣6=22;(2)﹣====2.22.解:如图,连接AC.∵AE⊥BC,点E是BC的中点.∴∠ACB=∠B=30°,∴AC=2AE=2.∴在△ACD中,AD2=8,AC2+CD2=4+4=8,∴AD2=AC2+CD2,∴∠ACD=90°,∴∠BCD=∠ACB+∠ACD=120°.23.解:MN⊥AC,证明:连接AM,CM,∵∠BAD=∠BCD=90°,M为BD的中点,∴AM=,CM=BD,∴AM=CM,∵N为AC的中点,∴MN⊥AC.24.证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,,∴△AEF≌△DEC(AAS),∵AF=BD,∴BD=CD;(2)∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°∵AF=BD,∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.。

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。

新人教版八年级数学下册期中试卷及答案

新人教版八年级数学下册期中试卷及答案

新人教版八年级数学下册期中试卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.若关于x的方程3m(x+1)+5=m(3x-1)-5x的解是负数,则m的取值范围是()A.m>-54B.m<-54C.m>54D.m<543.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°9.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.62B.10 C.226D.22910.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.比较大小:23________13.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.已知:在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF 分别交AD于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩ (2)410211x y x y -=⎧⎨+=⎩2.化简求值:(1)27x -48×4x +23x ; (2)2(53)(113)(113)-++-.3.已知方程组137x y ax y a -=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.5.如图,在△ABC 中,AB=BC ,BD 平分∠ABC ,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE求证:四边形BECD是矩形.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、A6、D7、D8、A9、C 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、<3、13k <<.4、()()2a b a b ++.5、(-2,0)6、32三、解答题(本大题共6小题,共72分)1、(1)42x y =⎧⎨=⎩;(2)61x y =⎧⎨=-⎩.2、(12)3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12. 5、略6、(1)饮用水和蔬菜分别为200件和120件 (2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。

2023-2024学年人教版八年级下学期期中数学试题

2023-2024学年人教版八年级下学期期中数学试题

2023-2024学年人教版八年级下学期期中数学试题1.下列运算正确的是()A.B.C.D.2.已知,化简()A.B.C.D.3.如图,是由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形与正方形,连接.若正方形的面积为6,,则的长为()A.6B.5C.D.4.如图的数轴上,点,对应的实数分别为1,3,线段于点,且长为1个单位长度.若以点为圆心,长为半径的弧交数轴于0和1之间的点,则点表示的实数为()A.B.C.D.5.已知,且,则的值为()A.B.C.D.6.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为5m,梯子的顶端B到地面的距离为12m,现将梯子的底端A向外移动到A',使梯子的底端A'到墙根O的距离等于6m,同时梯子的顶端B下降至B',那么BB'()A.小于1m B.大于1m C.等于1m D.小于或等于1m7.关于四边形ABCD:①两组对边分别相等;②一组对边平行且相等;③一组对边平行且另一组对边相等;④两条对角线相等.以上四种条件中,可以判定四边形ABCD是平行四边形的有().A.①②③④B.①③④C.①②D.③④8.如图,在中,点E,点F分别是和的中点,平分交于点D,若,则边的长为()A.0.5B.1C.1.5D.29.如图,菱形的对角线相交于点,点为边上一动点(不与点重合),于点点,若,,则的最小值为()A.3B.2C.D.10.如图,中,cm,,动点E从A出发,以2cm/s的速度沿向点B运动,动点F从点C出发,以1cm/s的速度沿着向D运动,当点E 到达点B时,两个点同时停止.则的长为10cm时点E的运动时间是()A.6s B.6s或10s C.8s D.8s或12s11.若,求的算术平方根________.12.要使得代数式有意义,那么的取值范围是______.13.如图,某自动感应门的正上方A处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门米的地方时(米),感应门自动打开,则______米.14.如图,中,是中点,平分,则________.15.如图,在四边形中,,平分,且,点P为边中点,,则的面积为_______.16.如图,在中,,分别以为直角边作等腰直角、,若,与的面积和为8,则的面积为__________________.17.计算:(1)(2)18.阅读材料,并解决问题:定义:将分母中的根号化去的过程叫做分母有理化.如:将分母有理化,解:原式.运用以上方法解决问题:已知:,.(1)化简m,n;(2)求的值.19.如图,有一张四边形纸片ABCD,AB⊥BC.经测得AB=9cm,BC=12cm,CD=8cm,AD=17cm.(1)求A、C两点之间的距离.(2)求这张纸片的面积.20.如图,在中,,平分交于点,过点作交于点,,垂足为点.(1)求证:;(2)若,,求的长.21.如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男子拽着绳子另一端向右走,绳端从C移动到E,绳子始终绷紧且绳长保持不变.(1)若米,米,米,求男子需向右移动的距离;(结果保留根号)(2)此人以米每秒的速度收绳,请通过计算回答,该男子能否在秒内将船从A处移动到岸边点F的位置?22.如图,点为平行四边形的边上的一点,连接并延长,使,连接并延长,使,连接为的中点,连接.(1)求证:四边形为平行四边形;(2)连接,交于点,若,求的长度.23.如图,E、F是对角线上两点,且.(1)求证:四边形是平行四边形;(2)连接,若,,,求的长.24.如图,已知正方形,,点M在边上,射线交于点E,交射线于点F,过点C作,交于点P.(1)求证:.(2)判断的形状,并说明理由.(3)作的中点N,连结,若,求的长.25.如图甲,在中,为锐角,点D为射线上一动点,连接,以为一边且在的右边作正方形,解答下列问题:(1)如果,,①当点D在线段上时(与点B不重合),如图乙,线段、之间的位置关系为,数量关系为.②当点D在线段的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果,,点D在线段上运动,试探究,当满足一个什么条件时,(点C、F重合除外)?并说明理由.。

人教版数学八年级下册《期中考试题》含答案解析

人教版数学八年级下册《期中考试题》含答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷一、选择题1.下列运算正确的是( )A.2=- B. =C.x =D.=2.下列式子是最简二次根式的是( )A.B.C.D.3.,则x 的取值范围是( ) A. 2x ≤B. 2x ≥-C. 2x <-D. 2x >-4.下列二次根式中,是同类二次根式的是( )A.B.C.D.5.下列计算正确的是( ) A.=±2B. 23=6C.D.6.下列计算正确的是( )x B. 2510x x x =C. 236()x x ==7.下列各组数据不是勾股数的是( ) A. 2,3,4B. 3,4,5C. 5,12,13D. 6,8,108.如图,正方形ABCD 的面积是( )A. 5B. 25C. 7D. 19.如图,数轴上的点A 表示的数是-2,点B 表示的数是1,CB AB ⊥于点B ,且2BC =,以点A 为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为( )A. 13B. 132+C. 132-D. 210.由下列条件不能判断△ABC 是直角三角形是( ) A. ∠A :∠B :∠C =3:4:5 B. AB :BC :AC =3:4:5 C. ∠A +∠B =∠CD. AB 2=BC 2+AC 211.如图,ABC ∆中,90ACB ∠=︒,2AC =,3BC =.设AB 的长是,下列关于的四种说法,其中,所有正确说法的序号是( )①是无理数 ②是13的算术平方根③23m << ④可以用数轴上的一个点来表示 A ①②B. ①③C. ①②④D. ②③④12.如图,高速公路上有,两点相距10km ,,为两村庄,已知4km DA =,6km CB =.DA AB ⊥于,CB AB ⊥于,现要在AB 上建一个服务站,使得,两村庄到站的距离相等,则EB 的长是( ).A 4km B. 5km C. 6km D. 20km第Ⅱ卷二、填空题13.将二次根式50化为最简二次根式____________.14.化简:1=_______.3a-是同类二次根式,那么a=________.15.如果最简二次根式1+a与4216.已知a11=-1,则a2+2a+2的值是_____.17.如图,两树高分别为10米和4米,相距8米,一只鸟从一树树梢飞到另一树的树梢,问小鸟至少飞行_______米.18.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,则重叠部分△AFC的面积为___________.三、解答题19.计算:23)(1)(775)(2)220.计算:(1) 24812+⨯(2)12322768÷+-⨯21.计算:(3-7)(3+7)+2(2-2).22.已知a=32-,分别求下列代数式的值:+,b=32(1)a2﹣b2(2)a2﹣2ab+b2.∆的顶点都在格点上.23.如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,ABCA B C的坐标;(1)直接写出点,,∆是不是直角三角形,并说明理由.(2)试判断ABC24.如图,梯子长25米,斜靠在一面墙上,梯子底端离墙7米.(1)这个梯子顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?25.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.26.任选一题作答,只计一题的成绩:一、如图,某工厂和一条笔直的公路AB ,原有两条路AC ,BC 可以到达AB ,经测量600m AC =,800m BC =,1000m AB =,现需要修建一条新公路,使到AB 的距离最短.请你帮设计一种方案,并求新建公路的长.二、如图,90ADC ∠=︒,4=AD ,3CD =, 13AB =,12BC =. (1)试判断以点,,为顶点的三角形的形状,并说明理由; (2)求该图的面积.答案与解析一、选择题(共12道小题,每小题3分,共36分)1. ,则x 的取值范围是( )A. x >1B. x ≥1C. x <1D. x ≤1[答案]B [解析] [分析]根据被开方数大于等于0列式计算即可得解. [详解]解:由题意得,x ﹣1≥0, 解得x ≥1. 故选:B .[点睛]本题主要考查了二次根式有意义的条件,掌握被开方数大于等于0是解题的关键. 2.[ ]B.2C. D. [答案]C [解析]相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.故选C . 考点:相反数.3. 3b =-,则( ) A. 3b > B. 3b <C. 3b ≥D. 3b ≤[答案]D [解析]等式左边为非负数,说明右边3b 0-≥,由此可得b 的取值范围. [详解]解:2(3b)3b -=-,3b 0∴-≥,解得b 3.≤故选D .[点睛]()0a 0≥≥()a a 0=≥. 4. 下列式子中,为最简二次根式的是( )[答案]B [解析] [分析]判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.[详解]解:2被开方数含有分母,不是最简二次根式,不合题意;B. ,符合题意;C. =2被开方数含能开得尽方的因数,不是最简二次根式,不符合题意;D.被开方数含能开得尽方的因数,不是最简二次根式,不符合题意.故选:B[点睛]本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 5. 下列计算正确的是( ) A. ()222a b a b -=- B. ()322x x 8x ÷=+C. 1a a a a÷⋅= 4=-[答案]B[分析]根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断.[详解]解: A .()222a b a 2ab b -=-+,选项错误;B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误; D .()2444-=-=,选项错误.故选:B .6. 下列二次根式中,不能与3合并的是( ) A. 23 B. 12C. 18D. 27[答案]C [解析]A 选项中,因为23与3是同类二次根式,所以两者可以合并;B 选项中,因为1223=,与3是同类二次根式,所以两者可以合并;C 选项中,因为1832=,与3不是同类二次根式,所以两者不能合并;D 选项中,因为2733=,与3是同类二次根式,所以两者可以合并. 故选C.7. 如图,Rt △ABC 中,∠ACB =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积之和为( )A. 150cm 2B. 200cm 2C. 225cm 2D. 无法计算[答案]C [解析]小正方形的面积为AC 的平方,大正方形的面积为BC 的平方.两正方形面积的和为AC 2+BC 2,对于Rt △ABC ,由勾股定理得AB 2=AC 2+BC 2.AB 长度已知,故可以求出两正方形面积的和. [详解]解:正方形ADEC 的面积为AC 2, 正方形BCFG 的面积为BC 2;在Rt △ABC 中,AB 2=AC 2+BC 2,AB =15, 则AC 2+BC 2=225cm 2. 故选:C .[点睛]本题考查了勾股定理.勾股定理应用的前提条件是在直角三角形中.8. 在△ABC 中,AB =1,AC =2,BC 则该三角形为( ) A. 锐角三角形 B. 直角三角形C. 钝角三角形D. 等腰直角三角形[答案]B [解析]解:在△ABC 中,AB =1,AC =2,BC 22212+=,∴△ABC 是直角三角形. 故选B .点睛:本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9. 已知一个直角三角形的两边长分别为3和5,则第三边长是( )A. 5B. 4D. 4[答案]D [解析][详解]解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x ,则由勾股定理得到:x ;②当5是此直角三角形的直角边时,设另一直角边为x ,则由勾股定理得到:x 故选:D10. 如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A. 48B. 60C. 76D. 80 [答案]C[解析]试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=22226810AE BE+=+=∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.11. 如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A. 10米B. 15米C. 25米D. 30米[答案]B[解析][分析]如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度.[详解]解:如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故选B.[点睛]本题主要利用定理--在直角三角形中30°角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.12. 如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )A. 6B. 5C. 4D. 3[答案]D[解析][分析]设点B落在AC上的E点处,连接DE,如图所示,由三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,设BD=x,由折叠的性质得到ED=BD=x,AE=AB=6,进而表示出CE与CD,在直角三角形DEC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出BD的长.[详解]解:∵△ABC为直角三角形,AB=6,BC=8,∴根据勾股定理得:2210=+=,AC AB BC设BD=x,由折叠可知:ED=BD=x,AE=AB=6,可得:CE=AC-AE=10-6=4,CD=BC-BD=8-x,在Rt△CDB'中,根据勾股定理得:(8-x )2=42+x 2,解得:x=3,则BD=3.故答案为3.[点睛]此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理的解本题的关键.二、填空题(共6道小题,每小题3分,共18分.把正确的答案写在答题卡相应的横线上) 13. 已知2a =则代数式21a -的值是________. [答案]1[解析][分析] 直接把2a =[详解]∵2a =∴222)1211a --=-=.故答案为:1.[点睛]此题主要考查了二次根式的性质,注意:2(0)a a a =≥.14. 23(1)0m n -+=,则m -n 的值为_____.[答案]4[解析][分析]根据二次根式与平方的非负性即可求解.[详解]依题意得m-3=0,n+1=0,解得m=3,n=-1,∴m-n=4[点睛]此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.15. 计算:528-=______.[答案]32[解析][分析]先化简二次根式,再合并即可.[详解]528522232-=-=;故答案是:32.16. 直角三角形两直角边长分别为和,则它斜边上的高为____________________.[答案]12 5[解析][分析]设斜边为c,斜边上的高为h,利用勾股定理可求出斜边的长,根据面积法即可得答案, [详解]设斜边为c,斜边上的高为h,∵直角三角形两直角边长分别为和,∴2234+,∴此直角三角形的面积=12×5h=12×3×4,解得:h=125.故答案为:12 5[点睛]本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,熟练掌握面积法是解题关键.17. 如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.[答案]17[解析]试题解析:根据勾股定理可知,∵S 正方形1+S 正方形2=S 大正方形=49,S 正方形C +S 正方形D =S 正方形2,S 正方形A +S 正方形B =S 正方形1,∴S 大正方形=S 正方形C +S 正方形D +S 正方形A +S 正方形B =49.∴正方形D 的面积=49-8-10-14=17(cm 2).18. 如图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为_____.[答案]20cm 2[解析][详解]解:由图可知,阴影部分的面积=12π(12AC )2+12π(12BC )2+S △ABC ﹣12π(12AB )2, =8(AC 2+BC 2﹣AB 2)+S △ABC , 在Rt △ABC 中,AC 2+BC 2=AB 2,∴阴影部分的面积=S △ABC =20cm 2.故答案为20cm 2.三、解答题(共8小题,共66分.解答应写出必要的文字说明或演算步骤.)19. 计算下列各题:(1)545842+-+(2)|1|+()02020π-(3)( -[答案](1)(24;(3). [解析][分析](1)先化为最简二次根式,后合并同类项;(2)先求绝对值,零次幂,立方根,再合并同类项;(3)括号内的部分先化为最简二次根式,合并同类项,再计算除法,最后进行分母有理化.详解](1)==(2)|1|+()02020π-114=+-4=(3)( -)(23=⨯⨯==[点睛]本题考查了二次根式,绝对值,零次幂的混合运算,熟知以上运算法则是解题的关键.20. 已知11x y ==,,求下列各式的值: (1)222x xy y ++;(2)22x y -.[答案][解析][分析]观察可知:(1)式是和的完全平方公式,(2)是平方差公式.先转化,再代入计算即可.[详解](1)当x =3+1,y =3-1时, 原式=(x +y )2=(3+1+3-1)2=12;(2)当x =3+1,y =3-1时,原式=(x +y )(x -y )=(3+1+3-1)(3+1-3+1)=43.21. 先化简,再求值,已知=2+1 求+1-21x x -的值. [答案]化简得1212x -=-- [解析][分析]首先把原式化成21111x x x ---- ,然后进行通分,相减即可对分式进行化简,然后代入数值化简求值即可. [详解]+1-21x x -=21111x x x ----=2211111x x x x x --=---- 当x=2+1时,原式=112=-=-22+1-12. [点睛]此题考查分式的化简求值,解题关键在于掌握运算法则.22. 如图所示,∠B =∠OAF =90°,BO =3 cm ,AB =4 cm ,AF =12 cm ,求图中半圆的面积.[答案]图中半圆的面积是169π8cm 2. [解析][分析] 先根据勾股定理求出AO,FO 的长,再根据半圆面积计算公式计算半圆面积即可.[详解]解:如图,∵在直角△ABO 中,∠B =90°,BO =3 cm ,AB =4 cm , ∴AO =22BO AB +=5 cm. 则在直角△AFO 中,由勾股定理,得到FO =22AO AF +=13 cm ,∴图中半圆的面积=12π×2FO ⎛⎫ ⎪⎝⎭2=12π×169π169π88=(cm 2). 答:图中半圆的面积是169π8cm 2. [点睛]此题重点考察学生对勾股定理的实际应用能力,熟练掌握勾股定理是解题的关键.23. 如图,△ABC 中,∠C =90º,AD 是角平分线,CD =15,BD =25.求AC 的长.[答案]30[解析][分析]作DE AB ⊥于E ,利用角平分线的性质得DE=CD=15,AE=AC ,在Rt BED 中,求出BE ,在Rt ABC 中,求出AC .[详解]作DE AB ⊥于E ,如图所示∵AD 为CAB ∠的角平分线,且90︒∠=C ,∴DE=CD=15,AE=AC ,在Rt BED 中,2220BE BD DE =-=,在Rt ABC 中,222AC BC AB +=,即222()()AC CD BD AE BE ++=+,∴22240(20)AC AC +=+,解得30AC =.[点睛]本题考查了角平分线的性质,勾股定理的计算,熟知以上知识,是解题的关键.24. 如图,在△ABC 中,∠B=30°,∠C=45°,AC=22.求BC 边上的高及△ABC 的面积.[答案]2,3[解析][分析]先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由2得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.[详解]∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵2,∴2AD=AC,即2AD=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴2222=4-2=23AB AD,∴3+2,∴S ABC=12BC⋅AD=123+2)×3.[点睛]此题考查勾股定理,解题关键在于求出BD的长.25. 如图所示,在四边形ABCD中,5BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积.[答案]四边形ABCD的面积是6.[解析][分析]连接BD,根据勾股定理可计算出BD的长度,再由勾股定理逆定理可判断出△ABD为直角三角形,分别计算出△ABD和△BCD的面积,求和即可.[详解]连接BD,∵∠C=90°,∴△BCD为直角三角形,∴BD2=BC2+CD2=22+1252,BD>0,∴BD5在△ABD中,∵AB2+BD2=20+5=25,AD2=52=25,∴AB2+BD2=AD2,∴△ABD直角三角形,且∠ABD=90°,∴S四边形ABCD=S△ABD+S△BCD=12×5×512×2×1=6.∴四边形ABCD的面积是6.[点睛]本题关键在于利用勾股定理逆定理判定出直角三角形,从而求出三角形的面积.26. 观察下列各式及其验算过程:2 2+323,22+323+2332323(1)按照上述两个等式及其验证过程的基本思路,的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为大于1的整数)表示的等式并给予验证.[答案](1)见解析;(2)见解析.[解析]试题分析:(1)利用已知,的值,再验证;(2)由(1)根据二次根式的性质可以总结出一般规律.解:(1),,正确;(2)由(1)中的规律可知3=22﹣1,8=32﹣1,15=42﹣1,=,正确.。

八年级数学下册辅导讲义(人教版)专题01 二次根式及其运算知识基础巩固+技能提升(解析版)

八年级数学下册辅导讲义(人教版)专题01 二次根式及其运算知识基础巩固+技能提升(解析版)

专题01 基础巩固+ 技能提升【基础巩固】1. (荆州市月考)下列说法错误的是()A.2a与()2a-相等BC.D.a与a-互为相反数【答案】D.【解析】解:A、()2a-=2a,故A正确;B=,,故B正确;C、互为相反数,故C正确;-=,故D错误;D、a a故答案为:D.2.(山东淄博月考)如图,1/x、2x三个按键,以下是这三个按键的功能.1/x:将荧幕显示的数变成它的倒数;③2x:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.100C.0.01D.0.1 10【答案】C .【解析】解:根据题意得各步显示的数如下:第一步:102=100,第二步:1100=0.01,=0.1;第四步:0.12=0.01,第五步:10.01=100,=10;第七步:102=100,第八步:1100=0.01,=0.1; … 所以显示的数是六步一个循环∵2018÷6=336 (2)∴按了第2018下后荧幕显示的数与第二步相同,所以显示的数是0.01.故答案为:C .3.(四川达州期末)若,x y 为实数,且满足26||0x y --=,则2021x y ⎛⎫ ⎪⎝⎭的值是________.【答案】-1. 【解析】解:由题意得:260220x y x y --=⎧⎨+-=⎩, 解得:22x y =⎧⎨=-⎩, ∴2021202122x y ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭=-1;故答案为:-1.4.(北京月考)已知3m =,则2019()m n +的值为______. 【答案】1.【解析】解:由题意得:16-n 2≥0,16-n 2≤0,故n 2=16,即n =±4,又n ≠-4,∴n =4,m =-3∴原式=(4-3)2019=1故答案为:1.-= 5.与,则a b________.【答案】2.【解析】解:根据题意得:a-1=2,b+2=5-2b,∴a=3,b=1∴a-b=2故答案为:2.6.(克东县期中)当x时,式子x2﹣4x+2017=________.【答案】2016.【解析】解:x2﹣4x+2017=(x﹣2)2+2013=2+2013=2016.故答案为:2016.7.(江苏扬州市期末)已知5=+,当x分别取1、2、3、…、2021时,所对y x应y值的总和是_____.【答案】2033.【解析】解:当x<4时,y=-2x+9,即当x=1时,y=9-2=7;当x=2时,y=9-4=5;当x=3时,y=9-6=3;当x≥4时,y=1,即当x分别取4,5,…,2021时,y的值均为1,综上所述,当x分别取1,2,3,…,2021时,所对应的y值的总和是7+5+3+2018×1=2033,故答案为:2033.8.(浙江杭州市期中)已知ABC的三边长分别为1,k,3,则化简92k-的结果是_______.【答案】12-4k.【解析】解:由题意可知:2<k<4,∴1<9-2k<5,1<2k-3<5,∴原式=92k--=9-2k-2k+3=12-4k,故答案为:12-4k.9.(北京顺义区期末)为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1?=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.a+3.【解析】解:根据题意可知图中的甲代表a,图2所示题目(字母代表正数)∵a>0,=a+3a+3.10.a,小数部分是b,求ab的值.32=,23<,∴532,∴a=2,b2=-=,即)41263ab++===.11.2++【解析】解:原式32=+--2332=+--=12.(云南曲靖市期末)先化简,再求值:2241244x xx x x-⎛⎫-÷⎪--+⎝⎭,其中2x=-【答案】22x-+,.【解析】解:2241244x xx x x-⎛⎫-÷⎪--+⎝⎭22(2)22(2)(2)x x xx x x x--⎛⎫=-⨯⎪--+-⎝⎭2222xx x--=⨯-+22x=-+,当2x=-+,原式==13.(浙江杭州期末)计算:(13-+++(2)(222【答案】(1);(2)8-【解析】解:(13+=5+=+=;++(2)(222=5243+--=8-14.(浙江绍兴市期末)定义:若一个三角形两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,这两边的交点称为勾股顶点.(1)如图①,已知△ABC为勾股高三角形,其中A为勾股顶点,AD是BC边上的高.若BD =1,CD=2,求高AD的长;-,求证:△ABC是勾股高三角形.(2)如图②,△ABC中,AB=AC=3,BC=3【答案】(1(2)见解析.【解析】解:(1)解:∵AD是BC边上的高,BD=1,CD=2,∴AB 2=AD 2+1,AC 2=AD 2+4,∵△ABC 为勾股高三角形,A 为勾股顶点,∴ AC 2-AB 2=AD 2,即(AD 2+4)-(AD 2+1)=AD 2,∴ AD(2)∵AB =AC =3 ,∴点A 不可能为勾股顶点过B 作BH 垂直AC 于D 点H ,设HC =x ,由题意,得BC 2-CH 2=BH 2=AB 2-AH 2,∴()()2222333x x -=--,x =6-∴BH 2=BC 2-CH 2=()(223627--=∵AB 2-BC 2=()223327-=∴BH 2=AB 2-BC 2∴△ABC 是勾股高三角形.15.(河南省孟津县月考)根据下图,b c a c -+++.【答案】﹣b .【解析】解:由数轴可以看出:a >0,b <0,c <0,a <﹣c ,b c a c ++,=|b |-|b +c |+|a -c |+|a +c |,=﹣b ﹣[﹣(b +c )]+(a ﹣b )+[﹣(a +c )],=﹣b+(b+c)+a﹣b﹣a﹣c,=﹣b.16.(2019·南阳市月考)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,再直爬向点C停止,已知点A表示,点C表示2,设点B所表示的数为m.(1)求m的值(2)求2m m的值1(1)(3)直接写出蚂蚁从点A到点C所经过的整数中,非负整数有个【答案】(1)2m=-(2)6-(3)3.【解析】解:(1)由题意可得:m-2=2,∴m=2-(2)把m=2-2m m1(1)2|221|2213232=-;6(3)从点A到点C所经过的整数有-1,0,1,2,其中非负整数有0,1,2,所以蚂蚁从点A到点C所经过的整数中,非负整数有3个.=,17.(成都市温江区月考)观察下列一组式的变形过程,1==(1=;(2)请你用含n(n为正整数)的关系式表示上述各式子的变形规律.并证明你的结论.(3)利用上面的结论,求下列式子的值:)++⋅.1【答案】(1)(21=-n 为正整数),证明见解析;(3)2007.【解析】解:(1故答案为:(2=-n 为正整数).1=n 为正整数);(3)原式=12008++⋅1+)﹣1)+1)=2008﹣1=2007.18.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S . (1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;(2)(实际应用)有一块四边形的草地如图所示,现测得AB =()m ,BC =5m ,CD=7m ,AD =m ,∠A =60°,求该块草地的面积.【答案】(1)(2)()m 2【解析】解:(1)△ABC 的面积为S=故答案为:;(2)解:过点D 作DE ⊥AB ,垂足为E ,连接BD ,在Rt △ADE 中,∵∠A =60°,∴∠ADE =30°,∴AE =12AD =∴BE =AB ﹣AE ==DE ==∴BD ==∴S △BCD =∵S △ABD =112422AB DE ⋅=⨯⨯=∴S 四边形ABCD =S △BCD +S △ABD = 24+ 19.(江苏南通市期末)(1)判断下列各式是否成立?并选择其中一个说明理由;===. (2)用字母表示(1)中式子的规律,并给出证明. 【答案】(1)成立,理由见解析;(2)2211n nn n n n +=--(n >1),理由见解析.【解析】解:(1)成立,===(2====,1)n =>,1)n ==>. 20.(2019·兰州市期中)先阅读下列的解答过程,然后再解答:,只要我们找到两个正数a 、b ,使a +b =m ,ab =n ,使得22m +===(a>b )这里m =7,n =12,由于4+3=7,4×3=12即227+==2=(1= ,= ;(2【答案】(11 , ;(22.【解析】解:(1中,m =4,n =3,由于3+1=4,3×1=3+==即22411;,m=9,n=20,由于4+5=9,4×5=20+==即229=2(2这里m=19,n=60,由于15+4=19,15×4=60+==即2219=2221.(洛阳市期中)像2)2)=1a(a≥0)、+1)﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如+1﹣﹣有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1;(2)计算:(3的大小,并说明理由.【答案】(12)2+;(3.【解析】解:(12+(22+;(3,,,.22.(江苏盐城市期中)先观察下列等式,再回答问题:111111112=+-=+;111112216=+-=+;1111133112=+-=+;(1)根据上面三个等式,(直接写出结果) (2)根据上述规律,解答问题:设...m =+求不超过m 的最大整数是多少?【答案】(1)1120;(2)不超过m 的最大整数是2019.【解析】解:(1)观察可得1120;(2)m =112+116+1112+…+1120192020⨯ =1×2019+(12+16+112+…+1120192020⨯)=2019+(1﹣12+12﹣13+13﹣14+…+1120192020-)=2019+(1﹣1 2020)=2019 20192020,∴不超过m的最大整数是2019.【拓展提升】1.数;③实数与数轴上的点是一一对应的关系;④两个无理数的和一定是无理数;⑤已知a=2b=2则a、b是互为倒数.其中错误的个数有()A.1个B.2个C.3个D.4个【答案】B.【解析】解:①带根号的数是无理数,,正确;③实数与数轴上的点是一一对应的关系,正确;④两个无理数的和一定是无理数,错误;⑤已知a=2b=2则a、b是互为倒数,正确.故答案为:B.2.(偃师市月考)设a,b部分,则21b a-的值为()A1B1+C1D1【答案】B.∴a ,∴b ,∴21b a -, 故答案为:B .3.(湖南邵阳市期末)若表示a ,b 两个实数的点在数轴上的位置如图所示,则化简a b - )A .2b -B .2bC .2a -D .2a【答案】C .【解析】解:∵由数轴可得a <0<b ,|a |>|b |, ∴a −b <0,a +b <0,∴a b -+|a −b |+|a +b |=b - a −(a +b ) =b - a –a -b =−2a . 故答案为:C .4.(四川期末)化简正确的是( )A B C D 【答案】C . 【解析】解:﹣1x>0,得x <0,x. 故答案为:C .5.(浙江杭州市)化简二次根式 )A B C D 【答案】B .【解析】解:由题意知:a +2≤0,即a ≤-2,原式=a a ==故答案为:B .6.(2019·孟津县月考)把根号外的因式移入根号内,得________【解析】解:∵310a -≥, ∴a <0,∴a===.故答案为:a.7.将(0)a a -<化简的结果是___________________.【答案】 【解析】解:∵a <0 ∴a -3<0,∴(a -=-故答案为:8.(北京期中)我们学完二次根式后,爱思考的小鲍和小黄提出了一个问题:我们可以算22,23-的值,我们可以算122,233的值吗?金老师说:也是可以的,你们可以查阅资料来进行学习.他们查阅资料后,发现了这样的结论:0)nmaa =≥,例如:122=,3248===,那请你根据以上材料,写出123=____________,238=___________.4.【解析】123=,2384===.9.(龙口市期中)已知实数a 满足|2014-a |+a ,那么a -20142+1的值是______ . 【答案】2016.【解析】解:∵a -2015≥0, ∴a ≥2015,∴原式可变形为:a -=a , ∴a -2015=20142, ∴a =20142+2015,∴a -20142+1=20142+2015-20142+1=2016. 故答案为:2016.10.(灌南县月考)已知a 满足2019a a -=.(1有意义,a 的取值范围是 ;则在这个条件下将2019a -去掉绝对值符号可得2019a -=(2)根据(1)的分析,求22019a -的值. 【答案】(1)a ≥2021;a -2019;(2)2021. 【解析】解:(2)由(1)可知,∵2019a a -=,∴2019a a -=,2019=, ∴220202019a -=, ∴202019220a =-.11.先阅读下列解答过程,437+=,4312⨯=,即:227+=,=所以2====+问题:(1==____________﹔(2,只要我们找到两个正数a ,b (a b >),使a b m +=,ab n =,即22m +== =__________.(3(请写出化简过程)【答案】(11(2)a b >;(3.【解析】解:(11===;;(2)a b ===>;(3.12.(广东茂名市月考)阅读下述材料:我们在学习二次根式时,熟悉的分母有理化以及应用.其实,有一个类似的方法叫做“分子有理化”:与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中的根式比如:-==分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:-==>再例如:求y=的最大值.做法如下:解:由20,20x x+≥-≥可知2x≥,而y==当2x=时,2,所以最大值是2.解决下述问题:(1)比较4和(2)求y=【答案】(1)4-<(2)y的最大值为2,1.【解析】解:(1)4===而4>4∴>4∴<(2)由10x -,10x +,0x 得01x ,y +∴当x =0时,有最大值1,1,所以y的最大值为2;当x =1时,1,0,所以y 1.13.仔细阅读以下内容解决问题:第24届国际数学家大会会标,设两条直角边的边长为a ,b ,则面积为12ab ,四个直角三角形面积和小于正方形的面积得:222a b ab +≥,当且仅当a b =时取等号.在222a b ab +≥中,若0a >,0b >,代替a ,b 得,a b +≥,即2a b+≥(*),我们把(*)式称为基本不等式.利用基本不等式我们可以求代数式的最小值.我们以“已知x 取实数,2”为例给同学们介绍.2=0>0>,≥=,=时取等号,即当x =,最小值为总结:利用基本不等式0,0)2a b a b +≥>>求最值,若ab 为定值,则+a b 有最小值. 请同学们根据以上所学的知识求下列代数式的最值,并求出取得最值时相应x 的取值.(1)若0x >,求22x x+的最小值; (2)若2x >,求12x x +-的最小值; (3)若0x ≥,的最小值. 【答案】见解析.【解析】解:(1)由题知42=222x x x x++,∴422x x +≥,当且仅当242=x x 时取等号, 即当x =1时,最小值为4;(2)由题知11=2222x x x x +-++--, ∴1222x x -++≥-,当且仅当12=2x x --时取等号, 即当x =3时,最小值为4;(32922+,26≥,2, 即当x =1时,最小值为6.。

最新人教版八年级下册数学《期中测试题》及答案解析

最新人教版八年级下册数学《期中测试题》及答案解析

2021年人教版数学八年级下册期中测试学校________ 班级________ 姓名________ 成绩________一、选择(每小题3分,共24分)1. 下列二次根式中属于最简二次根式的是( ) A. 14 B. 48 C. a b D. 44a +2. 二次根式3x +有意义的条件是( )A. x>3B. x>-3C. x≥3D. x≥-3 3. 下列各组数中不能作为直角三角形的三边长的是( )A . 1.5,2,3 B. 7,24,25C. 6,8,10D. 9,12,15 4. 顺次连接矩形四边中点所得的四边形一定是【 】A 正方形 B. 矩形C. 菱形D. 等腰梯形 5. 下列计算正确的是( )A. 23325+=B. 822÷=C. 114222=D. 535256⨯= 6. 如图,Rt △ABC 中,∠ACB =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积之和为( ) A. 150cm 2B. 200cm 2C. 225cm 2D. 无法计算7. 如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A. 8米B. 10米C. 12米D. 14米二.填空题(每小题3分,共24分)8. 如图,菱形ABCD的边长为2,60DAB︒∠=,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为_____.9. 在实数范围因式分解:25a-=________.10. 下列四个等式:2222(1) (4)4;(2)(4)16;(3)(4)4;(4)(4)4-=--=-==;正确的是____________11. 下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____.12. 如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF =_____度.13. 如图,每个小正方形的边长为1.在△ABC中,点D为AB的中点,则线段CD的长为__________;14. 如图,菱形ABCD的对角线AC=32cm,BD=42cm,则菱形ABCD的面积是_____.15. 如图所示,将四根木条组成的矩形木框变成▱ABCD 的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.16. 按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是 _______三.解答题(本小题满分10分)17. (1)27-1183-12;(2) 321252⨯÷ 18. 先化简,再求值:232()224x x x x x x -÷-+-,其中34x =-. 19. 如图平行四边形ABCD 中,对角线AC 与BD 相交于O ,E .F 是AC 上的两点,并且AE =CF ,求证:四边形BFDE 是平行四边形20. 已知:如图,四边形ABCD 四条边上的中点分别为E .F .G .H ,顺次连接EF .FG .GH .HE ,得到四边形EFGH (即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是 ,证明你的结论.(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形;(3)结合问题(2),请做出图形并且证明21. 课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm ,请你帮小明求出砌墙砖块的厚度a 的大小(每块砖的厚度相等).22. 如图在△ABC 中,∠ACB=90°,点D ,E 分别是AC 、AB 的中点,点F 在BC 的延长线上,且∠CDF=∠A. 求证:四边形DECF 是平行四边形.23. 如图,在ABC 中,,,AB AC AD BC =⊥垂足为点,D AN 是ABC 外角CAM ∠的平分线,CE AN ⊥,垂足为点E .()1求证:四边形ADCE 为矩形;()2当ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.24. 台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点 C 为一海港,且点 C 与直线AB 上两点A,B 的距离分别为300km 和400km ,又AB=500km ,以台风中心为圆心周围250km 以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?25. 如图,矩形OABC的边OA,OC分别与坐标轴重合,并且点B的坐标为(8,4).将该矩形沿OB折叠,使得点A落在点E处,OE与BC的交点为D.为等腰三角形;(1)求证:OBD(2)求点E的坐标;(3)坐标平面内是否存在一点F,使得以点B,E,F,O为顶点的四边形是平行四边形,若存在,请直接写出点F的坐标;若不存在,请说明理由.答案与解析一、选择(每小题3分,共24分)1. 下列二次根式中属于最简二次根式的是( )A.B.C.D. 【答案】A【解析】【分析】根据最简二次根式定义和化简方法将二次根式化简成最简二次根式即可.【详解】如果一个二次根式符合下列两个条件:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式.那么,这个根式叫做最简二次根式.只有A 符合定义.故答案选A【点睛】本题主要考查二次根式的化简和计算,解决本题的关键是熟练掌握二次根式的化简方法. 2. ( )A. x>3B. x>-3C. x≥3D. x≥-3 【答案】D【解析】【分析】 根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D 【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键. 3. 下列各组数中不能作为直角三角形的三边长的是( ) A. 1.5,2,3B. 7,24,25C. 6,8,10D. 9,12,15【答案】A【解析】【详解】由勾股定理的逆定理可以判断能不能构成直角三角形.A 、由2221.523+≠,所以不能作为直角三角形的三边长,故本选项正确;B 、由22272425+=,所以能作为直角三角形的三边长,故本选项错误;C 、由2226810+=,所以能作为直角三角形的三边长,故本选项错误;D 、由22291215+=,所以能作为直角三角形的三边长,故本选项错误;故选A .考点:勾股定理的逆定理4. 顺次连接矩形四边中点所得的四边形一定是【 】A. 正方形B. 矩形C. 菱形D. 等腰梯形 【答案】C【解析】矩形的性质,三角形中位线定理,菱形的判定.【分析】如图,连接AC .BD ,在△ABD 中,∵AH=HD ,AE=EB ,∴EH=12BD .同理FG=12BD ,HG=12AC ,EF=12AC .又∵在矩形ABCD 中,AC=BD ,∴EH=HG=GF=FE .∴四边形EFGH 为菱形.故选C .5. 下列计算正确的是( ) A. 23325= B. 822÷= C. 11422= D. 535256=【答案】B【解析】【分析】利用二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的性质对C 进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、2332+不能计算,所以A选项错误;B、原式=822÷=,所以B选项正确;C、原式=32,所以C选项错误;D、原式=2532256⨯=,所以D选项错误.故选:B.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.6. 如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积之和为()A. 150cm2B. 200cm2C. 225cm2D. 无法计算【答案】C【解析】【分析】小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC2+BC2,对于Rt△ABC,由勾股定理得AB2=AC2+BC2.AB长度已知,故可以求出两正方形面积的和.【详解】解:正方形ADEC的面积为AC2,正方形BCFG的面积为BC2;在Rt△ABC中,AB2=AC2+BC2,AB=15,则AC2+BC2=225cm2.故选:C.【点睛】本题考查了勾股定理.勾股定理应用的前提条件是在直角三角形中.7. 如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A. 8米B. 10米C. 12米D. 14米【答案】B【解析】 【详解】试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.如图,设大树高为AB=10米,小树高为CD=4米,过C 点作CE ⊥AB 于E ,则EBDC 是矩形,连接AC ,∴EB=4米,EC=8米,AE=AB ﹣EB=10﹣4=6米,在Rt △AEC 中,(米).故选B .二.填空题(每小题3分,共24分)8. 如图,菱形ABCD 的边长为2,60DAB ︒∠=,点E 为BC 边的中点,点P 为对角线AC 上一动点,则PB+PE 的最小值为_____.【答案】 3【解析】【分析】根据ABCD 是菱形,找出B 点关于AC 的对称点D ,连接DE 交AC 于P ,则DE 就是PB+PE 的最小值,根据勾股定理求出即可.【详解】解:如图,连接DE 交AC 于点P ,连接DB ,∵四边形ABCD 是菱形,∴点B 、D 关于AC 对称(菱形的对角线相互垂直平分),∴DP=BP ,∴PB+PE 的最小值即是DP+PE 的最小值(等量替换),又∵ 两点之间线段最短,∴DP+PE 的最小值的最小值是DE ,又∵60DAB ︒∠=,CD=CB,∴△CDB 是等边三角形,又∵点E 为BC 边的中点,∴DE ⊥BC (等腰三角形三线合一性质),菱形ABCD 的边长为2,∴CD=2,CE=1, 由勾股定理得22(1) DE=213-=, 3.【点睛】本题主要考查轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确定P 点的位置是解题的关键.9. 在实数范围因式分解:25a -=________. 【答案】(5)(5)a a【解析】【分析】将5改成25,然后利用平方差进行分解即可. 【详解】25a - =2a -25 =(55a a +,故答案为(a a .【点睛】本题考查了在实数范围内分解因式,把5写成2是利用平方差公式进行分解的关键.10. 下列四个等式:2224;(2)(16;(3)(4=-===;正确的是____________【答案】(3)、(4)【解析】【分析】分别验证四个等式的正确性,并数出其正确的个数即可得到答案.【详解】(1)∵4==,∴(1)错误;(2)∵2(4=,∴(2)错误;(3)∵22 ((2)4=-=,∴(3)正确;(4)∵2224==,∴(4)正确.故正确的有(3)、(4)两个,故答案为:(3)、(4).【点睛】本题主要考查了平方根的计算,掌握负数在实数范围内不能开平方;正数的平方根有两个,它们互为相反数,其中正的平方根,就是这个数的算术平方根;任何数的平方都不会是负数.11. 下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____.【答案】1【解析】【分析】先把每个命题的逆命题写出来,再判断逆命题是否成立,数出逆命题成立的个数即可得到答案.【详解】解:①对顶角相等的逆命题为:相等的角是对顶角,不成立(例如:等边三角形中的三个角都相等,但不是对顶角);②全等三角形的对应边相等的逆命题为:对应边相等的三角形是全等三角形,成立(SSS);③如果两个实数是正数,它们的积是正数的逆命题为:乘积是正数的两个实数是都是正数,不成立,因为两个负数的乘积也是正数;因此,只有②正确,故答案是1.【点睛】本题主要考查了命题的逆命题的定义(把一个命题的题设和结论互换可得到其逆命题),能正确写出逆命题是解题的关键.12. 如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF =_____度.【答案】90【解析】【详解】∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴OA=OD,OE=OF,∠2=∠3,∵AD是△ABC的角平分线,∵∠1=∠2,∴∠1=∠3,∴AE=DE.∴▱AEDF为菱形.∴AD⊥EF,即∠AOF=90°.13. 如图,每个小正方形边长为1.在△ABC中,点D为AB的中点,则线段CD的长为__________;【答案】262 【解析】 【分析】 根据勾股定理分别求出AB 、BC 、AC 的长度,用勾股定理的逆定理验证△ABC 是直角三角形,然后根据直角三角形斜边的中线等于斜边的一半即可得到答案.【详解】解:∵每个小正方形的边长为1,∴根据勾股定理得:22 2222CB =+=,22 3332CA =+=,22 A 5126B =+=,∴222 26CB CA AB +==,∴△ABC 是直角三角形(勾股定理的逆定理),又∵点D 为AB 的中点∴12622CD AB ==(直角三角形斜边的中线等于斜边的一半). 【点睛】本题主要考查了直角三角形斜边的中线等于斜边的一半的性质、勾股定理(222+=a b c ,c 为斜边的长度)、勾股定理的逆定理的应用,判断△ABC 是直角三角形是解题的关键.14. 如图,菱形ABCD 的对角线AC =32cm ,BD =42cm ,则菱形ABCD 的面积是_____.【答案】12cm 2【解析】【分析】利用菱形的面积公式可求解. 【详解】解:因为菱形的对角线互相垂直平分,∵AC=32cm,BD=42cm,则菱形ABCD的面积是13242122⨯⨯=cm2.故答案为12cm2.【点睛】此题主要考查菱形的面积计算,关键是掌握菱形的面积计算方法.15. 如图所示,将四根木条组成的矩形木框变成▱ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.【答案】30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE=12AB,又△ABE为直角三角形,∴∠ABE=30°,则平行四边形中最小的内角为30°.故答案为30°【点睛】本题考查了平行四边形的面积公式及性质,根据题意求得AE=12AB是解决问题的关键.16. 按如图所示的程序计算,若开始输入的n值为2,则最后输出的结果是_______【答案】8+52【解析】【分析】根据程序框图的流程逐步进行计算,判断根式的大小即可解题.【详解】解:输入<15,输入, n(n+1)= 8+>15,∴输出结果为8+【点睛】本题考查了根式的大小判断,程序框图的应用,中等难度,读懂流程图,会判断根式的大小是解题关键.三.解答题(本小题满分10分)17.;(2) 4÷【答案】 【解析】 【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;(2)根据二次根式乘除法的法则进行计算即可.【详解】(1)原式=13⨯ ;(2)原式=11245⨯⨯⨯=110【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.18. 先化简,再求值:232()224x x x x x x -÷-+-,其中4x =.【解析】【分析】首先计算括号内的分式,通分相减,然后把除法转化为乘法,约分.即可化简式子,最后代入数值计算即可.【详解】解: 232224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭ 3(2)(2)(2)(2)(2)(2)(2)(2)2x x x x x x x x x x x ⎡⎤+-+-=-⋅⎢⎥-++-⎣⎦228(2)(2)(2)(2)2x x x x x x x++-=⋅+- 2282x x x+= =x+4.当34x =-时,原式3443=-+=.【点睛】考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.19. 如图平行四边形ABCD 中,对角线AC 与BD 相交于O ,E .F 是AC 上的两点,并且AE =CF ,求证:四边形BFDE 是平行四边形【答案】见解析【解析】【分析】要证明四边形BFDE 是平行四边形,可以证四边形BFDE 有两组对边分别相等,即证明BF=DE ,EB=DF 即可得到.【详解】证明:∵ABCD 是平行四边形,∴AB=DC ,AB ∥DC ,∴∠BAF=∠DCE ,又∵对角线AC 与BD 相交于O ,E .F 是AC 上的两点,并且AE =CF ,所以在△ABF 和△DCE 中,BA DC BAF DCE AF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△CDE (SAS ),∴BF=DE ,同理可证:△ADF ≌△CBE (SAS ),∴DF=BE,∴四边形BFDE是平行四边形.【点睛】本题主要考查平行四边形的判定(两组对边分别平行,两组对边分别相等,有一组对边平行且相等),掌握判定的方法是解题的关键,在解题过程中,需要灵活运用所学知识,掌握三角形全等的判定或者两直线平行的判定对证明这道题目有着至关重要的作用.20. 已知:如图,四边形ABCD四条边上的中点分别为E.F.G.H,顺次连接EF.FG.GH.HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论.(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)结合问题(2),请做出图形并且证明【答案】(1)平行四边形,证明见解析;(2)互相垂直;(3)见解析;【解析】【分析】(1)先观察四边形EFGH的形状,利用中位线,发现可以证明四边形有一组对边平行且相等,即可得到答案;(2)考虑平行四边形变到矩形的条件,即可得到答案;(3)利用等量关系由AC⊥BD证EH⊥HG即可得到答案.【详解】解:(1)四边形EFGH的形状是平行四边形,理由如下:如图,连接BD,∵E、F是AB、AD的中点,∴EH∥BD,12EH BD=,同理可得:FG∥BD,12FG BD=,∴EF∥FG,EH FG=(等量替换),∴四边形EFGH的形状是平行四边形(由一组对边平行且相等的四边形是平行四边形).(2)当四边形ABCD的对角线相互垂直时,四边形EFGH是矩形;(3)证明(2),理由如下,作图如下:如图,连接AC、BD,∵四边形ABCD四条边上的中点分别为E.F.G.H,∴EH∥BD,HG∥AC,又∵四边形ABCD的对角线相互垂直,即AC⊥BD,∴EH⊥HG,又∵四边形EFGH的形状是平行四边形,∴四边形EFGH的形状是矩形(有个一角是直角的平行四边形是矩形).【点睛】本题主要考查对三角形中位线定理、平行四边形的性质、矩形的判定、菱形的性质等知识点的理解与掌握,熟练掌握各定理是解题的关键.21. 课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).【答案】(1)证明见解析;(2)5cm.【解析】【分析】(1)根据题意可知AC=BC ,∠ACB=90°,AD ⊥DE ,BE ⊥DE ,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC ,从而得到结论;(2)根据题意得:AD=4a ,BE=3a ,根据全等可得DC=BE=3a ,由勾股定理可得(4a )2+(3a )2=252,再解即可.【详解】(1)根据题意得:AC=BC ,∠ACB=90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC ,在△ADC 和△CEB 中,ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS );(2)由题意得:AD=4a ,BE=3a ,由(1)得:△ADC ≌△CEB ,∴DC=BE=3a ,在Rt △ACD 中:AD 2+CD 2=AC 2,∴(4a )2+(3a )2=252,∵a >0,解得a=5,答:砌墙砖块的厚度a 为5cm .考点1.:全等三角形的应用2.勾股定理的应用.22. 如图在△ABC 中,∠ACB=90°,点D ,E 分别是AC 、AB 的中点,点F 在BC 的延长线上,且∠CDF=∠A. 求证:四边形DECF 平行四边形.【答案】证明见解析.【解析】【详解】∵D ,E 分别为AC ,AB 的中点,∴DE 为△ACB 的中位线.∴DE ∥BC .∵CE 为Rt △ACB 的斜边上的中线,∴CE=12AB=AE . ∴∠A=∠ACE .又∵∠CDF=∠A ,∴∠CDF=∠ACE .∴DF ∥CE . 又∵DE ∥BC ,∴四边形DECF 为平行四边形.23. 如图,在ABC 中,,,AB AC AD BC =⊥垂足为点,D AN 是ABC 外角CAM ∠的平分线,CE AN ⊥,垂足为点E .()1求证:四边形ADCE 为矩形;()2当ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.【答案】(1)证明见解析;(2)当ABC 满足90BAC ∠=︒时,四边形ADCE 是一个正方形,证明见解析.【解析】 【分析】(1)先根据等腰三角形的三线合一可得BAD CAD ∠=∠,再根据角平分线的定义可得MAE CAE ∠=∠,从而可得90DAE ∠=︒,然后根据垂直的定义可得90ADC AEC ∠=∠=︒,最后根据矩形的判定即可得证;(2)先根据等腰直角三角形的性质可得45ACB B ∠=∠=︒,再根据直角三角形的性质可得45CAD ACD ∠=∠=︒,然后根据等腰三角形的定义可得CD AD =,最后根据正方形的判定即可得.【详解】(1)在ABC 中,,=⊥AB AC AD BC ,12BAD CAD BAC ∴∠=∠=∠(等腰三角形的三线合一), AN 是ABC 外角CAM ∠的平分线,12MAE CA CA E M ∴∠∠=∠=, 11118090222DAE CAD CAE BA CA C M ∴∠=∠+∠=∠+=⨯︒=∠︒, 又,AD BC CE AN ⊥⊥,90ADC AEC ∴∠=∠=︒,∴四边形ADCE 为矩形;(2)当ABC 满足90BAC ∠=︒时,四边形ADCE 是一个正方形,证明如下:,90AB AC BAC ∠==︒,45ACB B ∴∠=∠=︒,AD BC ⊥,45CAD ACD ∴∠=∠=︒,CD AD ∴=,四边形ADCE 为矩形,∴矩形ADCE 是正方形,故当90BAC ∠=︒时,四边形ADCE 是一个正方形.【点睛】本题考查了正方形与矩形的判定、等腰三角形的三线合一、角平分线的定义等知识点,熟练掌握正方形与矩形的判定方法是解题关键.24. 台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点 C 为一海港,且点 C 与直线AB 上两点A,B 的距离分别为300km 和400km ,又AB=500km ,以台风中心为圆心周围250km 以内为受影响区域.(1)海港C 受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?【答案】(1)海港C 受台风影响,理由见解析;(2) 7小时【解析】【详解】试题分析:(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间;试题解析:(1)海港C受台风影响.理由:如图,过点C作CD⊥AB于D,∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2∴△ABC是直角三角形.∴AC×BC=CD×AB∴300×400=500×CD∴CD=300400500⨯=240(km)∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受到台风影响.(2)当EC=250km,FC=250km时,正好影响C港口,∵22EC CD-∴EF=140km∵台风的速度为20km/h,∴140÷20=7(小时)即台风影响该海港持续的时间为7小时.25. 如图,矩形OABC的边OA,OC分别与坐标轴重合,并且点B的坐标为(8,4).将该矩形沿OB折叠,使得点A落在点E处,OE与BC的交点为D.(1)求证:OBD ∆为等腰三角形;(2)求点E 的坐标;(3)坐标平面内是否存在一点F ,使得以点B ,E ,F ,O 为顶点的四边形是平行四边形,若存在,请直接写出点F 的坐标;若不存在,请说明理由.【答案】(1)见解析;(2) E 点坐标为2432,55⎛⎫ ⎪⎝⎭;(3)存在三点,11612,55F ⎛⎫- ⎪⎝⎭,21612,55F ⎛⎫- ⎪⎝⎭,36452,55F ⎛⎫ ⎪⎝⎭【解析】【分析】(1)分析题目,证明OD=BD 即可证明OBD ∆为等腰三角形,根据折叠的性质即可得到;(2)根据矩形的性质先把OD 的长度计算出来,再证明DE=CD ,根据面积公式即可得到答案;(3)分情况讨论点F 所在的象限,根据平行四边形的性质计算即可得到.【详解】解:(1)∵OBE ∆是由OBA ∆折叠所得,∴OBE ∆≌OBA ∆,∴12∠=∠,又∵四边形OABC 是矩形,∴OA ∥BC ,∴13∠=∠,∴OD=BD∴OBD ∆为等腰三角形(2)过点E 作EF ⊥x 轴于F 交BC 于G ,设CD 的长为x ,则BD=BC-CD=8-x ,由(1)知OD=BD=8-x , ∵四边形ABCD 是矩形,,∴∠OCD=∠OAB=90°,CA=AB ,∴在Rt OCD ∆中,222OC CD OD +=,即2223(8)x x +=-,解得3x =,即CD=3,OD=BD=8-x =5,由(1)知,OBE ∆≌OBA ∆,∴∠OEB=∠OAB=90°∴∠OCD=∠BED=90°,在OCD ∆和BED ∆中,OCD BED ODC BDE OD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴OCD ∆≌BED ∆(AAS ),∴DE=CD=3 ,BE=OC=4,∵EF ⊥x 轴,∴∠OFB=90°,∵OA ∥BC ,∴∠CGE=∠OFB=90°,∴CG ⊥BD , ∴1122BDE S DE BE BD EG ∆=⨯=⨯, 即125EG =, ∴在Rt DEG ∆中,95DG ===, ∵∠OCG=∠OFE=∠CGF =90°,∴四边形OFGC 是矩形,∴OF=CG=CD+DG=3+95=245, ∴EF=GE+GF=125+4=325, 故E 点坐标为2432,55⎛⎫ ⎪⎝⎭; (3) 存在三点11612,55F ⎛⎫- ⎪⎝⎭,21612,55F ⎛⎫- ⎪⎝⎭,36452,55F ⎛⎫ ⎪⎝⎭(附答案)可分三种情况:1.点F 在第二象限,如图1:∵2432,55E⎛⎫⎪⎝⎭,()8,4B,()0,0O,∴124328,4 55F ⎛⎫--⎪⎝⎭,即11612,55F⎛⎫-⎪⎝⎭;2.点F在第四象限,如图2:∵2432,55E⎛⎫⎪⎝⎭,()8,4B,()0,0O,∴22432 8,455F ⎛⎫--⎪⎝⎭,即21612,55F⎛⎫-⎪⎝⎭;3.点F在第一象限,如图3:∵2432,55E⎛⎫⎪⎝⎭,()8,4B,()0,0O,∴324328,4 55F ⎛⎫++⎪⎝⎭,即36452,55F⎛⎫⎪⎝⎭;故存在三点11612, 55F ⎛⎫-⎪⎝⎭,21612,55F⎛⎫-⎪⎝⎭,36452,55F⎛⎫⎪⎝⎭使得以点B,E,F,O为顶点的四边形是平行四边形.【点睛】本题主要考查矩形、勾股定理、全等三角形的判定、平行四边形的性质和点的坐标的综合应用,重点考查了对性质的联合应用,要特别注意的是点E的位置的确定,要根据平行四边形的性质考虑全面一些.。

人教版八年级数学下册期中试卷(共4套)(含答案)

人教版八年级数学下册期中试卷(共4套)(含答案)

人教版八年级数学下册期中试卷(共4套)(含答案)人教版八年级数学下册期中试卷(含答案)考试时间90分钟;满分120分)座号:______ 姓名:______ 成绩:______一、选择题(每题3分,共30分)1、下列运算中错误的是()A。

2+3=5B。

8-2=2C。

2×3=6D。

(-3)2=3改写:下列运算中错误的是()A。

2+3=5B。

8-2=2C。

2×3=6D。

(-3)2=32、如图,平行四边形ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.XXXB.AO=ODC.AO⊥ABD.AO=OC改写:如图,平行四边形ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO垂直于ODB.AO等于ODC.AO垂直于ABD.AO等于OC3、下列根式中,不能合并的是()A。

18B。

12C。

D。

27改写:下列根式中,不能合并的是()A。

18B。

12C。

D。

274、下列各组数中,以a、b、c为边长的三角形不是直角三角形的是()A.a=3,b=4,c=5。

B.a=0.6,b=0.8,c=1C.a=,b=2,c=3D.a=1,b=2,c=改写:下列各组数中,以a、b、c为边长的三角形不是直角三角形的是()A.a=3,b=4,c=5。

B.a=0.6,b=0.8,c=1C.a=,b=2,c=3D.a=1,b=2,c=5、如果x≥1,那么化简(1-x)1-x的结果是()A.x-1B.(x-1)1-xC.(1-x)x-1D.(x-1)1-x改写:如果x≥1,那么化简(1-x)1-x的结果是()A.x-1B.(x-1)1-xC.(1-x)x-1D.(x-1)1-x6、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形B.矩形C.菱形D.梯形改写:顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形B.矩形C.菱形D.梯形7、如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为()A.5B.5C.10D.10-1改写:如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为()A.5B.5C.10D.10-18、如图,在平行四边形ABCD中,BM是∠ABC的平分线,交CD于点M,且MC=2,平行四边形ABCD的周长是14,则DM等于()A.1B.2C.3D.4改写:如图,在平行四边形ABCD中,BM是∠ABC的平分线,交CD于点M,且MC=2,平行四边形ABCD的周长是14,则DM等于()A.1B.2C.3D.49、如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连结EF.若EF=23,BD=8,则菱形ABCD的周长为()A.8B.8C.163D.87改写:如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连结EF.若EF=23,BD=8,则菱形ABCD的周长为()A.8B.8C.163D.8710、如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°③BE+DF=EF;④CE=3,其中正确的结论个数为()改写:如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°③BE+DF=EF;④CE=3,其中正确的结论个数为()二、填空题(每小题3分,共24分)11、在直角坐标系中,已知点A (0,2),B(1,3),则线段AB的长度是_________。

新人教版数学八年级下册期中测试卷C及参考答案-二次根式勾股定理平行四边形

新人教版数学八年级下册期中测试卷C及参考答案-二次根式勾股定理平行四边形

第 一 页新人教版数学八年级下册期中测试卷C 及参考答案二次根式勾股定理平行四边形一.选择题(每小题3分,共30分) 1.要使x -3+121-x 有意义,则x 的取值范围是( )A.321≤≤x B.3≤x 且x ≠21 C.21 <x <3 D. 21<x ≤3 2.下列二次根式是最简二次根式的是( )A.3a 2B.x 82C.y 3D.4b3.已知m,n 是两个连续的自然数(m <n ),且q=mn,设 p=m q n q -++,则p 为( )A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数4.若一个三角形的三边长为6,8,x ,则此三角形是直角三角形时,x 的值是( )A.8 B.10 C.27 D.10或275.下列命题的逆命题成立的是( )A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等 6.如图是一张直角三角形纸片,两直角边AC=6㎝,BC=8㎝,现将△ABC 折叠,使B 点与A 点重合,折痕为DE ,则BE 的长为( )A.4㎝B.5㎝C.6㎝D.10㎝ 7.已知四边形ABCD 是平行四边形,下列结论中,错误的是( )A.AB=CDB.AC=BDC.当AC ⊥BD 时,它是菱形D.当∠ABC=90°时,它是矩形 8.如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DE 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( )A.23B.33C.4D.439.如图,在△ABC 中,BD,CE 是△ABC 的中线,BD 与CE 相交于O ,点F,G 分别是BO,CO 的中点,连接AO ,若AO=6㎝,BC=8㎝,则四边形DEFG 的周长是( )A.14㎝B.18㎝C.24㎝D.28㎝10.如图,将矩形ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12第 二 页㎝,EF=16㎝,则AD 的长为( ) A.12㎝ B.16㎝ C.20㎝ D.28㎝ 二.填空题(每小题3分,共24分)11.在实数范围内分解因式:x 5-9x= .12.如图,它是一个数值转换机,若输入的a 值为2,则输出的结果应为 。

人教版八年级下册数学《期中检测试题》及答案解析

人教版八年级下册数学《期中检测试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线2.式子21xx -在实数范围内有意义的条件是( ) A. 1x ≥B. 1x >C. 0x <D. 0x ≤3.已知一组数据a,b,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A. 3,2B. 3,4C. 5,2D. 5,44.命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题.则在下列选项中,可以作为反例的是( ) A. 3b =-B. 2b =-C. 1b =-D. 2b =5.若m 是关于x 方程x 2﹣2012x ﹣1=0的根,则(m 2﹣2012m +3)•(m 2﹣2012m +4)的值为( ) A. 16B. 12C. 20D. 306.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,若ED =6cm ,那么HF 的长为( )A. 5 cmB. 6 cmC. 10 cmD. 不能确定7.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x ,由题意可列方程为( ) A. 52+52x 2=60 B. 52(1+x )2=60 C. 60﹣60x 2=52 D. 60(1﹣x )2=528.把代数式()111a a--中的1a -移到根号内,那么这个代数式等于()A. 1a --B.1a - C. 1a -D. 1a --9.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A.3+1B.7+1 C. 23+1 D. 27+110.已知如图,矩形ABCD 中AB=4cm ,BC=3cm ,点P 是AB 上除A ,B 外任一点,对角线AC ,BD 相交于点O ,DP ,CP 分别交AC ,BD 于点E ,F 且△ADE 和BCF 面积之和4cm 2,则四边形PEOF 的面积为( )A. 1cm 2B. 1.5cm 2C. 2cm 2D. 2.5cm 2二.填空题(共10小题)11.如果y 44x x --则2x +y 值是_______. 12.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______. 13.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m +n =_____.14.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是____________米²;15.如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=_____.16.直角坐标系中,已知A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A3,A3关于y轴对称点A4,……,按此规律,则点A2019的坐标为_____.17.三角形的每条边的长都是方程2680-+=的根,则三角形的周长是.x x18.如图,若菱形ABCD的顶点A.B的坐标分别为(6,0),(﹣4,0),点D在y轴正半轴上,则点C的坐标是_____.19.如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1_____S2.20.如图,在矩形ABCD中,BC=4,点F是CD边上的中点,点E是BC边上的动点.将△ABE沿AE折叠,点B 落在点M处;将△CEF沿EF折叠,点C落在点N处.当AB的长度为_____时,点M与点N能重合时.三.解答题(共7小题)21.计算(1)220-5+35(2)3112-41144⎛⎫⨯ ⎪ ⎪⎝⎭22.解下列方程: (1)(x ﹣1)(x ﹣3)=8; (2)2(x ﹣3)2=x 2﹣9.23.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表: 输入汉字个数(个) 132 133 134 135 136 137 甲班人数人) 1 0 2 4 1 2 乙班人数(人) 014122请分别判断下列同学是说法是否正确,并说明理由. (1)两个班级输入汉字个数的平均数相同; (2)两个班学生输入汉字的中位数相同众数也相同; (3)甲班学生比乙班学生的成绩稳定.24.如图,平行四边形ABCD ,对角线,AC BD 交于点,点,E F 分别是,AB BC 的中点,连接EF 交BD 于,连接OE(1)证明:四边形COEF 平行四边形(2)点是哪些线段的中点,写出结论,并选择一组给出证明.25.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为________万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为元,则该销售公司该月盈利________万元(用含的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利销售利润+返利)26. 如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,AB ⊥AC ,AB=3cm ,BC=5cm .点P 从A 点出发沿AD 方向匀速运动速度为lcm/s ,连接PO 并延长交BC 于点Q .设运动时间为t (s )(0<t <5) (1)当t 为何值时,四边形ABQP 是平行四边形?(2)设四边形OQCD 的面积为y (cm 2),当t=4时,求y 的值.27.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点,交AC 于点.已知,3,5CD BE CD BE ⊥==,求BC DE +值.小明发现,过点作//EF DC ,交BC 的延长线于点,构造BEF ∆,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =; (2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.答案与解析一.选择题(共10小题)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线[答案]C [解析] [分析]根据把一个图形绕某一点旋转180,如果旋转后图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.[详解]A 、不是轴对称图形,是中心对称图形,故此选项错误; B 、是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,是中心对称图形,故此选项正确; D 、不是轴对称图形,不是中心对称图形,故此选项错误; 故选C .[点睛]此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2.1x -在实数范围内有意义的条件是( ) A 1x ≥ B. 1x >C. 0x <D. 0x ≤[答案]B [解析] [分析]根据二次根式有意义的条件即可求出答案. [详解]]解:由题意可知:x-1>0, ∴x >1, 故答案为:x >1[点睛]本题考查二次根式及分式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.3.已知一组数据a,b,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A. 3,2 B. 3,4C. 5,2D. 5,4[答案]B [解析]试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.4.命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题.则在下列选项中,可以作为反例的是( ) A. 3b =- B. 2b =-C. 1b =-D. 2b =[答案]C [解析][详解]∵方程210x bx ++=,必有实数解,22440b ac b ∴-=-≥ ,解得:2b ≤-或2b ≥,又∵命题“关于的一元二次方程210x bx ++=,必有实数解”是假命题,∴可以作为反例的是1b =-,故选C . 5.若m 是关于x 的方程x 2﹣2012x ﹣1=0的根,则(m 2﹣2012m +3)•(m 2﹣2012m +4)的值为( ) A. 16 B. 12C. 20D. 30[答案]C [解析][分析]根据一元二次方程的解的定义得到m2﹣2012m﹣1=0,变形得m2﹣2012m=1,然后整体代入的方法计算.[详解]解:根据题意得程m2﹣2012m﹣1=0,所以m2﹣2012m=1,所以(m2﹣2012m+3)•(m2﹣2012m+4)=(1+3)(1+4)=20.故选:C.[点睛]本题考查一元二次方程的解以及整体代入思想,掌握整体代入思想是解题的关键.6.如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为( )A. 5 cmB. 6 cmC. 10 cmD. 不能确定[答案]B[解析][分析]根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=12AC,即可求解.[详解]∵D、E分别是△ABC各边的中点, ∴DE为△ABC的中位线,∵ED=6cm,∴AC=2DE=2×6=12(cm),∵AH⊥CD,且F为AC的中点,∴HF=12AC=6cm.故选:B.[点睛]此题考查三角形的中位线定理、直角三角形斜边中线定理,熟记定理并熟练运用解题是关键.7.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x ,由题意可列方程为( ) A. 52+52x 2=60 B. 52(1+x )2=60 C. 60﹣60x 2=52 D. 60(1﹣x )2=52[答案]D [解析] [分析]若设每次平均降价的百分率为x ,根据某种药品经过两次降价后,由每盒60元下调至52元,可列方程求解. [详解]解:设每次平均降价的百分率为x , 60(1﹣x )2=52. 故选:D .[点睛]本题考查列一元二次方程,关键设出下降的生产率,经过两次变化,从而可列出方程. 8.把代数式()111a a--中的1a -移到根号内,那么这个代数式等于()A. 1a --B. 1a -C. 1a -D. 1a --[答案]A [解析]试题解析:(a-1)11a -=-(1-a)11a-=1a --. 故选A .9.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A.3 B.7+1 37+1[答案]B[解析][分析]由菱形ABCD中,∠ABC=120°,易得△BCD是等边三角形,继而求得∠ADE的度数;连接AE,交BD于点P;首先由勾股定理求得AE的长,即可得△PCE周长的最小值=AE+EC.[详解]解:∵菱形ABCD中,∠ABC=120°,∴BC=CD=AD=2,∠C=180°﹣∠ABC=60°,∠ADC=∠ABC=120°,∴∠ADB=∠BDC=12∠ADC=60°,∴△BCD是等边三角形, ∵点E是BC的中点,∴∠BDE=12∠BDC=30°,∴∠ADE=∠ADB+∠BDE=90°,∵四边形ABCD是菱形,∴BD垂直平分AC,∴P A=PC,∵△PCE的周长=PC PE CE++,若△PCE的周长最小,即PC+PE最小,也就是P A+PE最小,即A,P,E三点共线时,∵DE=CD•sin60°=3,CE=12BC=1,∴在Rt△ADE中,227AE AD DE=+=,∴△PCE周长为:PC+PE+CE=P A+PE+CE=AE+CE=71+,故选:B.[点睛]本题考查了菱形的性质、最短路线问题、等边三角形的性质,熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.10.已知如图,矩形ABCD中AB=4cm,BC=3cm,点P是AB上除A,B外任一点,对角线AC,BD相交于点O ,DP ,CP 分别交AC ,BD 于点E ,F 且△ADE 和BCF 的面积之和4cm 2,则四边形PEOF 的面积为( )A. 1cm 2B. 1.5cm 2C. 2cm 2D. 2.5cm 2[答案]A [解析]试题解析:因为4AEDBFCS S+=2cm ,所以2EOD FOCS S+=2cm ,而3CODS=2cm ,所以6231PEOF S =--=四边形2cm ,故本题应选A.二.填空题(共10小题)11.如果y 44x x --则2x +y 的值是_______. [答案]9 [解析]解:由题意得x=4,y=1,则2x +y=9. 12.小明用S 2= 110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______. [答案]30 [解析] [分析]根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和. [详解]解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据, ∴x 1+x 2+x 3+…+x 10=10×3=30. 故答案为30.[点睛]本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大. 13.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m +n =_____.[答案]5.[解析][分析]根据根与系数的关系可知m+n=﹣2,又知m是方程的根,所以可得m2+2m﹣7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.[详解]解:∵设m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,∵m是原方程的根,∴m2+2m﹣7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7﹣2=5,故答案为:5.[点睛]本题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解决本题的关键.14.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是____________米²;[答案]1421[解析][分析]如图,根据平移的性质,种植花草的面积等于图中小矩形的面积,根据矩形的面积公式计算即可.[详解]如图,根据平行的性质,种植花草的面积等于图中小矩形的面积,∴种植花草的面积=(50-1)(30-1)=1421m2.故答案1421.[点睛]本题考查了图形的平移的性质,把小路进行平移,得到种植花草的面积等于图中小矩形的面积是解题的关键.15.如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=_____.[答案]66°.[解析][分析]折叠就有全等,就有相等的边和角,根据平行四边形的性质和等腰三角形的性质,可以把要求的角转化在一个三角形中,由三角形的内角和列方程解得即可.[详解]解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,AB∥CD,∴∠ADF=∠FBC,∠ABD=∠BDC=81°,∵EF=FD,∴∠FED=∠FDE,由折叠得:∠ABE=∠EBF=12∠ABD=40.5°,∠A=∠EFB,设∠C=x,则∠DBC=∠ADB=12x,在△BDC中,由内角和定理得:81°+x+12x=180°,解得:x=66°,故答案为:66°.[点睛]本题考查折叠的性质、平行四边形的性质以及三角形内角和定理等内容,解题的关键是折叠的性质的运用.16.直角坐标系中,已知A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为_____. [答案](3,2). [解析] [分析]根据题目已知条件,写出A 1、A 2、A 3的坐标,找出规律,即可解决问题. [详解]解:作点A 关于y 轴对称点为A 1,是(﹣3,2); 作点A 1关于原点的对称点为A 2,是(3,﹣2); 作点A 2关于x 轴的对称点为A 3,是(3,2). 显然此为一循环,按此规律,2019÷3=673, 则点A 2019的坐标是(3,2), 故答案为:(3,2).[点睛]本题考查了关于原点对称的点的坐标,关于坐标轴对称点的坐标,解答此题需熟悉:两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数;两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变;两个点关于原点对称,则横坐标、纵坐标都是互为相反数.17.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . [答案]6或10或12 [解析] [分析]首先用因式分解法求得方程根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算. [详解]由方程2680x x -+=,得=2或4. 当三角形的三边是2,2,2时,则周长是6; 当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去; 当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10. 综上所述此三角形的周长是6或12或10.18.如图,若菱形ABCD 的顶点A .B 的坐标分别为(6,0),(﹣4,0),点D 在y 轴正半轴上,则点C 的坐标是_____.[答案](﹣10,8)[解析][分析]由菱形的性质可求AB=AD=10,OA=6,由勾股定理可得OD=8,即可求点C坐标.[详解]解:∵菱形ABCD的顶点A,B的坐标分别为(6,0),(﹣4,0),∴AB=AD=10,OA=6,∴228=-=,OD AD OA∴点D(0,8),∵CD∥AB,∴CD=10,∴点C(﹣10,8),故答案为:(﹣10,8).[点睛]本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1_____S2.[答案]=.[解析][分析]由题意可知2ABCDABCSS=,2ACEFADC SS =△,而S △ABC =S △ADC ,进而可得S 1与S 2的大小关系.[详解]解:∵四边形ABCD 和四边形ACEF 都是平行四边形, ∴2ABCDABCSS=,2ACEFADC SS =△,∵S △ABC =S △ADC , ∴S 1=S 2, 故答案为:=.[点睛]本题考查了平行四边形的性质以及三角形面积公式的运用,熟记平行四边形被一条对角线分成的两个三角形面积相等是解题的关键.20.如图,在矩形ABCD 中,BC =4,点F 是CD 边上的中点,点E 是BC 边上的动点.将△ABE 沿AE 折叠,点B 落在点M 处;将△CEF 沿EF 折叠,点C 落在点N 处.当AB 的长度为_____时,点M 与点N 能重合时.[答案]2. [解析] [分析]设AB =CD =2m .在Rt △ADF 中 利用勾股定理构建方程即可解决问题. [详解]解:设AB =CD =2m .由题意:BE =EM =EC =2,CF =DF =FM =m ,AN =AM =2m , ∴AF =3m ,∵四边形ABCD 是矩形, ∴AD =BC =4,在Rt △ADF 中,∵AD 2+DF 2=AF 2, ∴42+m 2=(3m )2, 解得2m =或2-(舍弃),∴AB =2m =故答案为.[点睛]本题考查折叠的性质,解题的关键是根据勾股定理构建方程求解.三.解答题(共7小题)21.计算(1)(2[答案](1)(2)14[解析] [分析](1)先化简,再合并同类二次根式;(2)先算乘法,再化简二次根式,然后合并即可.[详解]解:(1)-=2255+3-(2111=244-. [点睛]本题考查了二次根式的化简与运算,属于基础题型,熟练掌握二次根式的运算法则和化简的方法是解题的关键. 22.解下列方程: (1)(x ﹣1)(x ﹣3)=8; (2)2(x ﹣3)2=x 2﹣9.[答案](1)x 1=5,x 2=﹣1;(2)x 1=3,x 2=9. [解析] [分析](1)先去括号,把方程化为一般形式,再根据因式分解法即可求出答案;(2)利用平方差公式将等号右边因式分解,再移项,提取公因式x-3即可求出答案.[详解]解:(1)(x﹣1)(x﹣3)=8,整理得,x2﹣4x﹣5=0,分解因式得:(x-5)(x+1)=0,则x-5=0或x+1=0,解得:x1=5,x2=﹣1;(2)2(x﹣3)2=x2﹣9,分解因式得:(x﹣3)(x﹣9)=0,则x﹣3=0或x﹣9=0,解得:x1=3,x2=9.[点睛]本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:请分别判断下列同学是说法是否正确,并说明理由.(1)两个班级输入汉字个数的平均数相同;(2)两个班学生输入汉字的中位数相同众数也相同;(3)甲班学生比乙班学生的成绩稳定.[答案]说法(1)(3)正确,说法(2)错误.[解析][分析]根据平均数、中位数、众数以及方差的计算方法,分别求出,就可以分别判断各个说法是否正确.[详解]解:(1)由平均数的定义知,甲班学生的平均成绩为:13213421354136137213510+⨯+⨯++⨯=,乙班学生的平均成绩为:13313441351362137213510+⨯++⨯+⨯=,所以他们的平均数相同.故说法(1)正确;(2)甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同,甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同; 故说法(2)错误;(3)2222221=[(132135)2(134135)4(135135)(136135)2(137135)]210S ⨯-+-+-+-+-=甲, 2222221=[(133135)4(134135)(135135)2(136135)2(137135)] 2.710S ⨯-+-+-+-+-=甲, ∴甲班学生比乙班学生的成绩方差小, ∴甲班学生比乙班学生的成绩稳定. 故说法(3)正确;故答案为:说法(1)(3)正确,说法(2)错误.[点睛]本题考查平均数、方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.24.如图,平行四边形ABCD ,对角线,AC BD 交于点,点,E F 分别是,AB BC 的中点,连接EF 交BD 于,连接OE(1)证明:四边形COEF 是平行四边形(2)点是哪些线段的中点,写出结论,并选择一组给出证明.[答案](1)见解析;(2)G 是线段OB 的中点,也是EF 的中点,证明见解析[解析][分析](1)根据三角形的中位线定理可得EF 与AC 的数量关系和位置关系,再由平行四边形的性质即可证得EF 与CO 的关系,进一步即可证得结论;(2)根据三角形中位线定理即可得出结论.[详解]解:(1)证明:∵,E F 分别是,AB BC 中点,∴EF AC 且12EF AC =, ∵ABCD 是平行四边形,∴AO CO =,∴CO EF =,∴四边形COEF 是平行四边形.(2)G 是线段OB 的中点,也是EF 的中点.证明:∵EF AC ,E 为AB 中点,∴G 为OB 中点.∴FG 、GE 分别是△BCO 、△BAO 的中位线, ∴11,22FG CO GE AO ==, ∵AO =CO ,∴FG GE =,即G 为EF 的中点.[点睛]本题考查了平行四边形的判定和三角形的中位线定理,熟练掌握平行四边形的判定方法和三角形的中位线定理是解题的关键.25.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为________万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为元,则该销售公司该月盈利________万元(用含的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利销售利润+返利)[答案](1)24.6;(2)(5m -121);(3)7[解析][分析](1)根据题意每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,即可得出当月售出3辆汽车时,每辆汽车的进价;(2)先表示出当月售出5辆汽车时每辆汽车的进价,再根据利润=售价-进价即可求得该月盈利;(3)首先表示出每辆汽车的销售利润,再利用当0≤x≤10,当x>10时,分别得出答案.[详解]解:(1)∵当月仅售出1辆汽车,则该辆汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,∴该公司当月售出3辆汽车,则每辆汽车的进价为25-2×0.2=24.6万元;故答案为:24.6;(2)∵当月售出5辆汽车,∴每辆汽车的进价为25-4×0.2=24.2万元,∴该月盈利为5(m-24.2)=5m-121,故答案为:(5m-121);(2)设需要售出x辆汽车,由题意可知,每辆汽车的销售利润为:25.6-[25-0.2(x-1)]=(0.2x+0.4)(万元),当0≤x≤10,根据题意,得x•(0.2x+0.4)+0.6x=16.8,整理,得x2+5x-84=0,解这个方程,得x1=-12(不合题意,舍去),x2=7,当x>10时,根据题意,得x•(0.2x+0.4)+1.2x=16.8,整理,得x2+8x-84=0,解这个方程,得x1=-14(不合题意,舍去),x2=6,因为6<10,所以x2=6舍去.答:需要售出7辆汽车.[点睛]此题主要考查了一元二次方程的应用,根据题意正确表示出每部汽车的销售利润是解题关键.26.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动速度为lcm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.[答案](1)当t=2.5s 时,四边形ABQP 是平行四边形,理由详见解析;(2)5.4cm 2.[解析][分析](1)求出AP BQ =和//AP BQ ,根据平行四边形的判定得出即可;(2)先求出高AM 和ON 的长度,再求出DOC ∆和OQC ∆的面积,再求出答案即可.[详解](1)当 2.5t s =时,四边形ABQP 是平行四边形,理由如下:∵四边形ABCD 是平行四边形∴//,,5,,AD BC AB CD AD BC cm AO CO AO OC =====∴PAO QCO ∠=∠在APO ∆和CQO ∆中,PAO QCO AO CO POA QOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()APO CQO ASA ∆≅∆∴ 2.5AP CQ cm ==, 2.5()1AP t s == ∵5BC cm =∴5 2.5 2.5BQ cm cm cm AP =-==即,//AP BQ AP BQ =∴四边形ABQP 是平行四边形故当 2.5t s =时,四边形ABQP 是平行四边形;(2)过A 作AM BC ⊥于M ,过O 作ON BC ⊥于N∵,3,5AB AC AB cm BC cm ⊥==∴在Rt ABC ∆中,由勾股定理得:224AC BC AB cm =-=由三角形的面积公式得:1122BAC S AB AC BC AM ∆=⋅=⋅,即1134522AM ⨯⨯=⨯ ∴ 2.4AM cm =∵,ON BC AM BC ⊥⊥∴//AM ON∵AO OC =∴MN CN =∴1 1.22ON AM cm == 在BAC ∆和DCA ∆中,AC AC BC AD AB CD =⎧⎪=⎨⎪=⎩∴()BAC DCA SSS ∆≅∆∴21346()2DCA BAC S S cm ∆∆==⨯⨯= ∵AO OC =∴DOC ∆的面积为2132DCA S cm ∆= 当4t s =时,4AP CQ cm ==∴OQC ∆的面积为21 1.24 2.4()2cm ⨯⨯= ∴23 2.4 5.4()y cm =+=故y 的值为25.4cm .[点睛]本题考查了平行四边形的性质和判定、三角形的面积、全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.27.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点,交AC 于点.已知,3,5CD BE CD BE ⊥==,求BC DE +的值.小明发现,过点作//EF DC ,交BC 的延长线于点,构造BEF ∆,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =;(2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.[答案](1)详见解析;34(3)60[解析][分析](1)由DE ∥BC ,EF ∥DC ,可证得四边形DCFE 是平行四边形,从而问题得以解决;(2)由DC ⊥BE ,四边形DCFE 是平行四边形,可得Rt △BEF ,求出BF 的长,证明BC+DE=BF ;(3)连接AE ,CE ,由四边形ABCD 是平行四边形,四边形ABEF 是矩形,易证得四边形DCEF 是平行四边形,继而证得△ACE 是等边三角形,问题得证.[详解](1)证明:∵DE ∥BC ,EF ∥DC ,∴四边形DCFE 是平行四边形.∴DE=CF .(2)解:由于四边形DCFE 是平行四边形,∴DE=CF ,DC=EF ,∴BC+DE=BC+CF=BF .∵DC ⊥BE ,DC ∥EF ,∴∠BEF=90°.在Rt △BEF 中,∵BE=5,CD=3,∴BF=22225=3=34BE EF ++.(3)连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB ∥DC .∵四边形ABEF 是矩形, ∴AB ∥FE ,BF=AE . ∴DC ∥FE .∴四边形DCEF 是平行四边形. ∴CE ∥DF .∵AC=BF=DF ,∴AC=AE=CE .∴△ACE 是等边三角形. ∴∠ACE=60°.∵CE ∥DF ,∴∠AGF=∠ACE=60°.[点睛]本题考查了平行四边形的判定与性质、矩形的性质、等边三角形的判定与性质以及勾股定理.连接AE 、CE 构造等边三角形是关键.。

人教版初二下学期数学期中复习串讲及练习题

人教版初二下学期数学期中复习串讲及练习题

初二下学期数学期末复习串讲考试范围第十六章 分式(分式方程部分) 第十七章 反比例函数 第十八章 勾股定理 第十九章 四边形 第二十章 数据的分析一、本单元 知识结构图:二、例题与习题:1.式子2347153,,,,,,2823x b x x y x y x a π--+-中是分式的有_______个。

1. 当x _____时,分式13x-有意义;函数y =中x 的取值范围是____________2. 若xy y x y x +÷=-,则用含x 的式子表示y 为______________3. 将x y xy -的x 、y 都扩大5倍,则分式的值______倍。

化简a b a b a b--+=_______ 4. 211(1)()52π-0-+-÷(2009-)=________ ; 2012((()223--+--=__________ 5. 11,121,112-++-+x x x x x 的最简公分母是________;2312121,425y y y +--的呢?___ 6. 化简11()22x yx y x x y x+-⋅--+=___________; 2222()x y x y x y y x +⋅+--=_________ 7. 已知=-=--xx x x 8,0872则_______; 已知xy y x xy y x 2222,23+=-则=________ 8. 已知113,x y -=则55x xy y x xy y +---=________; 已知411=+y x ,则yxy x xyy x 2322+-++=______9. 解方程:(1)12211-+-=-x x x (2)65327621+++++=+++++x x x x x x x x 10. 若分式9432++x x 的值是正数,则x 的取值范围是__________11. 若aa a 1)1141(⋅++-的值是正整数,则整数a 等于_________ 12.131kk x +=+无解,k 的值是______;3601(1)x k x x x x ++-=--有解,k 取值范围是_____ 13. 甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙,则甲的速度是乙的速度的____________倍。

八年级下册数学期中好题必刷 专题03 平行四边形(人教版)(原卷版)

八年级下册数学期中好题必刷 专题03 平行四边形(人教版)(原卷版)

专题03 平行四边形一、单选题1.如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,AD∥BCC.AB∥CD,AD=BC D.AD∥BC,AD=BC2.如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B'处,若1236∠=∠=︒,B为()A.36°B.144°C.108°D.126°3.如图,口ABCD的对角线AC,BD相交于点O,且16AC BD+=,若△BCO的周长为14,则AD的长为()A.12 B.9 C.8 D.64.如图,ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12 cm5.如图,点E、F分别是▱ABCD边AD、BC的中点,G、H是对角线BD上的两点,且BG=DH.则下列结论中不正确的是()A .GF EH =B .四边形EGFH 是平行四边形C .EG FH =D .EH BD ⊥ 6.如图所示,在ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线EF 分别交AD 于点E ,BC 于点F , 35AOE BOF S S ==, ,则 ABCD 的面积为( )A .24B .32C .40D .487.如图,在▱ABCD 中,AB =2,BC =4,∠D =60°,点P 、Q 分别是AC 和BC 上的动点,在点P 和点Q 运动的过程中,PB +PQ 的最小值为( )A .4B .3C .23D .438.如图,在平行四边形ABCD 中,AD =6,点E 在边AD 上,点F 在BC 的延长线上,且满足BF =BE =8,过点C 作CE 的垂线交BE 于点G ,若CE 恰好平分∠BEF ,则BG 的长为( )A .2B .3C .4D .29.如图,在平面直角坐标系中,四边形OABC 是平行四边形,按以下步骤作图:①分别以点O 和点B 为圆心,以大于12OB 的长为半径画弧,两弧相交于点M 和N ;②作直线MN 交BC 于点E ,交OA 于点F .若点A 的坐标为(4,0),点E 的坐标为5),则点C 的坐标为( )A .(1,5)B .3(2,5) C .(5,3)2 D .(5,1)10.如图,E 是平行四边形ABCD 内一点,已知DE ⊥AD ,∠CBE =∠CDE ,∠BCE =45°,CE 的延长线交AD 于F ,连接BF ,下列结论:①DE =DF ;②△BEF 为等腰三角形;③AF =2CE ;④BD 的长等于四边形ABCD 周长的24倍,其中正确的有( )个A .1B .2C .3D .4二、填空题 11.在△ABC 中,∠C =90°,AC =6,BC =8,若以A ,B ,C ,D 为顶点的四边形是平行四边形,则此平行四边形的周长为______.12.如图,P 是平行四边形ABCD 对角线AC 上的点,且满足PB=PC=CD ,若∠PCB=20°,则∠D 的度数是______.13.在平面直角坐标系中,OABC 三个顶点的坐标分别为()0,0O ,()3,0A ,()4,2B ,则第四个顶点C 的坐标为______. 14.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,AC ⊥AB ,AB 5且AC :BD =2:3,那么AC 的长为___.15.如图,在ABCD 中,4AB =,6BC =,ABC ∠的平分线交AD 于点E ,则ED =______.16.如图,两条宽度为4的矩形纸带交叉摆放,若45ABC ∠=︒,则重叠部分四边形ABCD 的面积为_______.17.如图,BD 为ABCD 的对角线,M 、N 分别在AD AB 、上,且//,MN BD 则DMC S △_____BNC S △(填“<”、“=”或“>”)18.如图所示,在ABC 中,BC AC >,点D 在BC 上,5DC AC ==,且32AD BD =,作ACB ∠的平分线CF 交AD 于点F ,4CF =,E 是AB 的中点,连接EF .则EF 的长为___________.19.如图,在ABCD 中,AC 与BD 交于点M ,点F 在AD 上,6AF =cm,12BF =cm,FBM CBM ∠=∠,点E 是BC 的中点,若点P 以1cm/s 的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/s 的速度从点C 出发,沿CB 向点B 运动,点P 运动到F 点时停止运动,点Q 也同时停止运动,当点P 运动_____时,以P 、Q 、E 、F 为顶点的四边形是平行四边形.20.如图,在平行四边形ABCD 中,45ABC ∠=︒,62AB =,14CB =,点M ,N 分别是边AB ,AD 的中点,连接CM ,BN ,并取CM ,BN 的中点,分别记为点E ,F ,连接EF ,则EF 的长为_________.三、解答题21.如图,四边形ABCD 是平行四边形,P 是AD 上一点,且BP 和CP 分别平分ABC ∠和BCD ∠,5AB =cm .(1)求平行四边形ABCD 的周长.(2)如果6BP =cm,求PC 的长.22.已知:如图,在平行四边形ABCD 中,E ,F 分别是AB ,CD 的中点.求证:(1)△AFD ≌△CEB ;(2)四边形AECF 是平行四边形.23.如图,已知▱ABCD ,AE 平分∠BAD ,交DC 于E ,DF ⊥BC 于F ,交AE 于G ,且DF =AD .(1)若∠C =60°,AB =2,求EC 的长;(2)求证:AB =DG +FC .24.如图,四边形ABCD 中,∠A =∠ABC =90°,AD =1,BC =3,点E 是边CD 的中点,连接BE 并延长与AD 的延长线交于点F .(1)求证:四边形BDFC 是平行四边形;(2)若BC =BD ,求BF 的长.25.如图,▱ABCD 中,BD ⊥AD ,∠A =45°,E 、F 分别是AB ,CD 上的点,且BE =DF ,连接EF 交BD 于O .(1)求证:BO =DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于G ,当FG =1时,求AD 的长.26.我们新定义一种三角形:两边平方和等于第三边平方的3倍的三角形叫做非凡三角形.例如:某三角形三边长分别是3,2和3,因为()222313322+==⨯,所以这个三角形是非凡三角形. (1)判断:等腰直角三角形 _非凡三角形(填“是”或“不是”)﹔(2)若ABC 是非凡三角形,且3,6AB BC ==,则AC = _(3)如图,在平行四边形ABCD 中,AC BD ⊥于点,6O AB =,且ABD △是非凡三角形,求AC 的值.27.如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,AE 平分∠BAD ,交BC 于点E ,且∠ADC =60°. (1)求证:AB =AE ;(2)若AB BC=m (0<m <1),AC =3连接OE ; ①若m =12,求平行四边ABCD 的面积;②设D OECD AO S S ∆四边形=k ,试求k 与m 满足的关系.。

2024年最新人教版初二数学(下册)期中考卷及答案(各版本)

2024年最新人教版初二数学(下册)期中考卷及答案(各版本)

2024年最新人教版初二数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4 = 7x 2B. 2x 5 = 3x + 5C. 4x + 6 = 2x 8D. 5x 3 = 3x + 64. 下列各数中,绝对值最小的是()A. 3B. 0C. 2D. 55. 下列各数中,是正数的是()A. 4B. 0C. 3D. 76. 下列各数中,是整数的是()A. 2.5B. 0C. 3/4D. 4.67. 下列各数中,是分数的是()A. 2B. 0C. 3/4D. 58. 下列各数中,是负数的是()A. 2B. 0C. 3/4D. 49. 下列各数中,是偶数的是()A. 3B. 0C. 5D. 810. 下列各数中,是奇数的是()A. 2B. 0C. 3D. 4二、填空题(每题3分,共30分)1. 一个数的立方根是±2,这个数是________。

2. 下列各数中,不是有理数的是________。

3. 下列等式中,正确的是________。

4. 下列各数中,绝对值最小的是________。

5. 下列各数中,是正数的是________。

6. 下列各数中,是整数的是________。

7. 下列各数中,是分数的是________。

8. 下列各数中,是负数的是________。

9. 下列各数中,是偶数的是________。

10. 下列各数中,是奇数的是________。

三、解答题(每题10分,共30分)1. 解方程:3x + 4 = 7x 2。

2. 解方程:2x 5 = 3x + 5。

3. 解方程:4x + 6 = 2x 8。

四、证明题(每题10分,共20分)1. 证明:3x + 4 = 7x 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版初二年级数学下册期中辅导题数学作业本答案|物理补充习题答案|语文作业本答案
20.(8分)在平面直角坐标系中,一次函数的图象与坐标轴围成的
三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象
与x轴,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.
(1)求函数的坐标三角形的三条边长;
(2)若函数 (b为常数)的坐标三角形周长为16,
求此三角形的面积.
21.(8分)如图,已知在□ABCD中,E,F是对角线BD上的两点,BE=DF,点G,H分别在BA和DC的延长线上,且AG=CH,连接GE,EH,HF,FG.求证:四边形GEHF是平行四边形.
22.(8分)小聪和小明沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米.小聪骑自行车,小明步行,当小聪
从原路回到学校时,小明刚好到达图书馆.图中折线OA-AB-BC和线段
OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在图书馆查阅资料的时间为________分钟,小聪返回学校
的速度为_________千米/分钟;
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
23.(9分) “如图1,在正方形ABCD中,点E是CD的中点,点F
是BC边上的一点,且∠FAE=∠EAD,
(1)求证:EF⊥AE.
(2)将“正方形”改为“矩形”、其他条件均不变,如图2,你认
为仍然有“EF⊥AE”.若你同意,请以图2为例加以证明;若你不同意,请说明理由.。

相关文档
最新文档