二次函数知识点归纳总结

合集下载

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数知识点总结一、函数定义与表达式1.一般式:y = ax^2 + bx + c(a、b、c为常数,a≠0);2.顶点式:y = a(x - h)^2 + k(a、h、k为常数,a≠0);3.交点式:y = a(x - x1)(x - x2)(a≠0,x1、x2是抛物线与x轴两交点的横坐标)。

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b^2 - 4ac≥0时,抛物线的解析式才可以用交点式表示。

二次函数解析式的这三种形式可以互相转化。

二、函数图像的性质——抛物线1)开口方向——二次项系数a二次函数y = ax^2 + bx + c中,a作为二次项系数,显然a≠0.当a>0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;当a<0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大。

顶点坐标:(h,k)一般式:(-b/2a,-Δ/4a)总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小。

|a|越大开口就越小,|a|越小开口就越大。

y = 2x^2y = x^2y = (1/2)x^2y = -(1/2)x^2y = -x^2y = -2x^22)抛物线是轴对称图形,对称轴为直线x = -b/2a。

对称轴顶点式:x = h两根式:x = x1、x = x23)对称轴位置一次项系数b和二次项系数a共同决定对称轴的位置。

(“左同右异”)a与b同号(即ab>0)对称轴在y轴左侧a与b异号(即ab<0)对称轴在y轴右侧4)增减性,最大或最小值当a>0时,在对称轴左侧(当x。

-b/2a时),y随着x的增大而增大;当a -b/2a时),y随着x的增大而增大;当a>0时,函数有最小值,并且当x = -b/2a时,ymin = -Δ/4a;当a<0时,函数有最大值,并且当x = -b/2a时,ymax = -Δ/4a;5)常数项c常数项c决定抛物线与y轴交点。

(完整版)二次函数知识点汇总(全)

(完整版)二次函数知识点汇总(全)

二次函数知识点(第一讲)一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

数学二次函数知识点总结

数学二次函数知识点总结

数学二次函数知识点总结数学二次函数知识点总结在平平淡淡的学习中,大家对知识点应该都不陌生吧?知识点也可以通俗的理解为重要的内容。

为了帮助大家更高效的学习,下面是店铺为大家收集的数学二次函数知识点总结,希望能够帮助到大家!数学二次函数知识点总结篇1二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。

二次函数可以表示为f(乘)=a乘^2b乘c(a不为0)。

其图像是一条主轴平行于y轴的抛物线。

一般的,自变量乘和因变量y之间存在如下关系:一般式y=a乘∧2;b乘c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);顶点式y=a(乘m)∧2k(a≠0,a、m、k为常数)或y=a(乘-h)∧2k (a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为乘=-m,顶点的位置特征和图像的开口方向与函数y=a乘∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(乘-乘1)(乘-乘2)[仅限于与乘轴有交点A(乘1,0)和B(乘2,0)的抛物线];重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。

a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

牛顿插值公式(已知三点求函数解析式)y=(y3(乘-乘1)(乘-乘2))/((乘3-乘1)(乘3-乘2)(y2(乘-乘1)(乘-乘3))/((乘2-乘1)(乘2-乘3)(y1(乘-乘2)(乘-乘3))/((乘1-乘2)(乘1-乘3)。

由此可引导出交点式的系数a=y1/(乘1乘乘2)(y1为截距)求根公式二次函数表达式的右边通常为二次三项式。

乘是自变量,y是乘的二次函数乘1,乘2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2乘的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。

二次函数的知识点总结

二次函数的知识点总结

二次函数的知识点总结一、二次函数的定义二次函数是指一个形如 $y = ax^2 + bx + c$ 的函数,其中 $a$、$b$ 和 $c$ 是常数,且 $a \neq 0$。

在这个表达式中,$x$ 是自变量,$y$ 是因变量,$a$、$b$ 和 $c$ 是系数,其中 $a$ 称为二次项系数,$b$ 称为一次项系数,$c$ 称为常数项。

二、二次函数的性质1. 抛物线形状:二次函数的图像是一个向上或向下开口的抛物线。

2. 开口方向:当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。

3. 对称轴:二次函数图像关于直线 $x = -\frac{b}{2a}$ 对称,这条直线称为抛物线的对称轴。

4. 顶点:抛物线的顶点坐标为 $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$。

5. 与 X 轴的交点:二次函数与 X 轴的交点称为根,可以通过解方程$ax^2 + bx + c = 0$ 来找到。

三、二次函数的图像1. 顶点式:$y = a(x - h)^2 + k$,其中 $(h, k)$ 是顶点坐标。

2. 交点式:$y = a(x - x_1)(x - x_2)$,其中 $x_1$ 和 $x_2$ 是与 X 轴的交点坐标。

3. 标准式:$y = ax^2 + bx + c$。

四、求解二次方程1. 因式分解法:当能够找到两个数,它们的和等于 $b$,积等于$c$ 时,可以使用因式分解法。

2. 完全平方法:通过配方将二次方程转化为完全平方的形式。

3. 公式法:使用二次公式 $x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$ 来求解。

五、二次函数的应用1. 物理运动:描述物体在重力作用下的自由落体运动和抛体运动。

2. 优化问题:在商业和工程中,用于寻找最大利润或最小成本。

3. 数据拟合:在统计学中,用于拟合数据点,找到最佳曲线。

初中二次函数知识点汇总(史上最全)

初中二次函数知识点汇总(史上最全)

二次函数知识点一、基本概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,叫做二次函数。

,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。

2. 2y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.口诀--- ---- Y 反对X ,X 反对Y ,都反对原点十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:=。

(完整版)初中二次函数知识点汇总(史上最全)

(完整版)初中二次函数知识点汇总(史上最全)

二次函数知识点一、基本概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,叫做二次函数。

,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。

2. 2y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是高中数学中的一个重要概念,它在数学和实际问题中都有广泛的应用。

本文将对二次函数的定义、性质、图像及其相关内容进行总结。

一、二次函数的定义二次函数是指形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c为常数且a ≠ 0。

其中,a 表示二次项的系数,b 表示一次项的系数,c 表示常数项。

二次函数的定义域为全体实数集。

二、二次函数的性质1. 凹凸性:二次函数的凹凸性取决于a 的正负性。

当a > 0 时,函数图像开口向上,为凹函数;当 a < 0 时,函数图像开口向下,为凸函数。

2. 对称轴:二次函数的对称轴是 x = -b / (2a)。

对称轴是图像的中心线,函数图像关于对称轴对称。

3. 零点:二次函数的零点是指函数值等于零的 x 值。

二次函数的零点可以有 0、1 或 2 个。

当判别式 D = b^2 - 4ac > 0 时,有 2个不同的实零点;当 D = 0 时,有一个实零点;当 D < 0 时,没有实零点。

4. 最值:当二次函数的开口向上时,函数的最小值为 f(-b / (2a)) = c - (b^2 - 4ac) / (4a);当二次函数的开口向下时,函数的最大值为 f(-b / (2a)) = c + (b^2 - 4ac) / (4a)。

三、二次函数的图像二次函数的图像为抛物线,其开口方向、顶点、对称轴和零点等特征在前面已经介绍过。

关于图像的绘制,可以根据以下步骤进行:1. 确定顶点:顶点的横坐标为 -b / (2a),纵坐标为 f(-b / (2a))。

2. 确定对称轴:对称轴的方程为 x = -b / (2a)。

3. 确定开口方向:根据 a 的正负性可以确定开口方向。

4. 确定零点:根据判别式 D 的值可以确定零点的情况。

除了以上内容,二次函数还与一些相关概念有密切联系:1. 判别式:二次函数的判别式 D = b^2 - 4ac 可以用来判断二次函数的零点情况。

二次函数的相关知识点总结

二次函数的相关知识点总结

二次函数的相关知识点总结一、二次函数的概念。

1. 定义。

- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。

- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。

二、二次函数的图象。

1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。

2. 抛物线的顶点坐标。

- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。

- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。

根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。

3. 抛物线的对称轴。

- 对称轴方程为x =-(b)/(2a)。

4. 抛物线的开口方向。

- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。

三、二次函数的性质。

1. 增减性。

- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。

- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。

2. 最值。

- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。

二次函数的知识点总结

二次函数的知识点总结

二次函数的知识点总结一、基本概念1. 二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是实数且a≠0。

其中,a 控制抛物线的开口方向和大小,b控制抛物线在x轴方向的平移,c控制抛物线在y轴方向的平移。

2. 二次函数的图像二次函数的图像是一个称为抛物线的曲线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3. 二次函数的顶点和对称轴二次函数的图像在抛物线上的最高(或最低)点称为顶点,顶点的横坐标x=-b/2a,即抛物线的对称轴,纵坐标等于f(-b/2a),即y的最小值或最大值。

4. 二次函数的零点二次函数在x轴上的交点称为零点,满足f(x)=0时的x值。

零点的判别式为Δ=b²-4ac,当Δ>0时,有两个不相等的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实根。

5. 二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。

二、解析式求解1. 一般形式二次函数的一般形式是f(x) = ax² + bx + c。

通过配方法、完全平方式或因式分解,可以将二次函数转化为标准形式或顶点形式来方便求解相关参数。

2. 标准形式将一般形式的二次函数转化为标准形式f(x) = a(x-h)²+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。

3. 顶点形式将一般形式的二次函数转化为顶点形式f(x) = a(x-p)(x-q),其中(p,q)为零点的坐标。

4. 判别式通过二次函数的判别式Δ=b²-4ac,可以方便地判断二次函数的零点类型和数量。

三、图像解析1. 抛物线的开口方向二次函数的参数a的正负决定了抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。

2. 抛物线的顶点、对称轴和最值通过二次函数的顶点坐标和对称轴方程,可以方便地求得抛物线的顶点和对称轴,并进而求得最小值或最大值。

二次函数知识点汇总

二次函数知识点汇总

二次函数知识点一、二次函数概念:1.二次函数的概念:一样地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

那个地址需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,能够为零.二次函数的概念域是全部实数.2. 二次函数2y ax bx c =++的结构特点:⑴ 等号左侧是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的大体形式1. 二次函数大体形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2.2y ax c =+的性质:上加下减。

3.()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:1. 平移步骤:方式一:⑴ 将抛物线解析式转化成极点式()2y a x h k =-+,确信其极点坐标()h k ,; ⑵ 维持抛物线2y ax =的形状不变,将其极点平移到()h k ,处,具体平移方式如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 归纳成八个字“左加右减,上加下减”. 方式二: ⑴c bx ax y++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方能够取得前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点画图法:利用配方式将二次函数2y ax bx c =++化为极点式2()y a x h k =-+,确信其开口方向、对称轴及极点坐标,然后在对称轴双侧,左右对称地描点画图.一样咱们选取的五点为:极点、与y 轴的交点()0c ,、和()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(假设与x 轴没有交点,那么取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,极点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,极点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,极点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方式1. 一样式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 极点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都能够化成一样式或极点式,但并非所有的二次函数都能够写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才能够用交点式表示.二次函数解析式的这三种形式能够互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确信的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴确实是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右边. ⑵ 在0a <的前提下,结论恰好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右边; 当0b =时,02ba-=,即抛物线的对称轴确实是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确信的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左侧那么0>ab ,在y 轴的右边那么0<ab ,归纳的说确实是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确信,那么这条抛物线确实是唯一确信的. 二次函数解析式的确信:依照已知条件确信二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必需依照题目的特点,选择适当的形式,才能使解题简便.一样来讲,有如下几种情形:1. 已知抛物线上三点的坐标,一样选用一样式;2. 已知抛物线极点或对称轴或最大(小)值,一样选用极点式;3. 已知抛物线与x 轴的两个交点的横坐标,一样选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用极点式.九、二次函数图象的对称二次函数图象的对称一样有五种情形,能够用一样式或极点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,取得的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,取得的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,取得的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,取得的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,取得的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,取得的解析式是()2y a x h k =-+-; 4. 关于极点对称(即:抛物线绕极点旋转180°)2y ax bx c =++关于极点对称后,取得的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于极点对称后,取得的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,取得的解析式是()222y a x h m n k =-+-+- 依照对称的性质,显然不管作何种对称变换,抛物线的形状必然可不能发生转变,因此a 永久不变.求抛物线的对称抛物线的表达式时,能够依据题意或方便运算的原那么,选择适合的形式,适应上是先确信原抛物线(或表达式已知的抛物线)的极点坐标及开口方向,再确信其对称抛物线的极点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情形):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情形. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,不管x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,不管x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴必然相交,交点坐标为(0,)c ;3. 二次函数经常使用解题方式总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方式将二次函数由一样式转化为极点式;⑶ 依照图象的位置判定二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判定图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身确实是所含字母x 的二次函数;下面以0a >时为例,揭露二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x 222-32y=3(x+4)22y=3x2y=-2(x-3)2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1.考查二次函数的概念、性质,有关试题常出此刻选择题中,如:已知以x为自变量的二次函数2)2(22--+-=mmxmy的图像通过原点,那么m的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,若是函数bkxy+=的图像在第一、二、三象限内,那么函数12-+=bxkxy的图像大致是()3.考查用待定系数法求二次函数的解析式,有关习题显现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线通过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数知识点归纳总结

二次函数知识点归纳总结

二次函数知识点归纳总结二次函数是高中数学中的一个重要内容,也是数学建模和解几何问题的重要工具。

下面是关于二次函数的知识点的归纳总结。

一、基本概念1. 二次函数的定义:二次函数是形如f(x) = ax^2 + bx + c (a ≠ 0) 的函数,其中 a、b、c 是常数。

2.二次函数的图象:二次函数的图象是一个抛物线,开口方向取决于a的正负性,顶点坐标为(-b/2a,f(-b/2a))。

3.对称轴:二次函数的对称轴是与图象关于x轴对称的直线,其方程为x=-b/2a。

4. 零点:二次函数的零点是函数图象与 x 轴的交点,可以通过求解二次方程 ax^2 + bx + c =0 来得到。

5.最值:二次函数的最值取决于a的正负性,当a>0时,函数取最小值;当a<0时,函数取最大值。

二、二次函数的变形与性质1.平移变换:二次函数可以通过平移变换来改变其图象的位置。

平移变换的一般形式是f(x)→f(x-h)+k,其中h和k是任意实数。

2.缩放变换:二次函数可以通过缩放变换来改变其图象的形状。

缩放变换的一般形式是f(x)→af(x),其中a是非零实数。

3.纵坐标平移:二次函数可以通过纵坐标平移来改变其图象的位置。

纵坐标平移的一般形式是f(x)→f(x)+k,其中k是任意实数。

4.二次函数的奇偶性:如果a是偶数,则二次函数是偶函数;如果a是奇数,则二次函数是奇函数。

5.顶点坐标的性质:顶点坐标(-b/2a,f(-b/2a))是二次函数的最值点,当a>0时是最小值,当a<0时是最大值。

三、二次函数的方程与不等式1. 二次方程的解:二次方程 ax^2 + bx + c =0 的解可以通过求根公式 x = (-b ± √(b^2 - 4ac))/(2a) 来得到。

2. 解的判别式:二次方程 ax^2 + bx + c =0 的解的判别式是 D =b^2 - 4ac,根据判别式的值可以判断方程有几个实数解。

二次函数知识点总结大全

二次函数知识点总结大全

二次函数知识点总结大全二次函数是高中数学中的重要内容之一,掌握了二次函数的相关知识,能够解决很多与实际问题相关的数学计算。

下面是二次函数的知识点总结。

一、基本概念1. 二次函数的定义:一个二次函数是指形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数,且a表示二次项的系数。

2.二次函数的图像:二次函数的图像是一个开口朝上或朝下的抛物线。

3.二次函数的顶点:二次函数的图像的最高点或最低点称为顶点,记为(Vx,Vy)。

4.二次函数的轴对称性:二次函数的图像关于顶点所在的直线对称。

5.二次函数的零点:二次函数的图像与x轴交点的横坐标称为零点。

6.二次函数的平移:二次函数的图像在平面上的平移。

二、二次函数的图像1.抛物线开口的方向:当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

2. 求顶点:对于形如y=ax²+bx+c的二次函数,顶点坐标为(Vx, Vy),其中Vx=-b/2a,Vy=f(Vx)。

3.确定抛物线的图像:已知顶点和另一点,可以确定一个抛物线的图像。

4.求零点:二次函数的零点可以通过解一元二次方程求得。

三、二次函数的性质1. 平移性质:对于二次函数y=ax²+bx+c,平移后的函数是y=a(x-h)²+k,其中(h,k)为平移后的抛物线的顶点。

2.对称性质:二次函数的图像关于顶点对称。

3.零点性质:一个二次函数最多有两个零点,可以通过求解一元二次方程求得。

4.范围性质:对于抛物线开口朝上的二次函数,其值域为[y,+∞);对于抛物线开口朝下的二次函数,其值域为(-∞,y]。

四、二次函数的解析式1. 标准型:形如y=ax²+bx+c的二次函数。

2.顶点式:形如y=a(x-h)²+k的二次函数。

3.概率型:形如y=a(x-p)(x-q)的二次函数。

五、二次函数的应用1.最值问题:二次函数的最值可以通过求顶点得到。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是数学中一个重要的函数类型,它在许多领域都有广泛的应用。

二次函数的一般形式为 f(x) = ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。

以下是二次函数的主要知识点总结:1. 定义:二次函数是最高次项为二次的多项式函数。

2. 标准形式:二次函数的标准形式是 y = ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。

3. 系数意义:系数 a 决定了抛物线的开口方向和宽度,b 和 c 决定了抛物线的位置。

4. 开口方向:当 a > 0 时,抛物线向上开口;当 a < 0 时,抛物线向下开口。

5. 顶点:二次函数的顶点是抛物线的最值点,其坐标可以通过公式(-b/2a, f(-b/2a)) 计算得出。

6. 对称轴:二次函数的对称轴是一条垂直于 x 轴的直线,其方程为x = -b/2a。

7. 极值:当 a > 0 时,抛物线有最小值;当 a < 0 时,抛物线有最大值。

8. 零点:二次函数的零点是函数图像与 x 轴的交点,可以通过求解方程 ax^2 + bx + c = 0 得到。

9. 判别式:二次方程 ax^2 + bx + c = 0 的判别式为Δ = b^2 -4ac,它决定了方程的根的性质。

- 当Δ > 0 时,方程有两个不相等的实数根。

- 当Δ = 0 时,方程有两个相等的实数根。

- 当Δ < 0 时,方程没有实数根。

10. 应用:二次函数在物理、工程、经济学等领域有广泛应用,如抛体运动、最优化问题等。

11. 图像特征:二次函数的图像是一个抛物线,其形状和位置由系数a、b、c 共同决定。

12. 函数性质:二次函数具有连续性、可导性等性质,其导数为 f'(x) = 2ax + b。

13. 函数图像绘制:通过确定顶点、对称轴和零点,可以绘制出二次函数的图像。

14. 函数变换:通过对二次函数进行平移、伸缩等变换,可以得到新的二次函数图像。

二次函数知识点汇总(全)

二次函数知识点汇总(全)

⼆次函数知识点汇总(全)⼆次函数知识点(第⼀讲)⼀、⼆次函数概念:1.⼆次函数的概念:⼀般地,形如2y ax bx c=++(a b ca≠)的函数,叫做⼆次函数。

,,是常数,0这⾥需要强调:和⼀元⼆次⽅程类似,⼆次项系数0a≠,⽽b c,可以为零.⼆次函数的定义域是全体实数.2. ⼆次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于⾃变量x的⼆次式,x的最⾼次数是2.⑵a b c,,是常数,a是⼆次项系数,b是⼀次项系数,c是常数项.⼆、⼆次函数的基本形式1. ⼆次函数基本形式:2=的性质:y axa 的绝对值越⼤,抛物线的开⼝越⼩。

2. 2y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、⼆次函数图象的平移1. 平移步骤:⽅法⼀:⑴将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移⽅法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成⼋个字“左加右减,上加下减”.⽅法⼆:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、⼆次函数()2y a x h k =-+与2y ax bx c =++的⽐较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配⽅可以得到前者,即22424b ac b y a x a a -?=++,其中2424b ac b h k a a -=-=,.五、⼆次函数2y ax bx c =++图象的画法五点绘图法:利⽤配⽅法将⼆次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开⼝⽅向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.⼀般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下⼏点:开⼝⽅向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、⼆次函数2y ax bx c =++的性质1. 当0a >时,抛物线开⼝向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2b x a <-时,y 随x 的增⼤⽽减⼩;当2b x a >-时,y 随x 的增⼤⽽增⼤;当2bx a=-时,y 有最⼩值244ac b a-.2. 当0a <时,抛物线开⼝向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??--,.当2bx a <-时,y 随x 的增⼤⽽增⼤;当2b x a >-时,y 随x 的增⼤⽽减⼩;当2bx a =-时,y 有最⼤值244ac b a-.七、⼆次函数解析式的表⽰⽅法1. ⼀般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何⼆次函数的解析式都可以化成⼀般式或顶点式,但并⾮所有的⼆次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以⽤交点式表⽰.⼆次函数解析式的这三种形式可以互化.⼋、⼆次函数的图象与各项系数之间的关系1. ⼆次项系数a⼆次函数2y ax bx c =++中,a 作为⼆次项系数,显然0a ≠.⑴当0a >时,抛物线开⼝向上,a 的值越⼤,开⼝越⼩,反之a 的值越⼩,开⼝越⼤;⑵当0a <时,抛物线开⼝向下,a 的值越⼩,开⼝越⼩,反之a 的值越⼤,开⼝越⼤.总结起来,a 决定了抛物线开⼝的⼤⼩和⽅向,a 的正负决定开⼝⽅向,a 的⼤⼩决定开⼝的⼤⼩.2. ⼀次项系数b在⼆次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则03. 常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上⽅,即抛物线与y 轴交点的纵坐标为正;⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当0c <时,抛物线与y 轴的交点在x 轴下⽅,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯⼀确定的.⼆次函数解析式的确定:根据已知条件确定⼆次函数解析式,通常利⽤待定系数法.⽤待定系数法求⼆次函数的解析式必须根据题⽬的特点,选择适当的形式,才能使解题简便.⼀般来说,有如下⼏种情况:1. 已知抛物线上三点的坐标,⼀般选⽤⼀般式;2. 已知抛物线顶点或对称轴或最⼤(⼩)值,⼀般选⽤顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,⼀般选⽤两根式;4. 已知抛物线上纵坐标相同的两点,常选⽤顶点式.九、⼆次函数图象的对称⼆次函数图象的对称⼀般有五种情况,可以⽤⼀般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然⽆论作何种对称变换,抛物线的形状⼀定不会发⽣变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或⽅便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开⼝⽅向,再确定其对称抛物线的顶点坐标及开⼝⽅向,然后再写出其对称抛物线的表达式.⼗、⼆次函数与⼀元⼆次⽅程:1. ⼆次函数与⼀元⼆次⽅程的关系(⼆次函数与x 轴交点情况):⼀元⼆次⽅程20ax bx c ++=是⼆次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:①当240b ac ?=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是⼀元⼆次⽅程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-②当0?=时,图象与x 轴只有⼀个交点;③当0?<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上⽅,⽆论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下⽅,⽆论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴⼀定相交,交点坐标为(0,)c ;3. ⼆次函数常⽤解题⽅法总结:⑴求⼆次函数的图象与x 轴的交点坐标,需转化为⼀元⼆次⽅程;⑵求⼆次函数的最⼤(⼩)值需要利⽤配⽅法将⼆次函数由⼀般式转化为顶点式;⑶根据图象的位置判断⼆次函数2y ax bx c =++中a ,b ,c 的符号,或由⼆次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷⼆次函数的图象关于对称轴对称,可利⽤这⼀性质,求和已知⼀点对称的点坐标,或已知与x 轴的⼀个交点坐标,可由对称性求出另⼀个交点坐标. ⑸与⼆次函数有关的还有⼆次三项式,⼆次三项式2(0)ax bx c a ++≠本⾝就是所含字母x 的⼆次函数;下⾯以0a >时为例,揭⽰⼆次函数、⼆次三项式和⼀元⼆次⽅程之间的内在联系:⼆次函数考查重点与常见题型1.考查⼆次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为⾃变量的⼆次函数2)2(22--+-=m m x m y 的图像经过原点,则m 的值是2.综合考查正⽐例、反⽐例、⼀次函数、⼆次函数的图像,习题的特点是在同⼀直⾓坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第⼀、⼆、三象限内,那么函数12-+=bx kx y 的图像⼤致是()3.考查⽤待定系数法求⼆次函数的解析式,有关习题出现的频率很⾼,习题类型有中档解答题和选拔性的综合题,如:已知⼀条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数知识点总结

二次函数知识点总结

二次函数知识点一、二次函数概念:1.二次函数(de)概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)(de)函数,叫做二次函数. 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数(de)定义域是全体实数.2. 二次函数2y ax bx c =++(de)结构特征:⑴ 等号左边是函数,右边是关于自变量x (de)二次式,x (de)最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数(de)基本形式1. 二次函数基本形式:2y ax =(de)性质: a (de)绝对值越大,抛物线(de)开口越小.c +(de))2h -(de)4.()2y a x h k=-+(de)性质:三、二次函数图象(de)平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =(de)形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数(de)基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++(de)比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同(de)表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象(de)画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取(de)五点为:顶点、与y 轴(de)交点()0c ,、以及()0c ,关于对称轴对称(de)点()2h c ,、与x 轴(de)交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称(de)点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴(de)交点,与y 轴(de)交点. 六、二次函数2y ax bx c =++(de)性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a<-时,y 随x (de)增大而减小;当2b x a>-时,y 随x (de)增大而增大;当2b x a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x (de)增大而增大;当2b x a >-时,y 随x (de)增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式(de)表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点(de)横坐标).注意:任何二次函数(de)解析式都可以化成一般式或顶点式,但并非所有(de)二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线(de)解析式才可以用交点式表示.二次函数解析式(de)这三种形式可以互化.八、二次函数(de)图象与各项系数之间(de)关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a (de)值越大,开口越小,反之a (de)值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a (de)值越小,开口越小,反之a (de)值越大,开口越大.总结起来,a 决定了抛物线开口(de)大小和方向,a (de)正负决定开口方向,a (de)大小决定开口(de)大小. 2. 一次项系数b在二次项系数a 确定(de)前提下,b 决定了抛物线(de)对称轴. ⑴ 在0a >(de)前提下,当0b >时,02b a -<,即抛物线(de)对称轴在y 轴左侧;当0b =时,02b a -=,即抛物线(de)对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴(de)右侧. ⑵ 在0a <(de)前提下,结论刚好与上述相反,即当0b >时,02b a ->,即抛物线(de)对称轴在y 轴右侧;当0b =时,02b a -=,即抛物线(de)对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴(de)左侧.总结起来,在a 确定(de)前提下,b 决定了抛物线对称轴(de)位置.ab (de)符号(de)判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴(de)右侧则0<ab ,概括(de)说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴(de)交点在x 轴上方,即抛物线与y 轴交点(de)纵坐标为正; ⑵ 当0c =时,抛物线与y 轴(de)交点为坐标原点,即抛物线与y 轴交点(de)纵坐标为0; ⑶ 当0c <时,抛物线与y 轴(de)交点在x 轴下方,即抛物线与y 轴交点(de)纵坐标为负.总结起来,c决定了抛物线与y轴交点(de)位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定(de).二次函数解析式(de)确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数(de)解析式必须根据题目(de)特点,选择适当(de)形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点(de)坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴(de)两个交点(de)横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同(de)两点,常选用顶点式.九、二次函数图象(de)对称二次函数图象(de)对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2y ax bx c=++关于x轴对称后,得到(de)解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到(de)解析式是()2y a x h k=---;2. 关于y轴对称2y ax bx c=++关于y轴对称后,得到(de)解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到(de)解析式是()2y a x h k=++;3. 关于原点对称2y ax bx c=++关于原点对称后,得到(de)解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到(de)解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到(de)解析式是222by ax bx ca=--+-;()2y a x h k=-+关于顶点对称后,得到(de)解析式是()2y a x h k=--+. 5. 关于点()m n,对称()2y a x h k=-+关于点()m n ,对称后,得到(de)解析式是()222y a x h m n k =-+-+-根据对称(de)性质,显然无论作何种对称变换,抛物线(de)形状一定不会发生变化,因此a 永远不变.求抛物线(de)对称抛物线(de)表达式时,可以依据题意或方便运算(de)原则,选择合适(de)形式,习惯上是先确定原抛物线(或表达式已知(de)抛物线)(de)顶点坐标及开口方向,再确定其对称抛物线(de)顶点坐标及开口方向,然后再写出其对称抛物线(de)表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程(de)关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时(de)特殊情况. 图象与x 轴(de)交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中(de)12x x ,是一元二次方程()200ax bx c a ++=≠(de)两根.这两点间(de)距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴(de)上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴(de)下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++(de)图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数(de)图象与x 轴(de)交点坐标,需转化为一元二次方程;⑵ 求二次函数(de)最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象(de)位置判断二次函数2y ax bx c =++中a ,b ,c (de)符号,或由二次函数中a ,b ,c (de)符号判断图象(de)位置,要数形结合;⑷ 二次函数(de)图象关于对称轴对称,可利用这一性质,求和已知一点对称(de)点坐标,或已知与x 轴(de)一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关(de)还有二次三项式,二次三项式2(0)ax bx c a++≠本身就是所含字母x(de)二次函数;下面以0a>时为例,揭示二次函数、二次三项式和一元二次方程之间(de)内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)2十一、函数(de)应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少1、求有关点(de)坐标2、求函数解析式3、求最值4、求面积5、动点、动线、动图问题2-32。

二次函数知识点归纳总结

二次函数知识点归纳总结

二次函数知识点归纳总结一、基本概念:1. 二次函数的定义:二次函数是指具有形式f(x) = ax^2 + bx + c 的函数,其中a、b、c为常数,且a不等于零。

2.二次函数图像的一般特征:二次函数的图像为抛物线,开口方向由a的正负确定。

3.二次函数的平面坐标系:二次函数的图像在平面直角坐标系中的形状、位置以及与坐标轴的焦点有关。

二、顶点坐标与开口方向:1.顶点坐标:二次函数的顶点坐标可通过化简函数式得到,即x=-b/(2a)得到x坐标,再代入函数式计算得到y坐标。

2.开口方向:二次函数开口向上当且仅当a大于零,开口向下当且仅当a小于零。

三、对称轴与焦点:1.对称轴:二次函数的对称轴是垂直于x轴的直线,其方程为x=-b/(2a)。

2.焦点:二次函数的焦点与平面坐标系画图时的焦点位置有关。

四、性质与变化规律:1.奇偶性:二次函数的奇偶性由二次项的系数a的奇偶性决定,即,若a为奇数,则函数为奇函数;若a为偶数,则函数为偶函数。

2.正负性:二次函数的正负性由函数值的正负决定,其函数值与x的值、a的符号以及顶点坐标的y值正负有关。

3.单调性与极值:二次函数的单调性与开口方向有关,开口向上的二次函数在对称轴两侧单调递增,开口向下的二次函数在对称轴两侧单调递减。

二次函数的极值即为顶点值。

4.过点性质:给定两点,可以通过这两点在函数上的坐标计算出唯一确定的二次函数的函数式。

5.零点求解:二次函数的零点即为函数与x轴的交点,可以使用因式分解、配方法、求根公式等方法求解。

五、两点式与标准式:1.两点式:已知二次函数经过两点,可以利用两点式直接写出函数的函数式。

2.标准式:将二次函数的一般式化简成标准式,即f(x)=a(x-h)^2+k 的形式,能够直接得到函数的顶点坐标。

六、函数图像:1.函数图像绘制:根据顶点坐标、对称轴方程、开口方向以及函数值的正负性,可以绘制出二次函数的图像。

2.辅助判断:利用辅助判断函数的图像与坐标轴的交点,确定函数的变化规律。

二次函数的知识点归纳

二次函数的知识点归纳

二次函数的知识点归纳二次函数是高中数学中的一个重要的内容,大致包括以下几个方面的知识点:一、二次函数的定义及性质:1.二次函数的定义:二次函数是指一个自变量的平方是唯一的函数表达式。

2. 二次函数的普通形式:y = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。

3.二次函数的图象特点:二次函数的图象为开口向上或向下的抛物线,其顶点是最低点或最高点,对称轴为x=-b/2a。

4.二次函数的对称性:二次函数关于对称轴对称。

5.二次函数的奇偶性:若a=0,则二次函数为一次函数,是奇函数;若a≠0,则二次函数既有奇偶函数性质,对于a>0是偶函数,对于a<0是奇函数。

二、二次函数的图象及相关概念:1.抛物线的几何性质:对称性、顶点、准线、焦点等。

2.顶点坐标的求法:通过对称轴的坐标可以求得顶点的坐标。

3.准线与焦点:对于横轴为x轴的抛物线,准线为y=c-b^2/(4a),焦点为(a,c-1/(4a));对于纵轴为y轴的抛物线,准线为x=c-b^2/(4a),焦点为(c-1/(4a),a)。

4. 与坐标轴的交点:抛物线与$x=0$相交的点为$a$;与$y=0$相交的点为$x_1、x_2$,可以通过求根公式(-b±√(b^2-4ac))/2a求得。

三、二次函数的性质与求值:1.单调性:对于抛物线开口向上,那么在对称轴左侧,函数递减;在对称轴右侧,函数递增。

2.极值与最值:对于抛物线开口向上,函数的最小值为顶点的纵坐标;对于抛物线开口向下,函数的最大值为顶点的纵坐标。

3.零点:二次函数与$x$轴的交点为零点或根,可以通过求根公式得到。

4.方程的解:二次函数与$y$轴的交点称为方程的解,可以通过将函数的等于0进行求解得到。

四、二次函数的拟合与应用:1.拟合抛物线:根据已知的点坐标,可以通过构造方程组来确定二次函数,从而拟合出抛物线。

2.抛物线在生活中的应用:抛物线的形状在现实生活中有很多应用,如建筑设计中的拱门、喷泉的喷水形状等。

二次函数知识点归纳

二次函数知识点归纳

二次函数知识点归纳二次函数知识点总结:1.二次函数的概念:一般地,形如 y = ax^2 + bx + c(a,b,c 是常数,a ≠ 0)的函数,叫做二次函数。

需要强调的是,和一元二次方程类似,二次项系数a ≠ 0,而 b,c 可以为零。

二次函数的定义域是全体实数。

2.二次函数 y = ax^2 + bx + c 的结构特征:⑴等号左边是函数,右边是关于自变量 x 的二次式,x 的最高次数是 2.⑵ a,b,c 是常数,a 是二次项系数,b 是一次项系数,c 是常数项。

二次函数基本形式:1.二次函数基本形式:y = ax^2 的性质:结论:a 的绝对值越大,抛物线的开口越小。

总结:a 的符号开口方向顶点坐标对称轴向上 a。

0 (0.0) y 轴x。

0 时,y 随 x 的增大而增大;x < 0 时,y 随 x 的增大而减小;x = 0 时,y 有最小值。

向下 a < 0 (0.0) y 轴x。

0 时,y 随 x 的增大而减小;x < 0 时,y 随 x 的增大而增大;x = 0 时,y 有最大值。

2.y = ax^2 + c 的性质:结论:上加下减。

总结:a 的符号开口方向顶点坐标对称轴向上 a。

0 (0.c) y 轴x。

0 时,y 随 x 的增大而增大;x < 0 时,y 随 x 的增大而减小;x = 0 时,y 有最小值 c。

向下 a < 0 (0.c) y 轴x。

0 时,y 随 x 的增大而减小;x < 0 时,y 随 x 的增大而增大;x = 0 时,y 有最大值 c。

3.y = a(x - h)^2 的性质:结论:左加右减。

总结:a 的符号开口方向顶点坐标对称轴向上 a。

0 (h。

0) x = hx。

h 时,y 随 x 的增大而增大;x < h 时,y 随 x 的增大而减小;x = h 时,y 有最小值。

向下 a < 0 (h。

0) x = hx。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是高中数学中的一个重要内容,其知识点涉及函数的定义、性质、图象、解析式、应用等。

下面是对二次函数知识点的总结。

一、函数的定义和基本性质:二次函数是形如y=ax^2+bx+c(a≠0)的函数,其中a、b、c 为实数,a称为二次函数的系数。

①定义域:二次函数的定义域是任意实数集R。

②值域:对于二次函数y=ax^2+bx+c,当a>0时,函数的值域是[0,+∞),当a<0时,函数的值域是(-∞,0],当a=0时,函数的值域是{c}。

③对称轴:二次函数的对称轴是垂直于x轴的直线x=-b/2a。

④顶点:二次函数的顶点是对称轴上的点(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。

⑤开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。

二、图象和性质:①图象特点:二次函数在平面直角坐标系内的图象是一个抛物线。

②定点:二次函数开口向上时,顶点是最小点;二次函数开口向下时,顶点是最大点。

③与坐标轴的交点:二次函数与x轴的交点叫做零点,是方程ax^2+bx+c=0的解;与y轴的交点是函数的常数项c。

④单调性:二次函数的单调性受其系数a的符号影响。

当a>0时,二次函数在对称轴两侧递增;当a<0时,二次函数在对称轴两侧递减。

⑤零点与解析式:对于二次函数y=ax^2+bx+c,其零点可以通过求解方程ax^2+bx+c=0得到,其中的判别式Δ=b^2-4ac可以判断二次方程的解的情况。

三、解析式和变形:①标准形式:二次函数的标准形式是y=ax^2+bx+c。

②顶点式:二次函数的顶点式是y=a(x-h)^2+k,其中(h,k)为顶点坐标。

③因式分解式:当二次函数可因式分解时,可以表示成y=a(x-p)(x-q)的形式。

四、一些常见问题和解法:①如何确定二次函数的开口方向和顶点:若a>0,则开口向上,顶点为抛物线的最小值;若a<0,则开口向下,顶点为抛物线的最大值。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数知识点归纳总

Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
二次函数知识点归纳
1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.
2.二次函数2ax y =的性质
(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.
①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;
②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.
(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2
用配方法可化成:()
k h x a y +-=2
的形式,其中a
b a
c k a b h 4422
-=-=,.
5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2
h x a y -=;④
()k h x a y +-=2
;⑤c bx ax y ++=2.
6.抛物线的三要素:开口方向、对称轴、顶点.
①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;
a 相等,抛物线的开口大小、形状相同.
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .
7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法
(1)公式法:a b ac a b x a c bx ax y 44222
2
-+⎪⎭⎫ ⎝

+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线
a
b
x 2-
=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2
的形式,得到顶点为(h ,k ),
对称轴是直线h x =.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分
线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用
(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.
(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线
a b x 2-
=,故:①0=b 时,对称轴为y 轴;②0>a
b
(即a 、b 同号)时,对称轴在y 轴左侧;③0<a
b
(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.
当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<a
b
. 10.几种特殊的二次函数的图像特征如下:
11.用待定系数法求二次函数的解析式
(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2
.已知图像的顶点或对称轴,通常选择顶点式.
(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点
(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).
(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点
二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程
02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式
判定:
①有两个交点⇔0>∆⇔抛物线与x 轴相交;
②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵
坐标为k ,则横坐标是k c bx ax =++2的两个实数根.
(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组
c
bx ax y n kx y ++=+=2
的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只
有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.
(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,
x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故
二次函数图象的平移(左加右减)
1. 平移步骤:
方法一:⑴ 将抛物线解析式转化成顶点式()2
y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:
2. 平移规律
在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二:
⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成
m c bx ax y +++=2(或m c bx ax y -++=2)
⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成
c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)。

相关文档
最新文档