全国各地中考数学试题分类汇编(第三期)专题24多边形与平行四边形(含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形与平行四边形
一.选择题
1.(2019?湖北省咸宁市?3分)若正多边形的内角和是540°,则该正多边形的一个外角为


A .45°
B .60°
C .72°
D .90°
【分析】根据多边形的内角和公式(n ﹣2)?180°求出多边形的边数,再根据多边形的外
角和是固定的
360°,依此可以求出多边形的一个外角.
【解答】解:∵正多边形的内角和是540°,
∴多边形的边数为
540°÷180°+2=5,
∵多边形的外角和都是360°,∴多边形的每个外角=360÷5=72°.
故选:C .
【点评】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.
2.(2019云南4分)一个十二边形的内角和等于A.2160°B.2080°C.1980°D.1800°【解析】多边形内角和公式为180)2(n
,其中n 为多边形的边的条数
.∴十二边形内
角和为1800180)212
(,故选D
3. (2019?甘肃庆阳?3分)如图,足球图片正中的黑色正五边形的内角和是(

A .180°
B .360°
C .540°
D .720°
【分析】根据多边形内角和公式(
n ﹣2)×180°即可求出结果.
【解答】解:黑色正五边形的内角和为:(5﹣2)×180°=540°,
故选:C .
【点评】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.
4. (2019?广东广州?3分)如图,?ABCD 中,AB =2,AD =4,对角线AC ,BD 相交于点O ,
且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()
A.EH=HG
B.四边形EFGH是平行四边形
C.AC⊥BD
D.△ABO的面积是△EFO的面积的2倍
【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.
【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在?ABCD中,AB=2,AD=4,
∴EH=AD=2,HG=AB=1,
∴EH≠HG,故选项A错误;
∵E,F,G,H分别是AO,BO,CO,DO的中点,
∴EH=,
∴四边形EFGH是平行四边形,故选项B正确;
由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;
∵点E、F分别为OA和OB的中点,
∴EF=,EF∥AB,
∴△OEF∽△OAB,
∴,
即△ABO的面积是△EFO的面积的4倍,故选项D错误,
故选:B.
【点评】本题考查平行四边形的面积、三角形的相似、三角形的面积,解答本题的关键是明
确题意,利用数形结合的思想解答 3.
5. (2019?贵州省铜仁市?4分)如图为矩形ABCD,一条直线将该矩形分割成两个多边形,
若这两个多边形的内角和分别为a和b,则a+b不可能是()
A.360°B.540°C.630°D.720°
C.【解答】解:一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,
只有630不能被180整除,所以a+b不可能是630°.
6. (2019?贵州省铜仁市?4分)如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD
=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()
A.12 B.14 C.24 D.21
A.【解答】解:∵BD⊥CD,BD=4,CD=3,
∴BC===5,
∵E、F、G、H分别是AB、AC、CD、BD的中点,
∴EH=FG=BC,EF=GH=AD,
∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,
又∵AD=7,
∴四边形EFGH的周长=7+5=12.
7. (2019?海南省?3分)如图,在?ABCD中,将△ADC沿AC折叠后,点D恰好落在DC
的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()
A.12 B.15 C.18 D.21
【分析】依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.
【解答】解:由折叠可得,∠ACD=∠ACE=90°,
∴∠BAC=90°,
又∵∠B=60°,
∴∠ACB=30°,
∴BC=2AB=6,
∴AD=6,
由折叠可得,∠E=∠D=∠B=60°,
∴∠DAE=60°,
∴△ADE是等边三角形,
∴△ADE的周长为6×3=18,
故选:C.
【点评】本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题时注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 5.
8.(2019?山东临沂?3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()
A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 【分析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.
【解答】证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD
∵对角线BD上的两点M、N满足BM=DN,
∴OB﹣BM=OD﹣DN,即OM=ON,
∴四边形AMCN是平行四边形,
∵OM=AC,
∴MN=AC,
∴四边形AMCN是矩形.
故选:A.
【点评】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所
学知识解决问题.
9.(2019?山东威海?3分)如图,E是?ABCD边AD延长线上一点,连接BE,CE,BD,BE 交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()
A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD 【分析】根据平行四边形的性质得到AD∥BC,AB∥CD,求得DE∥BC,∠ABD=∠CDB,推出BD∥CE,于是得到四边形BCED为平行四边形,故A正确;根据平行线的性质得到∠DEF=∠CBF,根据全等三角形的性质得到EF=BF,于是得到四边形BCED为平行四边形,故B正确;根据平行线的性质得到∠AEB=∠CBF,求得∠CBF=∠BCD,求得CF=BF,同理,EF=DF,不能判定四边形BCED为平行四边形;故C错误;根据平行线的性质得到∠DEC+∠BCE=∠EDB+∠DBC=180°,推出∠BDE=∠BCE,于是得到四边形BCED为平行四边形,故D正确.
【解答】解:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴DE∥BC,∠ABD=∠CDB,
∵∠ABD=∠DCE,
∴∠DCE=∠CDB,
∴BD∥CE,
∴BCED为平行四边形,故A正确;
∵DE∥BC,
∴∠DEF=∠CBF,
在△DEF与△CBF中,,
∴△DEF≌△CBF(AAS),
∴EF=BF,
∵DF=CF,
∴四边形BCED为平行四边形,故B正确;
∵AE∥BC,
∴∠AEB=∠CBF,
∵∠AEB=∠BCD,
∴∠CBF=∠BCD,
∴CF=BF,
同理,EF=DF,
∴不能判定四边形BCED为平行四边形;故C错误;
∵AE∥BC,
∴∠DEC+∠BCE=∠EDB+∠DBC=180°,
∵∠AEC=∠CBD,
∴∠BDE=∠BCE,
∴四边形BCED为平行四边形,故D正确,
故选:C.
【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.
10.(2019?云南?4分)一个十二边形的内角和等于( )
A.2160°B.2080°C.1980°D.1800°
【考点】多边形的内角和.
【分析】根据多边形的内角和公式即可求解.
【解答】解:多边形内角和公式为180)2(n ,其中n 为多边形的边的条数
.∴十二边
形内角和为1800180)212
(,故选D .
【点评】此题主要考查了多边形的内角和公式,多边形内角和等于
180)2(n .
二.填空题
1.(2019?四川省达州市?3分)如图,?ABCD 的对角线AC 、BD 相交于点O ,点E 是AB 的中点,△BEO 的周长是8,则△BCD 的周长为
16

【分析】根据平行四边形的性质可得BO =DO =BD ,进而可得OE 是△ABC 的中位线,
由三角形中位线定理得出
BC =2OE ,再根据平行四边形的性质可得
AB =CD ,从而可得
△BCD 的周长=△BEO 的周长×2.
【解答】解:∵?ABCD 的对角线AC 、BD 相交于点O ,∴BO =DO =
BD ,BD =2OB ,
∴O 为BD 中点,∵点E 是AB 的中点,∴AB =2BE ,BC =2OE ,∵四边形ABCD 是平行四边形,∴AB =CD ,∴CD =2BE .
∵△BEO 的周长为8,∴OB+OE+BE =8,
∴BD+BC+CD =2OB+2OE+2BE =2(OB+OE+BE )=16,∴△BCD 的周长是16,故答案为16.
【点评】此题考查了平行四边形的性质,三角形中位线定理以及线段中点的定义.
关键是掌
握平行四边形的性质:①边:平行四边形的对边平行且相等.②角:平行四边形的对角相等;
③对角线:平行四边形的对角线互相平分.
2.(2019?四川省广安市?3分)如图,正五边形ABCDE 中,对角线AC 与BE 相交于点F ,
则∠AFE =
72
度.
【分析】根据五边形的内角和公式求出∠EAB ,根据等腰三角形的性质,三角形外角的
性质计算即可.【解答】解:∵五边形ABCDE 是正五边形,
∴∠EAB =∠ABC =,
∵BA =BC ,
∴∠BAC =∠BCA =36°,同理∠ABE =36°,
∴∠AFE =∠ABF +∠BAF =36°+36°=72°.故答案为:72
【点评】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键.3.(2019云南3分)在平行四边形ABCD 中,∠A =30°,AD =43,BD =4,则平行四边形
ABCD 的面积等于.
【解析】过点
D 作D
E ⊥AB 于E ,∵∠A=30°,∴DE=ADsin 30°=32,AE=ADcos30°=4,
在Rt △DBE 中,BE=22
2
DE
BD
,∴AB=AE+BE=6,或AB=AE-BE=2,∴平行四边
形ABCD 的面积为312326或343
22,故答案为312或3
44. (2019?广西北部湾
?3分)如图,AB 与CD 相交于点
O ,AB=CD ,∠AOC=600

∠ACD +∠ABD=2100
,则线段AB 、AC 、BD 之间的数量关系式为

【答案】AB2=AC2+BD2
【解析】
解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:
则四边形ACDE是平行四边形,
∴DE=AC,∠ACD=∠AED,
∵∠AOC=60°,AB=CD,
∴∠EAB=60°,CD=AE=AB,
∴△ABE为等边三角形,
∴BE=AB,
∵∠ACD+∠ABD=210°,
∴∠AED+∠ABD=210°,
∴∠BDE=360°-(∠AED+∠ABD)-∠EAB=360°-210°-60°=90°,
∴BE2=DE2+BD2,
∴AB2=AC2+BD2;
故答案为:AB2=AC2+BD2.
过点A作AE∥CD,截取AE=CD,连接BE、DE,则四边形ACDE是平行四边形,得出DE=AC,∠ACD=∠AED,证明△ABE为等边三角形得出BE=AB,求得∠BDE=360°-(∠AED+∠ABD)-∠EAB=90°,由勾股定理得出BE2=DE2+BD2,即可得出结果.
本题考查了勾股定理、平行四边形的判定与性质、等边三角形的判定与性质、平行线的性质、四边形内角和等知识,熟练掌握平行四边形的性质、通过作辅助线构建等边三角形与直角三角形是解题的关键.
5.(2019?湖南益阳?4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.
【考点】多边形内角和与外角和.
【分析】本题需先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.
【解答】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900﹣360=540°,
∴多边形的边数是:540°÷180°+2=3+2=5.
故答案为:5.
【点评】本题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和
度数的计算公式解出本题即可.
4,BD=4,则平行四边6.(2019?云南?3分)在平行四边形ABCD中,∠A=30°,AD=3
形ABCD的面积等于.
【考点】平行四边形.
【分析】本题无图形,需分类讨论.过点D作□ABCD的高DE,分高DE在平行四边形
的内部和外部两种情况,再根据勾股定理及平行四边形的面积公式即可求解.
【解答】解:过点D 作DE ⊥AB 于E ,∵∠A=30°,∴DE=ADsin30°=32,AE=ADcos30°=6,在Rt △DBE 中,BE=
22
2
DE
BD

(1)如图(1),当DE 在□ABCD 内部时,AB=AE +BE =6+2=8,∴S □ABCD =8×32=316;
(2)如图(2),当DE 在□ABCD 外部时,AB=AE -BE=6-2=4,∴S □ABCD =4×32=38.故答案为316或38.
【点评】此题主要考查了求平行四边形的面积,由于几何题没有图形,无图则考虑要分类讨论.
三.解答题
1.(2019?四川省广安市?6分)如图,点
E 是?ABCD 的CD 边的中点,AE 、BC 的延长线交
于点F ,CF =3,CE =2,求?ABCD 的周长.
【分析】先证明△ADE ≌△FCE ,得到AD =CF =3,DE =CE =2,从而可求平行四边形的面积.
【解答】解:∵四边形ABCD 是平行四边形,
∴AD ∥BC ,
∴∠DAE =∠F ,∠D =∠ECF .又ED =EC ,
∴△ADE ≌△FCE (AAS ).
∴AD=CF=3,DE=CE=2.
∴DC=4.
∴平行四边形ABCD的周长为2(AD+DC)=14.
【点评】本题主要考查了平行四边形的性质、全等三角形的判定和性质,解题的关键是
借助全等转化线段.
2. (2019·贵州贵阳·10分)如图,四边形ABCD是平行四边形,延长AD至点E,使DE=
AD,连接BD.
(1)求证:四边形BCED是平行四边形;
(2)若DA=DB=2,cosA=,求点B到点E的距离.
【分析】(1)根据平行四边形的性质得到AD=BC,AD∥BC,等量代换得到DE=BC,DE∥BC,于是得到四边形BCED是平行四边形;
(2)连接BE,根据已知条件得到AD=BD=DE=2,根据直角三角形的判定定理得到∠ABE=90°,AE=4,解直角三角形即可得到结论.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵DE=AD,
∴DE=BC,DE∥BC,
∴四边形BCED是平行四边形;
(2)解:连接BE,
∵DA=DB=2,DE=AD,
∴AD=BD=DE=2,
∴∠ABE=90°,AE=4,
∵cosA=,
∴AB=1,
∴BE==.
【点评】本题考查了平行四边形的判定和性质,直角三角形的判定和性质,三角函数的
定义,证得∠ABE=90°是解题的关键.
3.(2019?山东青岛?8分)如图,在?ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.
(1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.
【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;
(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,OB=OD,OA=OC,
∴∠ABE=∠CDF,
∵点E,F分别为OB,OD的中点,
∴BE=OB,DF=OD,
∴BE=DF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS);
(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:
∵AC=2OA,AC=2AB,
∴AB=OA,
∵E是OB的中点,
∴AG⊥OB,
∴∠OEG=90°,
同理:CF⊥OD,
∴AG∥CF,
∴EG∥CF,
∵EG=AE,OA=OC,
∴OE是△ACG的中位线,
∴OE∥CG,
∴EF∥CG,
∴四边形EGCF是平行四边形,
∵∠OEG=90°,
∴四边形EGCF是矩形.
【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角
形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
4.(2019?山东青岛?8分)如图,在?ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.
(1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.
【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;
(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行
四边形,即可得出结论.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,OB=OD,OA=OC,
∴∠ABE=∠CDF,
∵点E,F分别为OB,OD的中点,
∴BE=OB,DF=OD,
∴BE=DF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS);
(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:
∵AC=2OA,AC=2AB,
∴AB=OA,
∵E是OB的中点,
∴AG⊥OB,
∴∠OEG=90°,
同理:CF⊥OD,
∴AG∥CF,
∴EG∥CF,
∵EG=AE,OA=OC,
∴OE是△ACG的中位线,
∴OE∥CG,
∴EF∥CG,
∴四边形EGCF是平行四边形,
∵∠OEG=90°,
∴四边形EGCF是矩形.
【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角
形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
5. (2019湖北荆门)(9分)如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.
(1)求平行四边形ABCD的面积;
(2)求证:BD⊥BC.
【分析】(1)作CE⊥AB交AB的延长线于点E,设BE=x,由勾股定理列出关于x的方程,解方程求出平行四边形的高,进而即可求出其面积;
(2)利用全等三角形的判定与性质得出AF=BE=,BF=5﹣=,DF=CE=,从而求出BD的长,在△BCD中利用勾股定理的逆定理即可证明两直线垂直.
【解答】解:(1)作CE⊥AB交AB的延长线于点E,如图:
设BE=x,CE=h
在Rt△CEB中:x2+h2=9①
在Rt△CEA中:(5+x)2+h2=52②
联立①②解得:x=,h=
∴平行四边形ABCD的面积=AB?h=12;
(2)作DF⊥AB,垂足为F
∴∠DFA=∠CEB=90°
∵平行四边形ABCD
∴AD=BC,AD∥BC
∴∠DAF=∠CBE
又∵∠DFA=∠CEB=90°,AD=BC
∴△ADF≌△BCE(AAS)
∴AF=BE=,BF=5﹣=,DF=CE=
在Rt△DFB中:BD2=DF2+BF2=()2+()2=16
∴BD=4
∵BC=3,DC=5
∴CD2=DB2+BC2
∴BD⊥BC.
【点评】本题主要考查了平行四边形的性质、勾股定理及其逆定理以及全等三角形的判
定与性质,综合性较强.
6.(2019湖北仙桃)(8分)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,
且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;
(2)四边形BEGF是平行四边形.
【分析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;
(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE≌△ECG 得出AE=EG,证出EG=BF,即可得出结论.
【解答】证明:(1)∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=90°,
∴∠ABE=∠BCF=90°,
在△ABE和△BCF中,,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∵EG∥BF,
∴∠CBF=∠CEG,
∵∠BAE+∠BEA=90°,
∴∠CEG+∠BEA=90°,
∴AE⊥EG,
∴AE⊥BF;
(2)延长AB至点P,使BP=BE,连接EP,如图所示:
则AP=CE,∠EBP=90°,
∴∠P=45°,
∵CG为正方形ABCD外角的平分线,
∴∠ECG=45°,
∴∠P=∠ECG,
由(1)得∠BAE=∠CEG,
在△APE和△ECG中,,
∴△APE≌△ECG(ASA),
∴AE=EG,
∵AE=BF,
∴EG=BF,
∵EG∥BF,
∴四边形BEGF是平行四边形.
【点评】本题考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定、平
行线的性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.
7.(2019湖北咸宁市)((10分)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.
理解:
(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;
探究:
(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.
运用:
(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.
【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD =CD,即可根据等补四边形的定义得出结论;
(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论;
(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠FAD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出DF的长.
【解答】解:(1)证明:∵四边形ABCD为圆内接四边形,
∴∠A+∠C=180°,∠ABC+∠ADC=180°,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴,
∴AD=CD,
∴四边形ABCD是等补四边形;
(2)AD平分∠BCD,理由如下:
如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,
则∠AEB=∠AFD=90°,
∵四边形ABCD是等补四边形,
∴∠B+∠ADC=180°,
又∠ADC+∠ADF=180°,
∴∠B=∠ADF,
∵AB=AD,
∴△ABE≌△ADF(AAS),
∴AE=AF,
∴AC是∠BCF的平分线,即AC平分∠BCD;
(3)如图3,连接AC,
∵四边形ABCD是等补四边形,
∴∠BAD+∠BCD=180°,
又∠BAD+∠EAD=180°,
∴∠EAD=∠BCD,
∵AF平分∠EAD,
∴∠FAD=∠EAD,
由(2)知,AC平分∠BCD,
∴∠FCA=∠BCD,
∴∠FCA=∠F AD,
又∠AFC=∠DFA,
∴△ACF∽△DAF,
∴,
即,
∴DF=5﹣5.
【点评】本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等.。

相关文档
最新文档