高层建筑结构方案设计荷载估算

合集下载

高层建筑结构计算的基本假定和荷载效应组合设计要求

高层建筑结构计算的基本假定和荷载效应组合设计要求
1、非抗震设计时(竖向和风) 2、抗震设计,多遇地震计算
3
内力与位移计算的一般原则
在自身平面内的刚度很大
平面外刚度很小, 可以忽略
平面外的刚度 很小,可忽略,
4
2020/3/3
可以抵抗在本身平面 内的侧向力
1、平面抗侧力结构假定
一片框架或简力墙在自身平面内刚度很大, 可以抵抗在本身平面内的侧向力; 而在平面外的刚度很小,可忽略, 即垂直该平面的方向不能抵抗侧向力 ——整个结构可分不同方向的平面抗侧力结
按刚度和变形分配
(2)计算每片平面抗侧力结构分到的水平作用下 的内力和位移
7
4.2 荷载效应组合
荷载效应
指结构或构件在某种荷载作用下的结构的内力和 位移。
荷载效应组合
指在所有可能同时出现的诸荷载组合下,确定结 构或构件内产生的效应。其中最不利组合是指所 有可能产生的荷载组合中,对结构构件产生总效 应为最不利的一组
(b)7~9度设防、高度较大且沿高度的刚度和质量分 布很不均匀的高层建筑
(c)特别重要的建筑(甲类建筑)
(2)薄弱层的位置
(a)楼层屈服强度系数沿高度分布均匀的结构,可取 底层
(b)楼层屈服强度系数沿高度分布不均匀的结构,可 取屈服系数最小的楼层及相对较小的楼层,一般不超 过2~3处
16
2020/3/3
➢ 不考虑地震作用组合:
0S R
➢ 考虑地震作用组合:
SE RE / RE
0 结构重要性系数,分别取1.1、1.0、0.9
RE 承载力抗震调整系数
14
2020/3/3
结构设计要求
2) 侧向(水平)位移限制和舒适度要求
➢ 弹性方法计算:

《高层结构设计》 02高层建筑结构的荷载计算

《高层结构设计》  02高层建筑结构的荷载计算

高层建筑结构的荷载计算高层建筑结构的竖向荷载包括自重等恒载及使用荷载等活载,其计算方法与一般建筑结构类似,在此不再重复。

本章主要介绍在高层建筑结构设计中起主导作用的水平荷载—风荷载和地震荷载作用的计算方法。

第一节 风荷载空气流动形成的风遇到建筑物时,在建筑物表面产生的压力或吸力即建筑物的风荷载。

风荷载的大小主要和近地风的性质、风速、风向有关;和该建筑物所在地的地貌及周围环境有关;同时和建筑物本身的高度、形状以及表面状况有关。

垂直于建筑物表面上的风荷载标准值可按下式计算:0ωµµβωz s z k =式中:k ω为风荷载标准值(kN/m 2);z β为z 高度处的风振系数;s µ为风荷载体型系数;z µ为风压高度变化系数; 0ω为基本风压(kN/m 2)。

1. 基本风压0ω我国《建筑结构荷载规范》(GB50009-2001),《全国基本风压分布图》中给出的基本风压值0ω,是用各地区空旷地面上离地10m 高、重现期为30年的10min 平均最大风速0υ(m/s )计算得到的,基本风压值1600/200υω=(kN/m 2)。

荷载规范给出的0ω值适用于多层建筑;对于一般高层建筑和特别重要的或有特殊要求的高层建筑可按《全国基本风压分布图》中的数值分别乘以1.1和1.2采用。

2. 风压高度变化系数z µ表1 风压高度变化系数风速大小与高度有关,一般近地面处的风速较小,愈向上风速逐渐加大,但风速的变化与地貌及周围环境有关。

在近海海面、海岛、海岸、湖岸及沙漠地区,地面空旷,空气流动几乎无阻挡物(A 类粗糙度),风速随高度的增加最快;在中小城镇和大城市的郊区(B 类粗糙度),风速随高度的增加减慢;在有密集建筑物的大城市市区(C 类粗糙度),和有密集建筑群,且房屋较高的城市市区(D 类粗糙度),风的流动受到阻挡,风速减小,因此风速随高度增加更缓慢一些。

表1列出了各种情况下的风压高度变化系数。

高层建筑结构荷载作用与结构设计原则

高层建筑结构荷载作用与结构设计原则
2)当多栋或群集的高层建筑相互间距较近时,宜考虑风力相互干扰的群体效应。一般可将单栋建 筑的体型系数μ s乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定;必要时宜通过风 洞试验确定。
3.2 风荷载的计算
(4)高层建筑的风振系数βz
z 1 (3.26) 《荷载》:7.4.1 对z 于基本自振周期T1 大于0.25s 的工程结构,如房屋、屋盖及各种高耸结构,以及对 于高度大于30m且高宽比大于1.5 z的高柔房屋,均应考虑风压脉动对结构发生顺风向风振的影响。
计算:它可由构件和装修的尺寸和材料的重量直接计算,材料的自重可按荷载规范阿取值。
注意:在高层建筑结构设计中,恒荷载计算时不要漏项。
3.1 竖向荷载的计算
3.1.2 活荷载 相对恒荷载,活荷载种类较多,计算也复杂。 1)取值:楼面均布活荷载可按《荷载》规范取; 2)折减:设计楼面梁、墙、柱及基础时,楼面荷载在标准值应乘以《荷载》规定的折减系数。 3)施工或检修荷载:一般取1.0~1.52。 4.5.1 设计屋面板、檩条、钢筋砼挑檐、雨篷和预制小梁时,施工或检修集中荷载(人和小工具的自重) 应取1.0,并应在最不利位置处进行验算。
3.2 风荷载的计算
3.2.1 风荷载标准值和基本风压 《高规》:3.2.1 主体结构计算时,垂直于建筑物表面的风荷载标准值应按(3.2.1)式计算,风荷载 作用面积应取垂直于风向的最大投影面积。
(3.2.1) 式中:ωk—风荷载标准值(); ωo—基本风压(2);μz—风压高度变化系数; μs—风荷载体型系数;βz—z度处的风振系数。
G H 式中:、—分别为i集中i 于质点i、j的重力荷载代表值;
F F 1 、—质i点i、j的n 计算高度; Ek
n
G H δn—顶部附加地震作用系数,可按表采用。 jj

多、高层房屋结构的分析和设计计算

多、高层房屋结构的分析和设计计算
按主体结构弹性刚度所得钢结构的计算周期,由 于非结构构件及计算简图与实际情况的差异,建议 计算周期考虑非结构构件影响的修正系数ξT取0.9。
对质量及刚度沿高度分布比较均匀的结构,基本 自振周期可用下列公式近似计算:
Un——结构顶层假想侧移(m)。
多、高层房屋结构的分析和设计计 算
初步计算时,结构的基本自振周期按经验公式估算: n—建筑物层数(不包括地下部分及屋顶小塔楼) 。
Tg=0.4s (Ⅱ类场地,第二组)
T=1.5s(Tg∽5Tg)地震影响系数
T=4s(5Tg∽6s)地震影响系数 T=0~0.1s 地震影响系数 0.45 max∼2 max T=0.1s~Tg地震影响系数2 max
0.015 0.012
0.023∼0.05 0.05
0.027 0.021
0.036∼0.09 0.09
多、高层房屋结构的分析和设计计 算
(2)振型分解反应谱法
对不计扭转影响的结构,振型分解反应谱法可仅考虑 平移作用下的地震效应组合,并应符合下列规定: (a) j振型i层质点的水平地震作用标准值
多、高层房屋结构的分析和设计计 算
(b) 水平地震作用效应(弯矩、剪力、轴向力和变形) :
突出屋面的小塔楼,应按每层一个质点进行地震作用计 算和振型效应组合。
多、高层房屋结构的分析和设计计 算
多、高层房屋结构的分析和设计计 算
顶部突出物:底部剪力法计算顶部突出物的地震作用, 可按所在的高度作为一个质点,按其实际定量计算所得水平 地震作用放大3倍后,设计该突出部分的结构。
增大影响宜向下考虑1~2层,但不再往下传递。
多、高层房屋结构的分析和设计计 算
基本自振周期 T1:
(3)竖向地震作用

建筑结构荷载计算

建筑结构荷载计算

有地震作用效应组合时
SERE/RE
SE :有地震作用效应组合时,构件 截面内力(效应)组合的设计值 RE :有地震作用组合时,构件截面 承载力设计值
R E:承载力抗震调整系数
材料
结构构件
钢筋混凝土 梁
轴压比小于0.15的柱
轴压比大于0.15的柱
剪力墙
各类受剪、偏拉构件
钢(强度破 梁、柱
坏);
支撑

cu / Cu1 Cu2 cu / Cu2 Cu1
>1.0
相对受压区高度 与曲率延性比关系
轴压比大,相对受压区高度大,延性小
• 在高轴压比情况下,在水平荷载施加之 前,柱子己经产生了较大的预压应变, 预压应变降低截面的塑性转动能力,使 构件的延性变差,所以轴压比限值不能 定的过高
(4)纵向钢筋
σ/M P a
钢筋或钢材
80
60
Z12
Z13
40
Z11
20
Z8
Z9
Z10
0
ε
0.000 0.005 0.010 0.015 0.020 0.025
不同配箍特征值
不同强度等级混凝土 碳纤维约束混凝土
截面曲率延性 u /y
截面弯短—曲率关系 屈服时截面应变分布 极限状态时截面应变分布
构件位移延性 u /y
名义屈服时 y y' /0.85
y —钢筋屈服应变(小,有利)
h 0 —截面有效高度
x
' y
—混凝土受压区高度(小,有利)
截面的极限曲率 u
u cu / xu
c u —受压区边缘混凝土极限压应变
(大,有利)
x u —混凝土受压区高度(小,有利)

高层建筑风荷载分析与计算

高层建筑风荷载分析与计算

高层建筑风荷载分析与计算高层建筑是现代城市中的重要标志,其稳定性和安全性对于人们的生命财产具有重要意义。

在高层建筑设计过程中,风荷载是必须考虑的重要因素之一。

本文将介绍高层建筑风荷载分析与计算的基本原理和方法。

1.了解风荷载在分析和计算高层建筑风荷载之前,我们首先需要了解什么是风荷载。

风荷载是指风对建筑物表面产生的压力和力矩,它可以分为静风荷载和动风荷载两种。

静风荷载是指风对建筑物表面产生的水平和垂直压力。

它是由于风速引起的压力差所形成的。

而动风荷载则是指风对建筑物表面产生的水平和垂直力矩,它是由于风的转动造成的。

2.风荷载计算方法高层建筑风荷载计算通常使用工程气象学和结构力学的方法。

其中,风荷载计算的关键是确定风速和其他影响因素。

风速是风荷载计算的基本参数。

根据气象学和统计方法,可以采用不同的风速计算公式来估算风速。

常用的方法包括极大风速法、特征年风速法和风洞实验法等。

除了风速,还有其他影响因素需要考虑,如气象条件、地形地貌、建筑物高度和形状等。

这些因素会影响风荷载的大小和分布。

3.高层建筑风荷载分析在高层建筑设计过程中,风荷载分析是非常重要的一环。

通过风荷载分析,可以确定建筑物各部位受到的风荷载大小,从而为结构设计提供依据。

风荷载分析的一般步骤如下:3.1风荷载分区。

将建筑物划分为不同的区域,根据风压的大小将其分类。

3.2风荷载计算。

根据所选择的风速计算方法和影响因素,计算每个区域的风荷载。

3.3风荷载分析。

根据建筑物的结构形式和材料特性,进一步分析风荷载对各结构部位的影响。

3.4结果评估。

对风荷载分析结果进行评估,检验建筑物的稳定性和安全性。

4.高层建筑风荷载计算示例为了更好地理解高层建筑风荷载计算的过程,我们以一栋50层的高层住宅为例进行说明。

根据所在地的气象条件和统计数据,确定风速计算公式和参数。

然后,将建筑物划分为不同的风荷载分区,根据设计要求和风压标准确定风荷载分区的分类。

接下来,根据所选用的风速计算公式和参数,计算每个风荷载分区的风荷载大小。

高层建筑结构设计中的风荷载

高层建筑结构设计中的风荷载

式中 、 ”、 分 别 为脉 动 增 大 系数 、 脉 动 影 响系 数和 振 型 系 数 ,三者 可 以 查规 范 的表 格 得 到 。z m 为风 压 高度 变 化 系数 。
高层建筑风振控 制
高层建筑 的风振控制有多种方法, 包括调频质量阻尼器 ( T u n — z_ Z— Zd’ e d Ma s s Da m p e r ,简称 T MD) 、调频液柱阻尼器 ( T u n e d L i q u i d 其中z — — 离地 高 度 ( m) : D a mp e r ,简称 T L C D) 、调频液体阻尼器 ( T u n e d L i q u i d D mp a e r , z 厂一 零 平均 位 移 ( m o 简称 T L D) 、挡风板 ( Ae r o d y n a mi c A p p e n d a y s ) 控制、锚索控 制、 风压是建筑结构设计中的基本设计依据之一,其取值 的大小 粘弹性阻尼器一类的耗 能构件控制等 , 其 中, 调频质量阻尼器 、 挡 对高层 ( 高耸)和 大跨度结构的安全性、适用性、耐久性及是否经 风板控制和锚索控制等又分主动控制和被动控制 ,本文只对调频 济有密切 的关系. 基本风压 系以当地 比较空旷平坦地面上离地比较 质量阻尼器和调频业主阻尼器和粘弹性阻尼器等 比较 常见的被动 离地 1 0 m高统计所得的 5 0 年一遇 1 0 ai r n 平均最大风速、 按 = 1 P 2 风振 控 制 方 法进 行 介绍 。 调频 质 量 阻 尼器 ( T MD ) 确定的风压。基本风压值不得小于 0 . 3 k N/ m 。我国不 同城市和地 调频质量阻尼器在实际高层中已得到应用 , 例如 1 9 7 7年在美 区的基本风压直接查用 《 建筑结构荷载规范 》 的全国基本风压 分布 J o h n Ha n c o c k T o we r , B o s t o n) 和 1 9 7 8 图。当城市或建设地点的基本风压不能查收时 , 基本风压值可根据 国波 士顿约翰汉考克大厦 ( 年在纽约西蒂柯布中心 ( C i t i c o r p C e n t e r ,Ne wY o r k) 分别安装 了 当地年最大风速资料 ,按基本风压定义 ,通过统计分析确定。 调频质量阻尼器 ,西蒂柯布中心安装的调频质量阻尼器系统 。 调 频 液柱 阻尼 器 ( T L C D o调 频 液柱 阻 尼 器是 一 种 u 型 的管 风荷载的计算 风力的计算。风荷载是结构设计 的重要荷 载,在工程计算中, 状水箱 ,并在水平管得 中不设置格兰,为的是增加阻尼。u 型的 管状水箱安装固定在建筑物 的项部。当建筑物在风荷载作 用下运 常采用集中风荷载 动时 ,水箱将一 同运动一同运动 ,致使水箱中的水晃动 ,水晃动 P ) = ) + ( z ) 性力对水箱壁的作用就形成 了对建筑物的减振力。 式中 ,P ( z ) 为顺风 向 z高度处总静力风荷载 : ( z ) 为顺风向 z 产生的, 粘弹性阻尼器。正如减速器能使门的关 闭速度减缓那样 ,在 高度处静力风荷载 ; ( z ) 为顺风 向 Z高度 处风振动 力风荷 载。 高层建筑 物内部安装粘 弹性阻尼器 ,同样能达 到减小结构物摆动 ) = 皑 式中, Az为垂直于建筑物表面上平均风荷载受风面积 ( m ) ; 的 目的。粘弹性 阻尼器 已成功地应 用于 美国纽约世界 贸易中心 ( 1 1 0层 ) 和西雅图哥伦 比亚中心 ( 7 7层 )等大楼中。 为风荷载体型系数 : 在高层建筑和大跨度建筑结构设计 中,风振 Ⅱ 向 应和风振系数 为风压 高度变化系数 ; 是计算的重点和难点之一。我国的规范提供 高层高耸结构在顺向 为基 本 风压 。 风效应的风振 系数的计算 方法 ,这一方法不太适用于复杂高层建 筑和 大跨度建筑。因此 , 在复杂的高层建筑和大跨度建筑设计 时, ( 作者单位 :华侨大学土木工程学 院 ) 风荷载 的确定 需要采用其 它更精确 的方法来确定。

高层建筑风荷载计算

高层建筑风荷载计算

高层建筑风荷载计算在现代城市的天际线中,高层建筑如林立的巨人般矗立。

然而,这些高耸的建筑在面对大自然的力量——风时,需要经过精心的设计和计算,以确保其结构的安全性和稳定性。

风荷载,作为作用在高层建筑上的重要外力之一,其准确计算对于建筑的设计和建造至关重要。

风荷载是什么呢?简单来说,风荷载就是风对建筑物产生的压力或吸力。

当风吹过建筑物时,由于建筑物的阻挡,风的流动会发生改变,从而在建筑物表面产生不同的压力分布。

这种压力分布会对建筑物的结构产生作用,可能导致建筑物的变形、振动甚至破坏。

那么,如何计算高层建筑的风荷载呢?这可不是一个简单的问题,需要考虑多个因素。

首先,风速是一个关键因素。

风速通常是根据当地的气象资料来确定的。

气象站会记录不同高度的风速数据,但这些数据一般是在标准高度(通常为 10 米)测量得到的。

而对于高层建筑,我们需要将这些风速转换到建筑物所在的高度。

这就需要用到风速的垂直分布规律,一般可以采用指数律或对数律来进行转换。

其次,建筑物的形状和尺寸也对风荷载有很大影响。

比如,建筑物的平面形状是圆形、方形还是其他不规则形状,都会导致风在其表面的流动情况不同。

建筑物的高度、宽度、长度以及立面的变化等都会改变风荷载的大小和分布。

另外,建筑物所在的地形和周边环境也不能忽视。

如果建筑物位于山区、峡谷或者靠近其他建筑物,风的流动会受到地形和周边建筑物的干扰,从而改变风荷载的特性。

在计算风荷载时,还需要考虑风的脉动效应。

风不是稳定不变的,而是具有随机性和脉动性。

这种脉动风会引起建筑物的振动,甚至可能产生共振现象。

为了考虑风的脉动效应,通常会采用风洞试验或者数值模拟的方法来获取更准确的风荷载数据。

风洞试验是一种在实验室中模拟风对建筑物作用的方法。

通过在风洞中放置按比例缩小的建筑物模型,然后测量模型表面的风压,再经过一定的换算和分析,就可以得到实际建筑物的风荷载。

风洞试验的优点是能够较为真实地模拟风的作用,但成本较高,而且试验结果可能会受到模型制作精度和试验条件的影响。

第3,4章 高层建筑荷载

第3,4章 高层建筑荷载

建筑物的抗震设防类别
建筑应根据其使用功能的重要性分为甲类、乙 类、丙类和丁类四个抗震设防类别。 甲类建筑应属于重大建筑工程和地震时可能发 生严重次生灾害的建筑, 乙类建筑应属于地震时使用功能不能中断或需 尽快恢复的建筑, 丙类建筑应属于除甲、乙、丁类以外的一般建 筑, 丁类建筑应属于抗震次要建筑。
局部风荷载:用于计算局部构件或围护构件或
维护构件与主体的连接。 对于檐口、雨蓬、遮阳板、阳台等突出构件的 上浮力,取μs>=-2.0。 对封闭式建筑,按外表面风压的正、负情况取2.0或+2.0。
3.1.3风洞试验
(JGJ3-2002)规定:有下列情况之一的建筑物, 宜按风洞试验确定风荷载。 1 高度大于200m 2高度大于150m,且平面性状不规则、立面形 状复杂,或立面开洞、连体建筑等 3 规范或规程中没有给出风载体形系数的建筑 物 4 周围地形和环境复杂的建筑物
3.2.3抗震计算理论
计算地震作用的方法可分为静力法、反应谱方法 (拟静力法)和时程分析法(直接动力法)。
反应谱理论
反应谱:单质点弹性体系在一定的地面 运动作用下,其最大反应(加速度、速 度和位移反应)与体系自振周期之间的 变化曲线(谱曲线)。
• 直接动力理论
用地震波(加速度时程)作为地面运动输入,直接计算 并输出结构随时间而变化的地震反应。 • 地震波的选取: 采用弹塑性动力分析方法进行薄弱层验算时,宜符合以下 要求:
第3章 高层建筑荷载
教学提示:本章主要介绍了高层建筑风荷载
的计算;抗震设防的准则和基本设计方 法,水平地震作用的计算方法(主要是 反应谱法)与竖向地震作用的计算方法。 教学要求:熟练掌握风荷载的计算方法,以 及用反应谱方法计算水平地震作用的方 法,理解抗震设防的准则和基本设计方 法,理解反应谱理论。

高层建筑结构设计要求和荷载效应组合

高层建筑结构设计要求和荷载效应组合

高层建筑结构设计要求和荷载效应组合高层建筑的结构设计是十分重要的,因为它需要承受巨大的荷载效应,包括自重、风荷载、地震荷载等。

设计师在进行高层建筑结构设计时应考虑以下几个方面的要求和荷载效应组合:1.强度要求:高层建筑需要承受大量的荷载,因此在结构设计中必须满足强度要求。

这包括材料的强度要求,如钢筋混凝土的抗拉、抗压强度等;以及构件的强度要求,如梁、柱、墙等结构构件的尺寸、截面形状、厚度等。

2. 稳定性要求:高层建筑结构设计中,不仅需要考虑结构的强度,还需要考虑结构的稳定性。

稳定性要求包括纵向稳定性和横向稳定性。

纵向稳定性指建筑结构在垂直方向上的承载能力以及抗 overturning 能力;横向稳定性指建筑结构在水平方向上的抗侧倾和抗扭转能力。

3.刚度要求:高层建筑结构设计中,不仅需要考虑结构的强度和稳定性,还需要考虑结构的刚度,即结构的变形和振动。

高层建筑结构的刚度要求会影响到结构的稳定性、舒适度以及非结构性附件的设计和使用。

4.建筑荷载组合:高层建筑结构设计中,需要考虑不同荷载效应的组合。

荷载效应包括恒定荷载、活载、特殊荷载、风荷载、地震荷载等。

根据设计规范,这些荷载效应需要进行组合计算,确保结构在最不利的工况下的承载能力与安全性。

5.抗震设计:高层建筑结构设计中,地震荷载是一个重要的荷载效应。

地震设计要求结构在地震作用下,能够保持抗震安全性。

这包括结构的抗震设计参数、抗震性能要求、荷载效应的组合等。

需要注意的是,高层建筑结构设计不仅要满足上述要求,还需要考虑其他因素,如施工可行性、经济性、可维护性等。

因此,在进行高层建筑结构设计时,需要综合考虑各种因素,并遵守相应的设计规范和标准。

只有满足这些要求,才能确保高层建筑结构工程的安全性、可靠性和稳定性。

高层建筑结构设计中的风荷载分析

高层建筑结构设计中的风荷载分析

高层建筑结构设计中的风荷载分析在当今城市的天际线中,高层建筑如雨后春笋般拔地而起。

这些高耸入云的建筑不仅是城市现代化的象征,更是建筑工程领域的巨大挑战。

在高层建筑结构设计中,风荷载是一个至关重要的因素,它对建筑的安全性、稳定性和舒适性都有着深远的影响。

风荷载,简单来说,就是风作用在建筑物表面上产生的压力和吸力。

然而,其实际的作用机制和影响却远非如此简单。

当风遇到高层建筑时,会产生绕流、分离和漩涡等复杂的流动现象,从而在建筑物的表面形成不均匀的压力分布。

这种不均匀的压力分布会对建筑结构产生水平力和扭矩,可能导致结构的变形、振动甚至破坏。

风荷载的大小主要取决于风速、风向、建筑物的形状、高度、表面粗糙度以及周围环境等因素。

风速是风荷载的最直接影响因素,风速越大,风荷载也就越大。

风向则决定了风对建筑物的作用方向,不同的风向会导致不同的压力分布。

建筑物的形状对风荷载的影响也十分显著。

例如,方形或矩形的建筑平面在风的作用下,其角落处容易产生较大的负压,而圆形或椭圆形的建筑则相对较为均匀地承受风荷载。

建筑物的高度也是一个关键因素,随着高度的增加,风速通常会增大,同时风的紊流特性也会更加明显,这使得风荷载的计算和分析变得更加复杂。

表面粗糙度则反映了建筑物外表面的凹凸不平程度。

粗糙的表面会增加风的阻力,从而影响风荷载的大小。

周围环境,如附近的建筑物、地形地貌等,也会对风的流动产生干扰,进而改变作用在目标建筑上的风荷载。

在进行高层建筑结构设计时,准确地评估风荷载是至关重要的。

目前,常用的风荷载计算方法主要包括规范法和数值模拟法。

规范法是基于大量的风洞试验和实际观测数据,通过统计分析得出的经验公式和系数。

各国的建筑规范中都对风荷载的计算方法和取值进行了规定。

这种方法简单易用,但对于一些特殊形状或复杂环境下的建筑,可能会存在一定的局限性。

数值模拟法则是利用计算机软件对风场和建筑物的相互作用进行模拟。

通过建立数学模型,求解流体力学方程,可以得到建筑物表面详细的风压力分布。

《高层建筑结构》课程设计任务书(2015)

《高层建筑结构》课程设计任务书(2015)

《高层建筑结构》课程设计任务书一、设计题目:高层框架结构设计某高层办公建筑,采用全现浇框架结构,结构平面布置如图所示,质量、刚度均匀,地上12层,各层层高、跨度及竖向荷载如图所示,设计使用年限为50年。

取③轴一榀典型横向框架进行结构设计。

二、设计资料⑴基本风压:0.45kN/m2,地面粗糙度类别为B类。

⑵基本雪压:0.45 kN/m2。

⑶设防烈度:7度;设计分组:第一组;抗震设防类别:丙类。

⑷场地类别:Ⅱ类。

⑸楼面做法:楼板厚120mm,各板顶做20mm厚水泥砂浆找平,地面装修重(标准值)按0.6 kN/m2考虑,各板底粉15mm厚石灰砂浆。

⑹屋顶:不上人屋面,做法同楼面,但加做二毡三油防水层,再做40mm厚细石混凝土面层(内布细丝网)。

⑺混凝土强度等级:梁C25、柱C30。

⑻梁、柱纵向受力钢筋采用HRB400级钢筋⑼梁、柱截面尺寸如下:柱:1~4层ZA:500mm*500mm ZB:600mm*600mm ZC:600mm*600mm ZD:500mm*500mm 5~12层ZA:400mm*400mm ZB:500mm*500mm ZC:500mm*500mm ZD:400mm*400mm 梁:LAB:250mm*700mm LBC:250mm*500mm LCD:250mm*600mm三、计算内容取③轴横向框架进行设计:计算书一份,要求手写,内容包括以下几项:⑴、计算简图(相对线刚度)⑵、荷载计算(竖向荷载、风荷载)⑶、结构水平位移验算⑷、内力计算4.1在竖向荷载作用下框架各杆件的内力(M、N、V)4.2在风荷载作用下的框架各杆件的内力(M、N、V)⑸、内力组合⑹、截面设计(梁、柱配筋)四、结构施工图框架梁、柱配筋图一张,要求手工绘图,2号图纸。

高层建筑结构设计确定风荷载

高层建筑结构设计确定风荷载

高层建筑结构设计确定风荷载高层结构设计要确保结构在风荷载作用下具有足够的抵抗变形能力和承载能力,保证结构在风荷载作用下的安全性。

同时,高层建筑物在风荷载作用下将产生振动,过大的振动加速度将使在高楼内居住的人们感觉不舒适,因此高层建筑结构应具有良好的使用条件,满足舒适度的要求。

1.1 等效静态风荷载一般作用在建筑物上的风包括平均风和脉动风。

其中平均风是风荷载的长周期部分作用在建筑物上,其周期常在10min以上,可认为是作用在建筑物上的静荷载,因为其周期与建筑物的自振周期相差较远;脉动风则是短周期部分作用在建筑物上,其脉动的周期很短,一般只有几秒,其作用可以被认为是作用在建筑物上随机的动荷载,因为其周期与建筑物的自振周期比较接近。

作用在建筑结构上的风荷载除了平均风和脉动风产生的平均风力和脉动风力,还有风振产生的惯性力。

平均风力、脉动风力和惯性力组合得到最终的等效静态风荷载。

(1)惯性力根据高频动态天平试验结果,可以求出高层建筑底部的平均风力(包含力矩和剪力)和脉动风力,在给出高层建筑结构参数的情况下,可以计算出位移和加速度响应,由共振加速度可以进一步求出惯性力。

惯性力是由振动产生的,由加速度和质量决定,沿高度分布惯性力均方根σaf(z)表达式为:上式中m(z)为沿高度的质量,为沿高度的加速度。

(2)平均风力和脉动风力空气来流沿高层建筑高度分布的风力可通过下式表达:其中:ρ为空气密度;是z处单位高度上的力系数,一般通过风压测量试验确定;是来流风速。

风速是平均风速与脉动风速的合成,即:一般来说,脉动风速相对于平均风速是小量,忽略二阶小量,即可得到沿高度分布的平均风力和脉动风力分别如下:脉动力均方根为:其中,为沿高度的来流湍流度。

(3)等效静态风荷载沿高度分布的等效静态风荷载由下式给出:式中g为峰值因子,可取3.5。

1.2 结构体型系数对于普通的高层结构,结构体型系数一般按《建筑结构荷载规范》(GB 50009-2022)表8.3.1和《高层建筑混凝土结构技术规程》(JGJ3-2022)第4.2.3条取包络值。

高层建筑结构设计(风荷载例题)

高层建筑结构设计(风荷载例题)
层标高,H为建筑总高度。由式3.3可求得风振系数为:
z H i 1.502 0.478 H i z 1 1 1 z z H z H
(4)风荷载计算:风荷载作用下,按式(3.1)可得
沿房屋高度分布的风荷载标准值为:
q( z) 0.45 0.8 0.57 40z z 24.66z z
下室采用筏形基础,埋置深度为12m,如图所示。已
知基本风压 w0 0.45 kN m2 ,建筑场地位于大城市郊 区。已计算求得作用于突出屋面小塔楼上的风荷载标
准值的总值为 800kN 。为简化计算,将建筑物沿高度
划分为六个区段,每个区段为20m,近似取其中点位
置的风荷载作为该区段的平均值。计算在风荷载作用
筏形基础底面的弯矩为:
M 800 132 1384.8 122 1262.2 102 1123.8 82 971.0 62 788.6 42 522.8 22 600266.4kN m
下结构底部(一层)的剪力和筏形基础底面的弯矩。
解:(1)基本自振周期:根据经验公式可得
T1 0.05n 0.05 38 1.90s
w0T12 0.45 1.92 1.62kN s 2 m2
(2)风荷载体型系数:对于矩形平面,由附录1求得 s1 0.8
H 120 s 2 0.48 0.03 0.48 0.03 0.57 L 40
例题31某高层建筑剪力墙结构上部结构为38层底部13层层高为4米其他各层层高为3米室外地面至檐口的高度为120米平面尺寸为30m40m地下室采用筏形基础埋置深度为12m如图所示
例题3-1 某高层建筑剪力墙结构,上部结构为38层,

高层建筑风荷载计算

高层建筑风荷载计算

高层建筑风荷载计算在现代城市的天际线中,高层建筑如雨后春笋般拔地而起。

这些高耸入云的建筑不仅是城市的地标,也是工程技术的杰作。

然而,在设计和建造这些高层建筑时,风荷载是一个至关重要的考虑因素。

风荷载的准确计算对于确保建筑的结构安全、稳定性以及居住者的舒适度都具有不可忽视的意义。

风荷载,简单来说,就是风对建筑物表面产生的压力或吸力。

由于高层建筑的高度较大,其暴露在风中的面积也相应增加,风的作用效果更加显著。

如果风荷载计算不准确,可能会导致建筑物在强风天气中出现结构破坏、摇晃甚至倒塌等严重后果。

那么,如何进行高层建筑风荷载的计算呢?这可不是一个简单的问题,需要综合考虑多个因素。

首先,风速是计算风荷载的关键因素之一。

风速通常是通过气象观测数据获得的,但这些数据往往是在地面附近测量得到的。

随着高度的增加,风速会逐渐增大,这种现象被称为风速的梯度变化。

为了准确计算高层建筑顶部的风速,需要使用特定的风速剖面公式,例如幂律公式或对数公式。

其次,建筑的外形和几何特征对风荷载的大小和分布有着重要影响。

不同的建筑形状,如方形、圆形、三角形等,以及建筑表面的凹凸变化、开口和阳台等,都会改变风的流动模式,从而影响风荷载的作用。

例如,流线型的建筑外形通常能够减少风的阻力,从而降低风荷载;而带有突出部分或复杂几何形状的建筑则可能会产生较大的风荷载。

另外,风向也是一个重要的考虑因素。

风可以从不同的方向吹来,对于高层建筑,不同方向的风荷载可能会有很大的差异。

因此,在计算风荷载时,需要考虑多个风向的情况,并选取最不利的风向组合进行设计。

在实际计算中,通常会使用两种主要的方法:规范计算方法和数值模拟方法。

规范计算方法是基于大量的实验研究和理论分析得出的一系列计算公式和系数。

例如,我国的建筑结构荷载规范就提供了详细的风荷载计算方法和参数。

这种方法相对简单、实用,但可能会存在一定的保守性,对于一些特殊形状或复杂环境下的高层建筑,计算结果可能不够准确。

高层结构设计第3章 高层建筑的荷载和地震作用

高层结构设计第3章  高层建筑的荷载和地震作用

3、抗震设防目标
具体通过“三水准”的抗震设防要求和 “两阶段”的抗震设计方法实现。
三水准地震作用的标定
三水准:“小震”“中震”“大震” 地震影响 众值烈度(多遇地震)小震 基本烈度(设防烈度地震)中震 罕遇烈度(罕遇地震)大震 50年超越概率 63.2% 10% 2-3% 地震重现期 50年 475年 1642-2475年

:空气密度
2014-11-16
15
(2)风荷载体型系数 s 风对建筑表面的作用力并不等于基本风压值,而是随建筑物的 体型、尺度、表面位臵等而改变,其大小由实测或风洞试验确定 s =垂直于建筑表面的平均风作用力/基本风压值
2014-11-16
16
(2)风荷载体型系数 s 风对建筑表面的作用力并不等于基本风压值,而是随建筑物的 体型、尺度、表面位臵等而改变,其大小由实测或风洞试验确定 s =垂直于建筑表面的平均风作用力/基本风压值
吸力
2014-11-16
27
4、总风荷载
各个表面承受风力的合力,沿高度变化的分布荷载
Z Z 0 (1 B1 cos1 Zn Bn cos n )
α2 =900 α1=0 μs= +0.8 B1 wind B4
μs=-0.6
2014-11-16 28
μs=-0.6
4、地震作用计算原则
一般情况下,计算两个主轴方向的地震作用;有斜交抗 侧力构件(角度大于 15 度)时应分别计算各抗侧力构件 方向的地震作用 质量与刚度分布明显不对称、不均匀的结构,应计算双 向水平地震作用下的扭转影响,其他情况应计算单向地 震作用下的扭转影响 8 度和 9 度抗震设计时,高层建筑中的大跨度和长悬臂结 构应考虑竖向地震作用 9度抗震设计时应计算竖向地震作用

结构方案阶段估算

结构方案阶段估算

结构方案阶段估算∙分享∙转载∙复制地址∙..赞赞取消赞忘忧草 2011年05月13日 13:24 阅读(4) 评论(0) 分类:个人日记∙举报∙字体:中▼o小o中o大一、结构单位面积重力荷载剪力墙结构12层:40m一下;13~14kN/m2,筏板厚600~700mm,标准层含钢量30~40,整体55左右。

18层:60m界限/风荷载100年一遇;14kN/m2,筏板厚800mm左右26层:80m界限/抗震等级;14.5kN/m2, fak=450kPa左右,筏板厚1000mm30层:14.5~15kN/m2, fak=500kPa左右,筏板厚1200~1300mm。

32层:100m界限/避难层;15kN/m2,fak=500~550kPa,筏板厚1300~1500mm地下室取20kN/m2框架结构:12~14kN/m2,一般可取13kN/m2。

框剪结构:13~15kN/m2,可取14kN/m2。

框架核心筒:14~16kN/m2短肢剪力墙:10~12kN/m2砌体结构:22kN/m2左右,估算条基宽度可按每层45kN/m,含钢量23~27公斤。

地反力估算(标准组合):单位面积重力荷载X地上层数+地下室层数X20+筏板厚X25+10二、周期剪力墙结构:0.04~0.08N(经验值0.06~0.08N),N为地面以上房屋层数。

框剪结构:0.08~0.12N框架结构:0.12~0.15N框架核心筒、外框筒:0.06~0.10N三、墙厚及砼强度26层:地下外300、内250;地上外250、内20030~33层:外纵墙底部加强部位及上一层300(楼梯间段突出时250),以上250 外横墙一般250内墙底部加强部位及上一层250(电梯间隔墙取200),以上200砼强度:C35~C30,初步设计时砼强度变化可与墙厚变化相隔一层,根据轴压比情况可在下一层或上一层。

注:1. 墙厚不满足规程要求时应进行稳定验算。

2. 对于剪力墙结构的一字型外墙,尤其在转角阳台或窗的一字形外墙,以及框剪结构中的非筒形剪力墙和框支层的落地剪力墙厚度宜满足规程要求,不进行稳定验算3. 地下室外墙不宜大于C35,基础一般C30(不宜大于C40);4. 为提高轴压比、梁柱墙的剪压比、框架或剪力墙的抗侧力刚度,提高砼强度等级是有意义的,但随强度等级的提高而提高比例变小;5. 受弯构件的纵筋配筋受强度等级的变化影响较小四、剪力墙布置(均匀、分散、周边、对称)1.墙肢截面宜简单、规则,楼电梯间等不必要的小剁可去掉(刚度能够满足时),墙体布置宜成行成列对齐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高层建筑结构方案设计荷载估算
高层建筑结构作用效应的特点
1.2.1 高层建筑结构的受力特点
建筑结构所受的外力(作用)主要来自垂直方向和水平方向。

在低、多层建筑中,由于结构高度低、平面尺寸较大,其高宽比很小,而结构的风荷载和地震作用也很小,故结构以抵抗竖向荷载为主。

也就是说,竖向荷载往往是结构设计的主要控制因素。

建筑结构的这种受力特点随着高度的增大而逐渐发生变化。

在高层建筑中,首先,在竖向荷载作用下,由图1.2.1-1所示的框架可知,各楼层竖向荷载所产生的框架柱轴力为:
边柱N=wlH/2h
中柱N=wlH/h
即框架柱的轴力和建筑结构的层数成正比;边柱轴力较中柱小,基本上与其受荷面积成正比。

就是说,由各楼层竖向荷载所产生的累积效应很大,建筑物层数越多,底层柱轴力越大;顶、底层柱轴力差异越大;中柱、边柱轴力差异也越大。

其次,在水平荷载作用下,作为整体受力分析,如果将高层建筑结构简化为一根竖向悬臂梁,那么由图1.2.1-2、图1.2.1-3所示其底部产生的倾复弯矩为:
水平均布荷载Mmax=qH2/2
倒三角形水平荷载Mmax= Qh3/3
即结构底部产生的倾复弯矩与楼层总高度的平方成正比。

就是说,建筑
结构的高度越大,由水平作用对结构产生的弯矩就更大,较竖向荷载对结构所产生的累积效应增加更快,其产生的结构内力占总结构内力的比重越大,从而成为结构强度设计的主要控制因素。

1.2.2 高层建筑结构的变形特点
在竖向荷载作用下,高层建筑结构的变形主要是竖向构件的压缩变形。

由于各竖向构件的应力大小不同,因而其压缩变形大小也不同。

在钢筋混凝土结构中,由于在施工过程中的找平,
同时由于各竖向构件的基底轴力大小不同,若不对基底应力进行调整,也可能导致基础产生不均匀沉降。

在水平荷载作用下,高层建筑结构最大的顶点位移为:
水平均布荷载△max=qH4/8EI
倒三角形水平荷载△max= 11qH4/120EI
式中EI为结构的。

相关文档
最新文档