解直角三角形的典型例题

合集下载

解直角三角形大题及答案

解直角三角形大题及答案

解直角三角形大题及答案直角三角形是初中数学中比较基础而重要的知识点,下面给出几道解直角三角形的大题及答案。

大题一已知直角三角形的一条直角边为6cm,另一条直角边为8cm,求斜边长。

解析:根据勾股定理可以求出斜边长,即$c=\sqrt{a^2+b^2}$。

带入数据得$c=\sqrt{6^2+8^2}=10$,所以斜边长为10cm。

答案:10cm大题二如图,直角边AC长为12cm,BC长为16cm,连接AB并延长线段交CD于点D,且CE垂直于BD,求CE的长。

解析:首先要求出BD的长度。

由$AC^2+BC^2=BD^2$可得$BD=\sqrt{12^2+16^2}=20$。

然后根据相似三角形CC’E、B’BD可以列出比例$\frac{CE}{BD}=\frac{BC}{B'D}$,即$\frac{CE}{20}=\frac{16}{28}$,解之得$CE=\frac{80}{7}$。

答案:$\frac{80}{7}$cm大题三已知一艘轮船从岸边出发,航向为东北偏东,速度为20km/h,船行了300km到达目的地。

试画出向量图,并求出船行的时间。

解析:如图所示,$\vec{v}=(20\cos45\degree,20\sin45\degree)=(10\sqrt{2},10\sqrt{2})$。

由船行了300km可得船行时间为$\frac{300}{\|\vec{v}\|}=\frac{300}{20}=15$小时。

答案:15小时大题四如图,正方形ABCD中,P点在BC边上,$\anglePAD=45\degree$,PD=2,BP=4,则AP长为多少?解析:如图所示,由正方形ABCD的对称性可得$\angle PAD=\angle BCA=45\degree$,则$\triangle PAD$与$\triangle PBC$相似。

设$AP=x$,则$\frac{x}{4}=\frac{2}{x}$,解之得$x=2\sqrt{2}$。

解直角三角形的应用经典题型

解直角三角形的应用经典题型

解直角三角形应用经典1.如图1,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为122.如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD=60,坡长AB=m 320,为加强水坝强度, 将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F= 45,求AF 的长度(结果精确到1米, 参考数据: 414.12≈,732.13≈).3.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17c m 的长方体台阶来铺,需要铺几级台阶?(2题图)17cm(第3题)ABCF参考数据cos20°≈0.94, sin20°≈0.34, sin18°≈0.31, cos18°≈0.95AB12千P C D G 60图1ABE F QP 4. 在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距83的C 处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.5. 如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度; (2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)第5题 6. 如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km . (1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离.NM 东北BCAl7.图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB 与地面EH 平行,测得A 点到楼顶D 点的距离为5m,每层楼高3.5m,AE 、BF 、CH 都垂直于地面,EF=16m,求塔吊的高CH 的长.8.在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C 处(如图).现已知风筝A 的引线(线段AC )长20m ,风筝B 的引线(线段BC )长24m ,在C 处测得风筝A 的仰角为60°,风筝B 的仰角为45°. (1)试通过计算,比较风筝A 与风筝B 谁离地面更高? (2)求风筝A 与风筝B 的水平距离.(精确到0.01 m ;参考数据:sin45°≈0.707,cos45°≈0.707, tan45°=1,sin 60°≈0.866,cos60°=0.5,tan 60°≈1.732)9. 为了缓解酒泉市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.第19题图AB45° 60°CED (第19题10.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC为______米(精确到0.1).(参考数据:414.12≈732.13≈)82.011. 2009年首届中国国际航空体育节在莱芜举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)12. 摩天轮是嘉峪关市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒. 求该兴趣小组测得的摩天轮的高度AB (3 1.732≈, 结果保留整数).A45°60° 第(12)题BAC(第11题图)13.小明想知道西汉胜迹中心湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.14. 小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)B37° 48°DC A15.如图,某天然气公司的主输气管道从A市的东偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市东偏北60°方向,测绘员沿主输气管道步行2000米到达C处,测得小区M位于C的北偏西60°方向,请你在主输气管道上寻找支管道连接点N,使到该小区铺设的管道最短,并求AN的长.第15题图。

解直角三角形.doc 例题

解直角三角形.doc 例题

解直角三角形经典例题精析类型一、锐角三角函数1.(1)在△ABC中,∠C=90°.若sinA=,则tanA=______.【考点】锐角三角函数的定义与特殊角三角函数值.【解析】设∠A的对边为(也可设为1),则斜边为2,由勾股定理得邻边为,所以由tanA===(也可由sinA=得∠A=30°,则tan30°=).【答案】.(2)(2010哈尔滨)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为().(A) 7sin35°(B)(C)7cos35°(D)7tan35°【考点】锐角三角函数的定义.【答案】C2.已知:cos=,则锐角的取值范围是( )A.0°<<30°B.45°<<60°C.30°<<45°D.60°<<90°【思路点拨】cos60°=,cos45°=,因为<<所以45°<<60°.【答案】B.3.当45°<<90°时,下列各式中正确的是( )A.tan>cos>sinB.sin>cos>tanC.tan>sin>cosD.cos>sin>tan 【考点】同一锐角不同三角函数比较大小.【提示】当一锐角在45°~90°范围内,正切值>1,1>正弦值>,>余弦值>0.【答案】C.4.Rt△ABC中,如果一条直角边和斜边的长度都缩小至原来的,那么锐角A的各个三角函数值( )A.都缩小B.都不变C.都扩大5倍D.无法确定【考点】三角函数值与角的度数有关,与边的比值有关.【思路点拨】因为一条直角边和斜边的长度都缩小至原来的,但各边的比值不变.【答案】B.5.1-cos234°-cos256°=__________.【考点】(1) sin2A+cos2A=1;(2)互余两角的三角函数关系sinA=cos(90°-A)或cosA=sin(90°-A).【解析】1-cos234°-cos256°=1-(sin256°+cos256°)=1-1=0.【答案】0.6.方程有实数根,求锐角的取值范围.【考点】锐角三角函数的增减性及特殊角的三角函数值.【解析】∵方程有实数根∴△=≥0,即≤,∴0°<≤30°.总结升华:应掌握特殊角的三角函数值及各个锐角三角函数之间的联系,注意锐角三角函数概念的理解领会及运用. 举一反三:【变式1】已知为锐角,下列结论正确的有( )(1)(2)如果,那么(3)如果,那么(4)A. 1个B. 2个C. 3个D. 4个【思路点拨】利用三角函数的增减性和有界性即可求解.【解析】由于为锐角知(1)不成立当时,有,即(2)正确当时,,即(3)成立又,即正确,即(4)成立.【答案】C.【变式2】A、B、C是△ABC的三个内角,则等于( )A. B. C. D.【考点】互余两角正余弦关系.【思路点拨】===.【答案】A.【变式3】已知△ABC中,∠C=90°,若∠A、∠B的余弦值是关于的方程的两个根.且△ABC的周长为24.试求BC的长度.【考点】锐角三角函数概念的理解和运用.【解析】∵∠A、∠B的余弦值是关于的方程的两个根∴由根与系数的关系得:又∵A+B=900 ∴①平方并把②代入得:整理得:解得=3,=19当=3时,因=<1不符题意,故舍去.∴=19此时原方程为:解得=,=又设>∴设=,那么=,=∵=24 ∴=24 解得=2∴△ABC的斜边BC==10.类型二、解直角三角形7.(1)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=5,BD=3,则sinA=_____,cosA=_____,tanA=_____,tanB=_____.【考点】解直角三角形,利用已知元素求两锐角的三角函数值.【思路点拨】由∠ACB=90°,CD⊥AB可知,∠A=∠DCB,∵BC=5,BD=3 ∴由勾股定理得CD=4所以sinA=sin∠DCB==, cosA=cos∠DCB==tanA=tan∠DCB==, tanB==【答案】sinA=,cosA=,tanA=,tanB=.(2)如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为()(A) 2 (B)(C)(D)1【考点】解直角三角形、勾股定理.【思路点拨】过D作DE⊥AB于E,因为∠A=45°,设AE=DE=x, AD =x由tan∠DBA=,得BE=5x, AC=6AB=,即5x+x=,x=,AD =x=2.【答案】A8.如图,在中,AD是BC边上的高,.(1)求证:AC=BD; (2)若,求AD的长.【考点】利用锐角三角函数知识和已知条件解直角三角形.【思路点拨】由于AD是BC边上的高,则有和,这样可以充分利用锐角三角函数的概念使问题求解.【解析】(1)在中,有,中,有(2)由可设由勾股定理求得即.9.如图,沿AC方向开山修路,为了加快施工速度,要在小山的另一边同时施工.从AC上的一点B,取米,.要使A、C、E成一直线,那么开挖点E离点D的距离是( )A.米B.米C.米D.米【思路点拨】在中可用三角函数求得DE长.【解析】A、C、E成一直线在中,米,米 .【答案】B.总结升华:任何锐角都可以求三角函数值,并非只能在直角三角形中的锐角才可求三角函数值,此处易混淆.解直角三角形的关键是正确地选择公式,为了迅速准确地优选所需公式,应依题意画出图形,便于分析,并尽量利用原始数据,避免积累误差或链式错误.举一反三:【变式1】在△ABC中,∠C=30°,∠BAC=105°,AD⊥BC,垂足为D,AC=2cm,求BC的长.【思路点拨】在Rt△ADC中,利用sinC=,求出AD=1cm,cosC=,求出CD=在Rt△ABD中,利用tan∠BAD=,求出BD=1,所以BC=BD+CD=1+.【答案】(1+)cm.【变式2】如图,已知△ABC中,∠ACB=90°,根据下列条件解直角三角形.(1)∠A=60°,CD⊥AB于D,CD=;(2)a=2,CD⊥AB于D,BD=.【考点】解直角三角形中运用已知元素求未知元素,恰当选用锐角三角函数求值.【解析】(1)∵ CD⊥AB,∠A=60°,CD=∴在Rt△CDA中,AC=∴在Rt△ABC中,∠B=90°-∠A=30°,AB=2AC=4,BC=ABsinA=4×=2;(2)∵BC=a=2,CD⊥AB于D,BD=,∴cosB=,∴∠B=30°∴在Rt△ABC中,∠A=90°-∠B=60°,∴AB=, AC=AB=.总结升华:大胆正确应用,虽然方法很多,但要总结最优解法.【变式3】某片绿地形状如图,其中AB⊥BC,CD⊥AD,∠A=60°,AB=200m,CD=100m,•求AD、BC的长.【思路点拨】设法补成含60°的直角三角形再求解.【解析】延长BC,AD交于E,∠E=30°在Rt△ABE中,在Rt△CDE中,AD=AE-DE=400-100,BC=BE-CE=200-200.类型三、解直角三角形的实际应用10.(1)(2010 山东东营)如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方向走了m米,到达点C,测得∠ACB=,那么AB等于()(A) m·sin米 (B) m·tan米 (C) m·cos米(D) 米【考点】解直角三角形与实际问题.【答案】B(2)已知,如图:AB∥DC,∠D=900,BC=,AB=4,=,求梯形ABCD的面积.【考点】解直角三角形在实际中的应用.【思路点拨】过B作BE⊥CD于E,设BE=,则结合=得CE=3,又BC=,利用勾股定理求,从而可求梯形ABCD的面积.【解析】过B作BE⊥DC于E,∵tanC=,∴设BE=,则EC=在Rt△BEC中,由勾股定理得:,即解得:=1,∴BE=1,EC=3,∴==.11.如图,在湖边高出水面50m的山顶A处看见一架直升机停留在湖面上空某处,观察到飞机底部标志P处的仰角为45°,又观察到其在湖中之像的俯角为65°,试求飞机距湖面的高度h.(精确到0.01m) tan65°≈2.145【考点】利用三角形函数解实际问题.【思路点拨】通过作点P至湖面的对称点P′,根据方向角平面成像的知识解决问题.【解析】作点P至湖面的对称点P′,连接AP′,设AE=x,在Rt△AEP中∠PAE=45°,则∠P=45°,所以PE=AE=x,由平面成像知识可得OP′=OP=PE+EO=x+50,•在Rt△AP′E中,tan∠EAP′==tan65°,又EP′=OE+OP′=x+100,所以=tan65°≈2.145,解得x≈87.34,所以OP=x+50≈137.34(m),即飞机距湖面的高度h约为137.34m.12.已知:如图,山顶建有80米高的铁塔BC,为了测量山的高度,测量人员在一个小山坡的P处,测得塔的底部B点的仰角为45°,塔顶C的仰角为60°,若小山坡的坡角为30°,坡长MP=40米,请问,测量人员用这种方法能测量出山的高度吗?如果能,山的高度是多少?(精确到1米,参考数据)【思路点拨】如果能由已知数据计算出山高AB,那么该测量人员的方法可行,另外为计算方法,可将问题抽象成几何计算题【解析】这种方法可以测量出山高,理由如下:如图,作PE⊥AM的延长线于点E,设P点的水平视线与AB交于D点,由已知可得,∠C=30°,∠PBD=45°,BD=DP设BD=x米,则即又答:该测量人员用他的方法能测量出山的高度,其高度约为129米.13.如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,看旗杆顶部的仰角为45;小红的眼睛与地面的距离(CD)是1.5m,看旗杆顶部的仰角为.两人相距28米且位于旗杆两侧(点在同一条直线上).请求出旗杆的高度.(参考数据:,,结果保留整数)【解析】解法一:过点作于,过点作于,则在中,,设(不设参数也可), 5分在中,,7分答:旗杆高约为12米.解法二:过点作于,过点作于,则,在中,,设,则在中,,解得答:旗杆高约为12米.总结升华:在运用本单元内容时要运用转化思想将所求问题转化到直角三角形中,利用三角函数建立已知与结论的联系,另外,在实际问题时,要注意分类讨论.举一反三:【变式1】如图所示的燕服槽是一个等腰梯形,外口AD宽10cm,燕尾槽深10cm,AB的坡度i=1:1,求里口宽BC及燕尾槽的截面积.【考点】坡度的概念.【解析】如下图,作DF⊥BC于点F.由条件可得四边形AEFD是矩形,AD=EF=10.AB的坡角为1:1,所以=1,所以BE=10.同理可得CF=10.里口宽BC=BE+EF+FC=30(厘米).截面积为×(10+30)×10=200(平方厘米).【变式2】如图,AB是江北岸滨江路一段,长为3千米,C为南岸一渡口,•为了解决两岸交通困难,拟在渡口C处架桥.经测量得A在C北偏西30°方向,B在C的东北方向,从C处连接两岸的最短的桥长多少?(精确到0.1)【考点】方向角的应用.【解析】过点C作CD⊥AB于点D.CD就是连接两岸最短的桥.设CD=x米.在直角三角形BCD中,∠BCD=45°,所以BD=CD=x.在直角三角形ACD中,∠ACD=30°,所以AD=CD×tan∠ACD=x·tan30°=x.因为AD+DB=AB,所以x+x=3,x=≈1.9(米).【变式3】气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点)的南偏东方向的点生成,测得.台风中心从点以40km/h的速度向正北方向移动,经5h后到达海面上的点处.因受气旋影响,台风中心从点开始以30km/h的速度向北偏西方向继续移动.以为原点建立如图所示的直角坐标系.(1)台风中心生成点的坐标为,台风中心转折点的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点)位于点的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?【考点】利用三角函数解决实际问题.【解析】解:(1),;(2)过点作于点,如图,则.在中,,,..,,台风从生成到最初侵袭该城要经过11小时.相似经典例题精析类型一、图形的相似1.在比例尺1:10 000 000的地图上,量得甲、乙两个城市之间的距离是8 cm,那么甲、乙两个城市之间的实际距离应为__________km.考点:比例性质.思路点拨:地图上的比例尺是一种比例关系,即图上距离与实际距离的比.解析:1:10 000 000=8:80 000 000,即实际距离是80 000 000cm=800km.2.(1)将一个菱形放在2倍的放大镜下,则下列说法不正确的是( )A.菱形的各角扩大为原来的2倍B.菱形的边长扩大为原来的2倍C.菱形的对角线扩大为原来的2倍D.菱形的面积扩大为原来的4倍考点:相似图形的定义和性质.解析:从放大看到的菱形和原来的菱形相似,放大镜只能放大边长,而不能放大角.所以B、C正确,A不正确.D 中相似图形的面积比等于相似比的平方,所以D也正确.故选A.(2)(2010山西)在R t△ABC中,∠C=90º,若将各边长度都扩大为原来的2倍,则∠A的正弦值()A.扩大2倍B.缩小2倍C.扩大4倍D.不变考点:相似图形的性质.答案:D3.(1)在同一时刻物高与影长成比例,小华量得综合楼的影长为6 米,同一时刻她量得身高 1.6米的同学的影长为0.6 米,则可知综合楼高为__________.考点:比例线段的基本性质,同一时刻物高与影长的比相等.解析:,则楼高==16,故填16米.(2)(2010四川内江)如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距6m、与树相距15m,则树的高度为______________m.解析:答案:74.若四边形ABCD∽四边形,且AB:=1:2 ,已知BC=8,则的长是( ) A.4 B.16C.24D.64考点:相似图形的性质,相似四边形对应边的比等于相似比.解析:因为四边形ABCD∽四边形,所以AB:=BC:=1:2即=2BC=2×8=16,故选B.5.下列多边形中,一定相似的是( )A.两个矩形B.两个菱形C.两个正方形D.两个平行四边形考点:多边形相似的定义.解析:A中两个矩形只能满足对应角相等,而对应边不一定成比例;B中两个菱形只满足对应边成比例,而对应角不一定相等;D中两个平行四边形对应边不一定成比例,对应角也不一定相等;C中两个正方形满足对应角相等,对应边成比例.故选C.举一反三:【变式1】下列命题中正确的命题是( )A.相似多边形是全等多边形B.不全等的图形不是相似多边形C.全等多边形是相似多边形D.不相似的图形可能是全等图形解析:全等多边形是特殊的相似多边形,相似比为1.故选C.【变式2】证明:正六边形ABCDEF与正六边形相似.考点:边数相同的正多边形相似的判定.证明:∵正六边形的每个内角都等于120°∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∠D=∠D′,∠E=∠E′,∠F=∠F′又∵AB=BC=CD=DE=EF=FA=====∴=====∴正六边形ABCDEF∽正六边形.总结升华:边数相同的正多边形都相似.【变式3】两地的距离是500 米,而地图上的距离为10 厘米,则这张地图的比例尺为()A.1:50B.1:500 C.1:5000 D.1:50000解析:图上距离与实际距离的比等于比例尺,即比例尺为10:50000=1:5000,故选C.【变式4】如图,在一张长10cm,宽6cm的矩形纸片上,剪下一个矩形,若剩下的矩形(图中阴影部分)和原来的矩形相似,那么剩下的矩形的面积是多少cm2?思路点拨:已知两个矩形相似,则它们的长的比等于宽的比.因此只能是矩形ABCD的长AD对应矩形CDEF的长CD,矩形ABCD的宽CD对应矩形CDEF的宽DE.解析:∵矩形ABCD∽矩形CFED,∴即解得DE=3.6,∴S矩形CDEF=CD×DE=6×3.6=21.6cm2.类型二、相似三角形6.(1)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有( )(A)1对(B)2对(C)3对(D)4对考点:本题考查三角形相似的基本定理与判定定理的运用.思路点拨:有两角对应相等的两个三角形相似.解析:△ADE∽△ABC,△ACD∽△ABC,△ADE∽△ACD,△DCE∽△CBD,故选D.(2)(2010北京)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD∶AB=3∶4,AE=6,则AC 等于( )A.3 B.4 C.6 D.8解析:△ADE∽△ABC答案:D7.下列判断中,正确的是()(A)各有一个角是67°的两个等腰三角形相似(B)邻边之比都为2:1的两个等腰三角形相似(C)各有一个角是45°的两个等腰三角形相似(D)邻边之比都为2:3的两个等腰三角形相似考点:本题要求运用相似三角形的判定定理.思路点拨:设计出反例淘汰错误的选项.解析:A不成立的原因是当底角为67°时,顶角为46°,另一个三角形的顶角为67°时,底角为66.5°,这两个等腰三角形不相似.B两个等腰三角形的邻边之比都为2:1,结合三角形三边关系可知,这两邻边只能是腰和底的比为2:1,每个三角形三边之比均为腰:腰:底=2:2:1.C不成立的原因也是顶角不等.D不成立的原因是当一个等腰三角形的腰与底的比是2:3时,另一个等腰三角形的腰与底的比为3:2,它们三边之比分别为2:2:3与3:3:2.故选B.8.如图,在Rt△ABC中,CD是斜边AB上的高,则图中的相似三角形共有( )A.1对B.2对C.3对D.4对思路点拨:利用两组角对应相等的两个三角形相似判定.解析:考虑Rt△ABC与Rt△ACD和Rt△CBD相似情况.除直角外,∠A为Rt△ABC和Rt△ACD的公共角,故Rt△ABC∽Rt△ACD,又∠B为Rt△ABC和Rt△CBD的公共角,故Rt△ABC∽Rt△CBD,可得Rt△ACD∽Rt△CBD,故选C.9.如果两个相似三角形对应角平分线的比为16:25,那么它们的面积比为( )A.4:5B.16:25C.196:225 D.256:625考点:相似三角形的性质.思路点拨:相似三角形对应角平分线的比等于相似比,面积比等于相似比的平方,所以相似三角形的面积比等于对应角平分线的比的平方.答案:D.10.如图,在边长为1的正方形网格上有P、A、B、C四点.(1)求证:△PAB∽△PCA;(2)求证:∠APB+∠PBA=45°.考点:相似三角形的判定.思路点拨:判定方法:两个三角形的三组对应边的比相等,那么这两个三角形相似,或两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.解析:(1)∵PC=1,PA=,PB=5,∵∠APC=∠BPA,∴△PAB∽△PCA;(2)∵∠B=∠PAC∠ACB=45°,∴∠APB+∠PBA=∠APB+∠PAC=∠ACB=45°.11.如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED.考点:利用相似三角形的性质和判定解决实际问题.思路点拨:过A点作AH⊥ED,构造三角形,并证明△AFG∽△AEH,再利用相似三角形的对应边的比相等求出结论.解:过A点作AH⊥ED,交FC于G,交ED于H.由题意,可得:△AFG∽△AEH,∴,即,解得:EH=9.6米.∴ED=9.6+1.6=11.2米.总结升华:判断两个多边形是否相似,必须同时具备对应角相等,对应边成比例.举一反三:【变式1】在△ABC中,DE∥BC,,若,求.考点:比例的基本性质及相似三角形的面积比等于相似比的平方.思路点拨:由得出,再利用DE∥BC可得△ADE∽△ABC解:∵,∴.∵在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,即,∴.【变式2】如图,△ABC是一块直角三角形的木块,∠C=90°,AC=3cm,BC=4cm,AB=5cm,要利用它加工成一块面积最大的正方形木块,问按正方形CDEF加工还是按正方形PQRS加工?说出你的理由.思路点拨:要加工成一块面积最大的正方形木块,有两种方法,利用相似三角形的判定和性质求出两个正方形的边长,比较大小即可.解:(1)如图1,设正方形CDEF的边长为x,则有,得x=cm;(2)如图2,设正方形PQRS的边长为y,作CN⊥AB于N交RS于M,而知CN=,同样有得(cm),x-y=>0,故x>y,所以按正方形CDEF加工,可得面积最大的正方形.【变式3】已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s 的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?思路点拨:用运动的时间t和速度表示线段的长,当△PBQ与△BDC相似时,利用对应边的比相等求出时间.解析:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD= 90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即∴经过秒或2秒,△PBQ∽△BCD.类型三、位似12.下列图形中不是位似图形的是( )考点:位似图形的定义.解析:A是以圆心为位似中心的图形,B、D根据定义可判断.C是相似但不是位似的图形.故选C.13.(1)(2010广东茂名)如图,已知△与△是相似比为1:2的位似图形,点O为位似中心,若△内一点(x,y)与△内一点是一对对应点,则点的坐标是_________.考点:位似图形的性质.答案:(-2x,-2y)(2)如图,直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).请在图中画出△ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);考点:位似图形的画法思路点拨:连接位似中心P和△ABC的各顶点,并延长,使PA′=3PA,PB′=3PB,PC′=3PC连接、、,则得到所要画的图形.解:画出,如图所示.14.如图,D,E分别AB,AC上的点.(1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?(2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?考点:会利用位似图形的定义判定两个图形是位似图形,会利用位似图形的性质解决问题.思路点拨:(1)可先证明△ADE和△ABC相似,对应边在同一直线上或平行,再找出对应顶点的连线交于一点A 可判定是位似图形.(2)利用位似图形的性质,位似图形是相似图形.从而得到对应角相等,可得DE∥BC.解:(1)△ADE和△ABC是位似图形.理由是:DE∥BC,所以∠ADE和=∠B,∠AED=∠C,∴△ADE∽△ABC.又∵点A是△ADE和△ABC的公共点,点D和点B是对应点,点E和点C是对应点,直线BD与CE交于点A,∴△ADE和△ABC是位似图形.(2)DE∥BC.理由是:△ADE和△ABC是位似图形,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC.总结升华:位似图形重点考查学生理解图形变换的意义,利用数形结合的思想解决问题.举一反三:【变式1】如图,在边长均为1的小正方形网格纸中,△OAB的顶点O,A,B均在格点上,且O是直角坐标系的原点,点A在x轴上.以O为位似中心将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2:1,画出△OA1B1(所画△OA1B1与△OAB在原点两侧);考点:位似图形坐标变换规律.思路点拨:问题关键是确定位似图形各个顶点的坐标:如果位似变换是以原点为位似中心,相似比为2,那么位似图形对应点的坐标的比等于2或-2.由图形可知,A点坐标为(-2,0),B点坐标为(-1,2),要求所画△OA1B1与△OAB 在原点两侧,所以相似比为-2,即A1点坐标为(4,0),B1点坐标为(2,-4).解:如图,△OA1B1就是△OAB放大后的图象.【变式2】如图,用下面的方法可以画出△AOB的“内接等边三角形”,•阅读后证明相应的问题.画法:(1)在△AOB内画等边△CDE,使点C在OA上,点D在OB上;(2)连结OE并延长,交AB于点E′,过E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;(3)连结C′D′,则△C′D′E′是△AOB的内接三角形.请判断△C′D′E′是否是等边三角形,并说明理由.考点:重点考查阅读理解能力和知识的迁移能力.思路点拨:由画法可知,△CDE和△C′D′E′是位似图形.答:△C′D′E′是等边三角形.证明:∵C′E′∥CE,∴△OEC∽△OE′C′,∴,∠C′E′D′=∠CED=60°,∴△C′D′E′∽△CDE.∵△CDE为等边三角形,•∴△C′D′E′为等边三角形.。

解直角三角形经典练习附答案

解直角三角形经典练习附答案

秒题一1、如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.2如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.答案:AC=21、sinC==3如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(2)∠ECB的余切值.(1)线段BE的长;BE=AB﹣AE=3﹣=2,cot∠ECB==,4、如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;CD=AB=5 cos∠DBE===(2)求cos∠ABE的值.5、如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;20m(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)48m秒题二1、如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;BC=BE﹣CE=6﹣8(2)若sinA=,求AD的长.AD=AE﹣DE=10﹣=2、如图,在Rt△ABC和Rt△CDE中,AB与CE相交于点F,∠ACB=∠E=90°,∠A=30°,∠D=45°,BC=6,求CF的长.CF=18﹣63、如图,已知在△ABC中,AB=AC,tan∠B=2,BC=4,D为BC边的中点,点E在BC边的延长线上,且CE=BC,连接AE,F为线段AE的中点(1)求线段CF的长;CF=AB=(2)求∠CAE的正弦值.4、如图,在Rt△ABC中,∠C=90°,点D是AC边上一点,,且BC=6,AD=4.求cosA的值.cosA=5、如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;40海里(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)(60﹣20)海里练习一1、如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;tanC===(2)求线段BC的长.BC=BD+CD=122、如图,已知∠B=90°,AB=2cm,BC=2cm,CD=3cm,AD=5cm,求四边形ABCD的面积.2+6(cm2)3、如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;BC=BE+CE=4(2)sin∠ADC的值.sin∠ADC=4、某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)约为3米5、据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.BC=BD﹣CD=40﹣20=20m(2)通过计算,判断此轿车是否超速.20÷2=10m/s<15m/s练习二1、如图,在Rt△ABC中,已知∠C=90°,,AC=8,D为线段BC上一点,并且CD=2.(1)求BD的值;BD=6﹣2=4(2)求cos∠DAC的值.cos∠DAC===2、如图,矩形ABCD的对角线AC、BD相交于点O,过点O作OE⊥AC交AD于E,若AB=6,AD=8,求sin∠OEA的值.sin∠OEA==3、已知:如图,在△ABC中,AB=AC=6,BC=4,AB的垂直平分线交AB于点E,交BC的延长线于点D.(1)求∠D的正弦值;sin∠D=sin∠BAH=(2)求点C到直线DE的距离.CM=CD=4、如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)AC≈10.92,∵10.92>10,∴海轮继续向正东方向航行,没有触礁的危险.5、号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,≈1.41,≈1.73 ).AF=1.6m,则AB=2.89﹣1.6=1.29≈1.3(m),答:AC约为7.1米,BA约为1.3米.。

解直角三角形 试题及答案

解直角三角形  试题及答案

向东航行 30 分钟后到达 C处,发现灯塔 B在它的南偏东 15°方向,则此时货轮与灯塔 B的距离为
km.
图 K23-8
10、 如图 K23-9,在一笔直的沿湖道路上有 A,B两个游船码头,观光岛屿 C在码头 A北偏东 60°的方向,在码头 B北偏 西
45°的方向,AC=4 km.游客小张准备从观光岛屿 C乘船沿 CA回到码头 A或沿 CB回到码头 B,设开往码头 A,B的游船
∵∠CNP=46°,∴∠PNA=44°,
∴PA=PN·sin∠PNA=60×0.6947≈41.68(海里).
6【答案】25
如图,过点 B作 BE⊥AE于点 E,
∵坡度 i=1∶ 3,
∴tanA=1∶ 3= 3,∴3∠A=30°,
∵AB=50 m,∴BE=1AB=25(m)
.
2
∴他升高了 25 m.
∴BD=CD·tan37°≈27.2×0.75=20.4(海里).
�� 3
答:还需航行的距离 BD的长为 20.4 海里.
12【答案】解:如图,过点 C作 CD⊥AB于点 D,
设 BD为 x海里,
在 Rt△ACD中,∠DAC=45°,
∴AD=DC=(x+5)海里,
4
在 Rt△BCD中,由 tan53°=����
126
米.
5【答案】B
如图,过点 P作 PA⊥MN于点 A,
MN=30×2=60(海里),
∵∠MNC=90°,∠CNP=46°,
∴∠MNP=∠MNC+∠CNP=136°,
∵∠BMP=68°,
∴∠PMN=90°-∠BMP=22°,
∴∠MPN=180°-∠PMN-∠PNM=22°,

解直角三角形的典型例题十

解直角三角形的典型例题十

解直角三角形的典型例题十
例 为了测量一个球的直径,今有若干根木棒可供使用,通过实验发现,若将球放在桌面上,再将一根长6厘米的木棒垂桌面而立,某一时刻,在斜射阳光的照射下,球与木棒的影长都是8厘米(如图所示),求球的直径.
分析 可以把光线看成是平行线束,AB FC //,球的影长8=CB cm ,木棒长6=AC cm ,显然球的直径CD EG =,根据勾股定理可求出AB ,这样又可求出B ∠的正弦值,故在Rt BCD ∆中可求出CD .
解 由题意可知cm 6,cm 8,===AC BC CD EG .
在Rt ABC ∆中,根据勾股定理,得
10862222=+=+=BC AC AB (cm ), 所以5
3106sin ===
AB AC B . 在Rt BCD ∆中,BC CD B =sin ,所以8.45
38sin =⨯=⋅=B BC CD (cm ). 所以球的直径8.4==CD EG cm . 说明 解决此类问题时,要注意观察、实践与想象.。

解直角三角形练习题(带答案)

解直角三角形练习题(带答案)

解直角三角形—题集1.如图,在地面上的点处测得树顶的仰角为度,米,则树高为( ).A.米B.米C.米D.米【答案】A【解析】米.【标注】【知识点】仰角与俯角2.如图,斜坡,坡顶到水平地面的距离为米,坡底为米,在处,处分别测得顶部点的仰角为,,求的长度.(结果保留根号).【答案】的长度为米.【解析】设米,则米,由题意得,四边形为矩形,∴,在中,∴ ,在中,,∴,∴,解得,,∴.答:的长度为米.【标注】【知识点】仰角与俯角A.的值越小,梯子越陡B.的值越小,梯子越陡C.的值越小,梯子越陡D.陡缓程度与的函数值无关3.如图,梯子跟地面的夹角为,关于的三角函数值与梯子的倾斜程度之间,叙述正确的是().【答案】B【标注】【知识点】坡度4.某地的一座人行天桥如图所示,天桥高为米,坡面的坡度为,文化墙在天桥底部正前方米处(的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为.(1)(2)若新坡面坡角为,求坡角度数.有关部门规定,文化墙距天桥底部小于米时应拆除,天桥改造后,该文化墙是否需要拆除?请说明理由.(参考数据:,)【答案】(1)(2).该文化墙需要拆除,证明见解析.【解析】(1)(2)∵新坡面坡角为,新坡面的坡度为,∴,∴.作于点,则米,∵新坡面的坡度为,∴,解得,米,∵坡面的坡度为,米,∴米,∴米,又∵米,∴米米,故该文化墙需要拆除.【标注】【知识点】坡度游船港口海警船北(1)(2)5.一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援.求点到直线的距离.求海警船到达事故船处所需的大约时间.(温馨提示:,)【答案】(1)(2)海里.小时.【解析】游船港口海警船北(1)(2)如图,过点作交延长线于.在中,∵,,海里,∴点到直线距离海里.在中,∵,,∴(海里),∴海警船到达事故船处所需的时间大约为:(小时).【标注】【知识点】方位角在锐角三角函数中的应用6.一副直角三角板按如图所示放置,点在的延长线上,,,,,,则的长为 .【答案】【解析】过点作于点,在中,,,,∴.∵,∴.,在中,,,∴,∴,∴.【标注】【知识点】三角板拼接问题7.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧与墙平行且距离为米,一辆小汽车车门宽为米,当车门打开角度为时,车门是否会碰到墙? .(填“是”或“否”)请简述你的理由 .(参考数据:,,).【答案】否 ; 点到的距离小于与墙的距离【解析】过点作,垂足为点,如图.在中,∵,米,∴米,∵汽车靠墙一侧与墙平行且距离为米,∴车门不会碰到墙(点到的距离小于与墙的距离).故答案为:否;点到的距离小于与墙的距离.【标注】【知识点】测量物体之间的距离8.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为米,坡面上的影长为米.已知斜坡的坡角为,同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,求树的高度.【答案】米.【解析】延长交延长线于点,则,作于,在中,,,∴(米),(米),在中,∵同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,(米),,∴(米),∴(米),在中,(米),故答案为:米.【标注】【知识点】影子问题(1)(2)9.如图,在中,,点是边的中点,,.求和的长.求的值.【答案】(1)(2),..【解析】(1)(2)∵点是边的中点,且∴.∵,∴.∵在中,,,∴.在中,,,∴.故,.如图,作交于点.∵在中,,,∴设,,由勾股定理可得,解得,∴.在中,∵,,∴.即.【标注】【知识点】解直角三角形的综合应用10.如图,在四边形中,,于点,已知,,,求的长.【答案】.【解析】过点作于.∵在中,,,∴,.∵,,∴,∵,∴.∴在中,,,∴,.又∵在中,,,.∴.【标注】【知识点】解直角三角形的综合应用11.如图,在中,,,=, ,求.【答案】.【解析】 在中,,,,,,由勾股定理得:,∵,∴,∵∴,,∴.【标注】【知识点】解直角三角形的综合应用。

解直角三角形及其应用题目

解直角三角形及其应用题目

解直角三角形是数学中的一个重要概念,它涉及到利用三角函数来求解三角形的未知元素。

在解直角三角形的问题中,我们通常知道三角形的一个锐角及其对应的两边(直角边和斜边),或者知道两个锐角和一边。

通过使用正弦、余弦和正切等三角函数,我们可以找到三角形的其他元素。

下面解直角三角形的题目示例:1、【题目】在直角三角形ABC中,∠C = 90°,AB = 5cm,BC = 4cm。

求AC 的长度。

【解析】利用勾股定理求解。

在直角三角形中,AC2= AB2–BC2。

代入已知数值,AC2 = 52– 42 = 9,所以AC = 3cm。

2、【题目】在直角三角形中,∠A = 30°,∠C = 90°,BC = 3cm。

求AB 的长度。

【解析】利用正弦函数求解。

sin A = BC/AB,所以AB = BC/sin A = 3/sin 30° = 6cm。

3、【题目】在直角三角形中,∠B = 45°,∠C = 90°,AC = 2cm。

求AB 的长度。

【解析】利用正切函数求解。

tan B = AC/BC,所以BC = AC/tan B = 2/tan 45° = 2cm。

因为∠B = 45°,所以AB = sqrt(2) * BC = 2sqrt(2)cm。

4、【题目】在直角三角形中,∠A = 60°,∠C = 90°,AB = 4cm。

求BC 和AC的长度。

【解析】利用余弦函数和勾股定理求解。

cos A = AC/AB,所以AC = AB * cos A = 4 * cos 60° = 2cm。

然后利用勾股定理,BC2 = AB2– AC2 = 16 - 4 = 12,所以BC = 2sqrt(3)cm。

5、【题目】一艘船以15节(海里/小时)的速度向正北方向航行。

同时,一股水流以5节的速度从东向西流过。

求船的实际航向和速度。

解直角三角形4个例题

解直角三角形4个例题

解:过C 作CD ⊥AB 于D,则∠CDB =∠CDA=900∵∠B =600 ∠BCA =750∴∠A =1800-∠B-∠BCA=450BC = ∴在Rt △ADC中,0sin 45CD CA == ∴CD=2∴在Rt △BDC 中,02sin60CD BC BC==3BC = 方法总结:通过作高将非直角三角形的问题转化成直角三角形的问题。

变式1:如图,已知在△ABC 中,∠B =300,∠C=1350,求BC 的长. 解:过A 作AD ⊥BC,交BC 的延长线于D,则∠D=900∵∠BCA =1350∴∠ACD =1800-∠BCA=450∴ 在Rt △ADC 中,0sin 45AD AC ==∴AD=2 CD=2 在Rt △BDA 中,∠B =30020t =+÷=∴ 02tan 30AD BD BD== ∴BD =∴BC=BD-BC=方法总结:在解直角三角形的问题中,当所给的线段不是直角三角形的边时,通常用方程思想来解答。

如图所示,一天灰太狼在自家城堡顶部A 处用望眼镜观察到懒羊羊在草原B 处睡觉,然后它下到城堡的C 处,测得B 处的俯角为450,并立刻驾着自己新研发的飞行器沿着CB 的方向去抓懒羊羊,已知AC =40米,∠A=300,灰太狼的速度为20米/秒,问几秒后能抓到懒羊羊?解:过B 作BD ⊥AC,交AC 的延长线于D,则∠D=900由题知∠BCD =450∴∠CBD =∠BCD=450∴CD =BD ,设CD =BD =x,则BC =在Rt △BDA 中,∠A =3000tan3040BC x AD x ==+40x x =+∴20x =BC =+=∴20t =÷=+。

解直角三角形经典题型应用题

解直角三角形经典题型应用题

解直角三角形经典题型应用题1. 一个田径运动员越过一根高度为2米的木板,如果他离地面的水平距离是3米,那么他的起跳点距离木板底部的高度是多少?解:设起跳点距离木板底部的高度为x,则根据勾股定理,得到:$x^2 + 3^2 = 2^2$化简得:$x^2 = 2^2 - 3^2 = -5$由于x是高度,因此应该为正数。

但是由于方程无解,因此无法解出起跳点距离木板底部的高度。

这个结果告诉我们,如果要跨越一个木板,距离不能太远,否则就无法起跳!2. 一个人看到一个高楼,测得距离为50米,角度为30度,那么这个高楼的高度是多少?解:设高楼的高度为h,根据三角函数,得到:$tan(30) = \frac{h}{50}$化简得:$h = 50\times tan(30) = 50 \times \frac{1}{\sqrt{3}} \approx28.87$因此,这个高楼的高度约为28.87米。

3. 一个人站在一座桥上,看到一条河流在他的正下方流过,测得桥与河面的垂直距离为20米,角度为45度,那么河宽是多少?解:设河宽为w,根据三角函数,得到:$tan(45) = \frac{w}{20}$化简得:$w = 20\times tan(45) = 20$因此,河宽为20米。

4. 在一个矩形田地中,角A的顶点和角B的底点均在田地边界上,角A的角度为30度,角B的角度为60度,且田地的长宽比为3:2,那么田地的面积是多少?解:假设田地的长为3x,宽为2x,则田地的面积为6x²。

又根据三角函数,得到:$tan(30) = \frac{3x}{y}$$tan(60) = \frac{2x}{y}$化简得:$x = y\times tan(30) = y\cdot\frac{1}{\sqrt{3}}$ $x = y\times tan(60) = y\cdot\sqrt{3}$解得:$y = 6\sqrt{3}$因此,田地的面积为6x² = 1080平方米。

解直角三角形测试题与答案

解直角三角形测试题与答案

解直角三角形测试题与答案一、选择题(每小题 5 分,共 25 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。

2、在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:D解析:因为 sinA =,设 BC = 4x,AB = 5x,则 AC = 3x,所以tanB =。

3、如图,在△ABC 中,∠C = 90°,AC = 8,∠A 的平分线 AD =,则 BC 的长为()A 12B 10C 8D 6答案:B解析:因为 AD 是∠A 的平分线,所以∠CAD =∠BAC。

在Rt△ACD 中,cos∠CAD =,即,解得 CD = 6。

在 Rt△ABC 中,BC =。

4、已知在 Rt△ABC 中,∠C = 90°,tanA =,则 sinA 的值为()A B C D答案:B解析:设 BC = 3x,AC = 4x,则 AB = 5x,所以 sinA =。

5、如图,在菱形 ABCD 中,DE⊥AB,cosA =,BE = 2,则tan∠DBE 的值是()A B 2C D答案:C解析:因为 cosA =,设 AD = 5x,AE = 3x,则 DE = 4x。

因为BE = 2,所以 5x 3x = 2,解得 x = 1,所以 DE = 4。

在 Rt△BDE 中,tan∠DBE =。

二、填空题(每小题 5 分,共 25 分)1、在 Rt△ABC 中,∠C = 90°,若 sinA =,AB = 10,则 BC=________。

答案:6解析:因为 sinA =,所以,设 BC = 3x,AB = 5x,因为 AB =10,所以 5x = 10,解得 x = 2,所以 BC = 6。

解直角三角形经典例题和练习

解直角三角形经典例题和练习

解直角三角形精典例题:【例1】如图,在Rt△ABC中,∠C=900,sinA=,D为AC上一点,∠BDC=450,DC=6,求AB的长。

变式:如图,在△ABC中,∠B=900,C是BD上一点,DC=10,∠ADB=450,∠ACB=600,求AB的长。

【例2】如图,在△ABC中,∠A=300,E为AC上一点,且AE∶EC=3∶1,EF⊥AB于F,连结FC,则tan∠CFB=()【例3】已知等腰梯形ABCD中,AD+BC=18cm,sin∠ABC=,AC与BD相交于点O,∠BOC=1200,试求AB的长。

跟踪训练:一、填空题:1、如图,在△ABC中,∠C=900,∠ABC=600,D是AC的中点,那么tan∠DBC的值是。

2、在△ABC中,∠B=300,tanC=2,AB=2,则BC的长是。

3、在△ABC中,∠C=900,AB=2,BC=,则tan=。

4、已知正方形ABCD的两条对角线相交于O,P是OA上一点,且∠CPD=600,则PO∶AO=。

5、如图,在△ABC中,∠B=600,∠BAC=750,BC边上的高AD=3,则BC=。

6、等腰三角形的周长为,腰长为1,则底角等于。

二、选择题:1、在△ABC中,∠C=900,AC=BC=1,则tanA的值是()A、B、C、1 D、2、在Rt△ABC中,CD是斜边AB上的高线,已知∠ACD的正弦值是,则的值是()A、B、C、D、3、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米。

现将梯子的底端A向外移动到,使梯子的底端到墙根O的距离等于3米,同时梯子的顶端B下降到,那么()A、等于1米B、大于1米C、小于1米D、不能确定三、解答题:1、如图,已知四边形ABCD中,AB=BC=2,∠ABC=1200,∠BAD=750,∠D=600,求CD的长。

2、如图,在Rt△ABC中,∠ACB=900,,D是BC上一点,DE⊥AB于E,CD=DE,AC+CD=9。

解直角三角形典型例题

解直角三角形典型例题


l
1.已知:如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m .现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求山的高度及缆绳AC 的长(答案可带根号).
2、在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A
相距的C 处. (1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.
3、某海港区为提高某段海堤的防海潮能力,计划将100米的一段堤(原海堤的横断面如图中的梯形ABCD )的堤面加宽1米,背水坡度由原来的1:1改成1:2。

已知原背水坡长AD= 24 米,求完成这一工程所需的土方数。

4.已知:如图,在1998年特大洪水时期,要加固全长为10000m 的河堤.大堤高5m ,坝顶宽4m ,
迎水坡和背水坡都是坡度为1∶1的等腰梯形.现要将大堤加高1m ,背水坡坡度改为1∶1.5.已知坝顶宽不变,求大坝横截面面积增加了多少平方米,完成工程需多少立方米的土石?。

解直角三角形典型例题

解直角三角形典型例题
解直角三角形典型例题
1、(2010 年山东聊城)建于明洪武七年(1374 年) ,高度 33 米的光岳楼是目前我国现存的
最高大、最古老的楼阁之一(如图①) .喜爱数学实践活动的小伟,在 30 米高的光岳 楼顶楼 P 处,利用自制测角仪测得正南方向商店 A 点的俯角为 60,又测得其正前方的 海源阁宾馆 B 点的俯角为 30(如图②) .求商店与海源阁宾馆之间的距离(结果保留 根号) . P 60° 30°
【答案】过点 C 作 CD⊥AB 交 AB 于点 D,则 在 Rt△BCD 中,∵∠B=45° ∴BD=BCcos45°=15, ∴CD=BD=15 在 Rt△ACD 中,AD=
CD 5 3 tan 30
所以 AB=5 3 +15,所以 t=
5 3 15 ≈0.52. 45
答:汽车直接从 A 地到 B 地需要 0.52 小时
地铁施工 绕道慢行
【答案】解:在 Rt△ABD,AB=3m,∠ADB =45° 所以 AD
AB 3 3 3. tan ADB tan 45 1

在 Rt△ACD 中,AD=3m,∠ADC=60° 所以 AC AD tan ADC 3 tan 60 3 3 3 3 . 所以路况显示牌 BC 的高度为 3 3-3 m.
O 图①
A
图②
B
【答案】由题意知∠PAO=60°∠B=30°PO=30 米 在 RT△PAO 中,∵ tan∠PAO= ∴ 3=
PO OA
30 OA
∴OA=10 3 米 在 RT△30 = 3 OB
∴OB=30 3 米 ∴AB=OB-OA=30 3 -10 3 =20 3 米 答:商店与海源阁宾馆之间的距离为 20 3 米. 2、 (2010 四川凉山)如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜 角由 45 降为 30 ,已知原滑滑板 AB 的长为 4 米,点 D、B、C 在同一水平地面上。 (1) 改善后滑滑板会加餐长多少米? (2) 若滑滑板的正前方能有 3 米长的空地就能保证安全,原滑滑板的前方有 6 米长的空 地,像这样改造是否可行?请说明理由。 (参考数据: 2 1.414 , 3 1.732 , 。 6 2.449 ,以上结果均保留到小数点后两位)

《解直角三角形》典型例题

《解直角三角形》典型例题

《解直角三角形》典型例题(一)例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形.分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解(1);(2)由a bB =tan ,知;(3)由c a B =cos ,知860cos 4cos =︒==B a c .说明 此题还可用其他方法求b 和c .例 2在Rt △ABC 中,∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴设 ,则由勾股定理,得∴.∴.解法二133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3设中,于D ,若,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5如图,在电线杆上离地面高度5m的C点处引两根拉线固定电线杆,一根拉线AC和地面成60°角,另一根拉线BC和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析分别在两个直角三角形ADC和BDC中,利用正弦函数的定义,求出AC和BC.解:在Rt△ADC中,331023560sin==︒=DCAC在Rt△BDC中,221022545sin==︒=DCBC说明本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.。

解直角三角形典型例题

解直角三角形典型例题

解直角三角形典型例题知识点1、直角三角形边、角之间的关系: sinA=cosB=c a sinB=cosA=c b tanA=cotB=b a cotA=tanB=ab【典型题例】1.在RtΔABC 中,∠C=900,则下列等式中不正确的是( ) (A )a=csinA ;(B )a=bcotB ;(C )b=csinB ;(D )Bbc cos =. 2.某人沿倾斜角为β的斜坡走了100米,则他上升的高度是 米.3.如图,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,若 .(1)求△ANE 的面积;(2)求sin ∠ENB 的值.知识点2、方位角问题:【典型题例】某海滨浴场东西走向的海岸线可近似看作直线l (如图)救生员甲在A 处的瞭望台上观察海面情况,发现其正北方向的B 处有人发出求救信号.他立即沿AB 方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙.乙马上从C 处入海,径直向B 处游去.甲在乙入海10秒后赶到海岸线上的D 处,再向B 处游去.若CD=40米,B 在C 的北偏东35方向,甲、乙的游泳速度都是2米/秒.问谁先到达B 处?请说明理由.(参考数据:sin550.82cos550.57tan55 1.43≈≈≈,,)知识点3、仰角和俯角问题:【典型题例】1.为测楼房BC 的高,在距楼房30米的A 处,测得楼顶B 的仰角为α,则楼房BC 的高为( ) (A )30tan α米;(B )30tan α米; (C )30sin α米; (D )30sin α米2.随着科学技术的不断进步,我国海上能源开发和利用已达到国际领先水平.下图为我国在南海海域自主研制的海上能源开发的机器装置AB ,一直升飞机在离海平面l 距离为150米的空中点P 处,看到该机器顶部点A 处的俯角为38°,看到露出海平面的机器部分点B 处的俯角为65°,求这个机器装置露出海平面部分AB 的高度?(结果精确到0.1,参考数据:sin 65=0.9063,sin 38=0.6157,tan 38=0.7813,tan 65=2.1445.)知识点4、坡度和坡角问题:【典型题例】如图,某水库大坝的横断面是等腰梯形,坝顶宽6米,坝高10米,斜坡AB 的坡度为1:2.现要加高2米,在坝顶宽度和斜坡坡度均不变的情况下,加固一条长50米的大坝,需要多少土方?知识点5、综合应用问题:【典型题例】为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC 与CD 的长分别为45㎝,60㎝,且它们互相垂直,座杆CE 的长为20 cm ,点A ,C ,E 在同一条直线上,且∠CAB =75°,如图.(1)求车架档AD 的长;(2)求车座点E 到车架档AB 的距离. (结果精确到1 cm .参考数据: sin75°=0.966, cos75°=0.259,tan75°=3.732)αCBAabc解直角三角形典型例题作业一、选择题1.已知在Rt ABC △中,9012C BC AC ∠=︒==,,,则tan A 的值为( ) A .2 B.122.如图,在Rt△ABC 中,CD 是斜边AB 上的中线,已知CD=5,AC=6,则tan B 的值是( )A. 45B. 35C. 34D. 433.如图,O 为原点,点A 的坐标为(30),,点B 的坐标为(04),,D ⊙过A B O 、、三点,点C 为弧ABO 上一点(不与O A 、两点重合),则cos C 的值为( )A .34B .35C .43D .454.如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则cos∠OBC的值为( )A .12 BC .35D .455.如图,已知△ABC 中,∠C = 90︒,tan A =21,D 是AC 上一点,∠CBD =∠A ,则sin∠ABD =( ). A .53 B .510 C .103D .101033题图 4题图6.如图,在Rt ABO △中,斜边1AB =,若OC BA ∥,36AOC =∠,则( )(A )点B 到AO 的距离为sin 54 (B )点B 到AO 的距离为sin 36(C )点A 到OC 的距离为sin36sin54 (D )点A 到OC 的距离为cos35sin 54 二、填空题 7. 如图,在山坡AB 上种树,已知∠C =90°,∠A =30°,AC =6米,则相邻两树的坡面距离AB = 米.7题图 8题图 9题图 10题图8.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4AF =6,sin∠BAE =35,则CF = .9.如图,为了测量电线杆AB 的高度,小明将测角仪放在与电线杆的水平距离为9m 的D 处.若测角仪CD 的高度为1.5m ,在C 处测得电线杆顶端A 的仰角为36°,则电线杆AB 的高度约为______m (精确到0.1m ).(参考数据:sin360.59cos360.81tan360.73≈,≈,≈) 10. 如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处.如果23AB BC =,那么tan DCF ∠的值是 .11. 如图,某公园入口处原有三级台阶,每级台阶高为18cm ,深为30cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度1:5i =,则AC 的长度是 cm . 三、应用题 12. (2011 山东省青岛市) 某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40º减至35º.已知原楼梯AB 长为5m ,调整后的楼梯所占地面CD (参考数据:sin40º≈0.64,cos40º≈0.77,sin35º≈0.57,13. 如图,在ABC △中,90A ∠=°,O 是BC 边上一点,以O 为圆心的半圆分别与AB AC 、边相切于D E 、两点,连接OD .已知23BD AD ==,. 求:(1)tan C ;(2)图中两部分阴影面积的和.14.如图所示,小明在自家楼顶上的点A 处测量建在与小明家楼房同一水平线上相邻的电梯楼的高度,测得电梯楼顶部B 处的仰角为45°,底部C 处的俯角为26°,已知小明家楼房的高度15AD =米,求电梯楼的高度BC (结果精确到0.1米).(参考数据:sin 260.44cos 260.90tan 260.49.°≈,°≈,°≈)C DBA2题图 5题图 6题图B C AC选做题15. 如图所示,A B ,两地之间有条河,原来从A 地到B 地需要经过桥DC ,沿折线A D C B →→→到达.现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.已知11k m BC =,45A ∠=,37B ∠=,桥DC 和AB 平行,则现在从A 地到B 地可比原来少走多少路程?(结果精确到0.1km1.41,sin 370.60≈,cos370.80≈)16.(2012 湖北省黄石市) 如图所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?A BCDA BD EC F1θ 2θ图(9)。

(附答案)《解直角三角形》典型例题

(附答案)《解直角三角形》典型例题

《解直角三角形》典型例题例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ;(2)由abB =tan ,知 ;(3)由c a B =cos ,知860cos 4cos =︒==B a c . 说明 此题还可用其他方法求b 和c .例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形.解法一 ∵ ∴设 ,则由勾股定理,得∴ .∴.解法二 133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中,于D ,若,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:∴在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .解: 在Rt △ADC 中,331023560sin ==︒=DC AC 在Rt △BDC 中,221022545sin ==︒=DC BC说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.学习要有三心:一信心;二决心;三恒心.知识+方法=能力,能力+勤奋=效率,效率×时间=成绩. 宝剑锋从磨砺出,梅花香自苦寒来.。

解直角三角形例题

解直角三角形例题

解直角三角形例1、 已知:如图,在△ABC 中,D 是BC 上的点,AD=AB ,E 、F 分别是AC、BD 的中点,且FE⊥AC,若AC=8,2tan =∠B ,求EF 和AB 的长.练习:如图,Rt △ABC 中,∠C =90º,BC =3,AC =4,以B 为圆心,4为 半径作圆弧交AC 边于点F ,交AB 于点E , (1) 求CF 的长(2) 连结CE ,求∠ACE 的正切值课后:已知:△ABC ,∠C=90°∠BAC=ɑ,AD 为中线,BE 为∠ABC 的平分线,交AD 于F.(1)若sin ɑ=21,则CE AE =__________;AF DF =__________ (2)若sin ɑ=45,求证:2AF=5DF(3)写出AFDF与ɑ的函数关系式。

答案:(1)12; 14; (2)取BE 的中点H ,连接DH,则DH ‖AC, DH=12AC,sina=45=MEAE,设ME=4t,则AE=5t BE 平分∠ABC ,∴ME=EB=4t DH=12AC=2t DH ‖AC, ∴△FDH ∽△FAE,∴AF DF =AE DH =52t t ,∴2AF=5DF (3) AF DF =2sin a例2.如图,AB 是半圆O 的直径,C 为半圆上一点,E 是弧BC 的中点,AE 交BC 于点D ,若AC=4,COS ∠CAB=54,则CD 的长为( A ) A 、34 B 、35 C 、1 D 、23练习:如图,AB 是半圆的直径,O 是圆心,C 是半圆外一点,CA 、CB 分别交半圆于点D、E,AB=1,则cos ∠ACB 等于 ( A )A 、DEB 、ACC 、BCD 、CEFED CBACBAFE F E DCBAFEDCBA课后:如图,点E 是⊙O 直径BD 的延长线上的一点,点C 在⊙O 上,且DE=DC=DO 。

(1)求证:EC 是⊙O 的切线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、知识概述
1、仰角、俯角
仰角、俯角:视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图所示.
说明:仰角、俯角一定是水平线与视线的夹角,即从观察点引出的水平线与视线所夹的锐角.
2、坡角和坡度
坡角:坡面与水平面的夹角叫做坡角,用字母α表示.
坡度(坡比):坡面的铅直高度h和水平宽度l的比叫做坡度,用字母i表示.则.如图所示
说明:(1)坡角的正切等于坡度,坡角越大,坡度也越大,坡面越陡.
(2)在解决实际问题时,遇到坡度、坡角的问题,常构造如图所示的直角三角形.
3、象限角
象限角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫象限角,如图中的目标方向线OA、OB、OC、OD的方向角分别表示北偏东30°,南偏东45°,北偏西60°,南偏西80°,如:东南方向,指的是南偏东45°角的方向上.如图所示.
二、重点难点疑点突破
1、怎样运用解直角三角形的方法解决实际问题
在解决实际问题时,解直角三角形有着广泛的应用.我们要学会将千变万化的实际问题转化为数学问题来解决,具体地说,要求我们善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,这样就可运用解直角三角形的方法了.
一般有以下三个步骤:
(1)审题,通过图形(题目没画出图形的,可自己画出示意图),弄清已知和未知;
(2)找出有关的直角三角形,或通过作辅助线产生有关的直角三角形,把问题转化为解直角三角形的问题;
(3)根据直角三角形元素(边、角)之间关系解有关的直角三角形.
其中,找出有关的直角三角形是关键,具体方法是:
(1)将实际问题转化为直角三角形中的数学问题;
(2)作辅助线产生直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.
2、在学习中应注意两个转化
(1)把实际问题转化成数学问题
这个转化分两个方面:一是将实际问题的图形转化为几何图形,画出正确的平面或截面示意图,并赋予字母;二是将已知条件转化成示意图中的边或角.
(2)把数学问题转化成解直角三角形问题.
如果示意图形不是直角三角形,可添加适当的辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为解直角三角形问题,把可解的直角三角形纳入基本类型,确定合适的边角关系,细心推理,按要求精确度作近似计算,最后写出答案并注明单位.
三、典型例题讲解
1、测量河宽
例1、如图,河边有一条笔直的公路l,公路两侧是平坦的草地.在数学活动课上,老师要求测量河对岸B点到公路的距离,请你设计一个测量方案.要求:
(1)列出你测量所使用的测量工具;
(2)画出测量的示意图,写出测量的步骤;
(3)用字母表示测得的数据,求出B点到公路的距离.
分析:
这是一个实际问题,要求B到CD的距离,可转化为直角三角形,然后在两个直角三角形中,可分别用含有AB的式子表示AC和AD,而AC+AD=m,可运用解方程的方法求出AB即可.
解:
(1)测角器、尺子;
(2)测量示意图如下图所示;
测量步骤:
①在公路上取两点C,D,使∠BCD,∠BDC为锐角;
②用测角器测出∠BCD=α,∠BDC=β;
③用尺子测得CD的长,记为m米;
④计算求值.
(3)解:设B到CD的距离为x米,作BA⊥CD于点A,在△CAB中,x=CAtanα,
点评:
运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题).
2、仰角、俯角问题
例2、为申办2010年冬奥会,须改变哈尔滨市的交通状况.在大直街拓宽工程中,要伐掉一棵树AB.在地面上事先划定以B为圆心、半径与AB等长的圆形危险区.现在某工人站在离B点3米远的D处测得树的顶端A点的仰角为60°,树的底
部B的俯角为30°(如图).问距离B点8米远的保护物是否在危险区内?
分析:
解决测量问题要明确仰角、俯角、视角、坡度、坡角等名词术语.
要考查距离B点8米远的保护物是否在危险区内,关键的一点是要测算树AB的高度.
解:
过点C作CE⊥AB,垂足为E.
在Rt△CBE中,
在Rt△CAE中,
故AB=AE+BE=≈4×1.73=6.92(米)<8(米).
因此可判断该保护物不在危险区内.
3、坡角、坡度(坡比)
例3、如图,一水坝横断面为等腰梯形ABCD,斜坡AB的坡度为,坡面AB的水平宽度为上底宽AD为4m,求坡角B,坝高AE和坝底宽BC各是多少?
分析:
首先将实际问题转化为数学问题,如图所示,实际上已知
求∠B、AE、BC.此题实质转化为解直角三角形的问题.
点评:
(1)解应用题时,解题过程中可以不写各数量的单位,但最后作答时务必写清单位名称.
(2)应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形,梯形也是通过作底边的高线来构造直角三角形.
(3)本题主要应用坡度是坡角的正切函数而求出坡角,运用坡度的概念求出梯形高,运用等腰梯形性质求出底边.
4、象限角
例4、如图,一轮船自西向东航行,在A处测得某岛C,在北偏东60°的方向上,船前进8海里后到达B,再测C岛,在北偏东30°的方向上,问船再前进多少海里与C岛最近?最近距离是多少?
分析:
将实际问题转化为数学问题,并构造出与实际问题有关的直角三角形,如图所示.船沿AB方向继续前进至D处与C岛最近,此问题实质就是已知∠CAB=90°-60°=30°,∠ABC=90°+30°=120°,AB=8海里,求BD和CD的解直角三角形问题.
解:
根据题设可知△ABC中,∠CAB=30°,∠ABC=120°,∴∠
ACB=180°-30°-120°=30°,AB=BC=8,作CD⊥AB于D.
∴最近距离即为C到AB所在直线的垂线段CD的长度.
在Rt△CBD中,BC=8,∠CBD=60°,
点评:根据题意准确画出示意图是解这类题的前提和保障.
5、开放探究题
例5、(荆州市)某海滨浴场的沿岸可以看作直线,如图,1号救生员在岸边A点看到海中的B点有人求救,便立即向前跑300米到离B点最近的D点,再跳入海中游到B点救助;若每位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.
(1)请问1号救生员的做法是否合理?
(2)若2号救生员从A跑到C,再跳入海中游到B点救助,且∠BCD=65°,请问谁先到达点B?(所有数据精确到0.1,sin65°≈0.9,cos65°≈0.4,
)
分析:
(1)比较1号救生员从点A直接游到点B所用时间与从点A跑到点D再游到点B的时间即可作出判断.
(2)分别计算出1号救生员、2号救生员所用时间,再作判断.
点评:
掌握探究题的探究方法非常重要,本题中救生员赶到点B的时间是我们探究的核心问题,如何准确求出救生员赶到点B所用时间是解决本题的关键.。

相关文档
最新文档