排队论&银行排队系统
排队论
排队长度:等待服务的顾 客数量
平均等待时间:顾客在系统 中等待服务的平均时间
平均排队长度:系统中平均 排队的顾客数量
服务台数量:系统中的服 务台数量
利用率:服务台被利用的 程度
排队系统的稳定性:系统是 否处于稳定状态,即平均等 待时间和平均排队长度是否
收敛
排队系统的分析方法
01
排队论的基本概 念:顾客到达、 服务时间、等待
服务台:提供服务的地方
队列:等待服务的顾客队列
顾客到达时间:顾客到达服 务台的时间 服务台容量:服务台可以同 时服务的顾客数量 排队系统状态:当前系统中 顾客和服务员的状态
排队系统的参数
顾客到达率:单位时间内到 达系统的顾客数量
服务速率:单位时间内服务 台能够服务的顾客数量
排队规则:先进先出(FIFO) 或后进先出(LIFO)
谢谢
排队论
演讲人
排队论的基本概念 排队论的基本原理Biblioteka 目录CONTENTS
排队论的应用实例
排队论的基本概念
排队系统的定义
1
排队系统:由顾 客和服务台组成 的系统,顾客需 要等待服务台的
服务。
2
服务台:提供某 种服务的设施, 如收银台、售票
窗口等。
3
顾客:需要接受 服务台的服务的 人,如顾客、乘
客等。
4
时间均服从指数分布
M/G/1模型:单服务台、单 队列、顾客到达服从泊松分 布、服务时间服从指数分布
M/G/c模型:单服务台、多 队列、顾客到达服从泊松分 布、服务时间服从指数分布
M/G/∞模型:单服务台、 无限队列、顾客到达服从泊 松分布、服务时间服从指数
分布
G/M/1模型:多服务台、单 队列、顾客到达服从泊松分 布、服务时间服从指数分布
《运筹学排队论》课件
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。
排队论
f ( w n 1)
n!
e w
w0
f ( w ) Pn f ( w n 1) n0 ( w ) n w (1 ) n e ( )e ( ) w n0 n!
熊燕华
6.
忙期和闲期
系统忙的概率为ρ ,则闲的概率为1-ρ 。可以 认为在一段时间内,忙期和闲期的长度比为 ρ :(1-ρ ) 由于顾客到达间隔服从无记忆性的负指数分布, 且与服务时间无关。闲期I(系统从空闲开始到新 的顾客到达时刻)服从参数为λ 的负指数分布,则 E[I]=1/λ E[B]= ρ/(1-ρ) E[I]=1/(μ-λ )=Ws
熊燕华
L S n Pn
n0
1
Little公式
Ls=Lq+λ/μ Ws=Wq+1/μ
L q (n 1) Pn n 1
Ws=E(W)=1/(μ-λ) Wq=Ws-1/μ=ρ/(μ-λ)
Ws=Ls/λ
Wq=Lq/λ
熊燕华
定理: 对于存在平稳分布的任何排队系统,下列 关系成立:
熊燕华
七、随机过程知识准备
系统的状态
系统中的顾客数,即如果系统中有n个顾客即说系统 状态为n。在平稳过程中,在时刻t、系统状态为n的概率 Pn(t)是不变的,即Pn(t) =Pn是不随时间变化的统计平衡 状态解。
注:本章研究的均为平稳过程,即输入、输出过程 的概率分布、参数均不随时间变化,与所选取的时
第八章 排队论
基本概念 单服务台泊松到达负指数服务时间排队模型 多服务台泊松到达负指数服务时间排队模型 其他排队模型 经济分析
熊燕华
排队论
(t )n et P( X (t ) n) n!
E ( X (t )) t
e t f T (t ) 0 1 E (T )
for t 0 for t 0
服务时间的概率 = t 1/ : 平均服务时间
在t时间内已经服务n个顾客 的概率 平均服务率=
队列
队列容量
有限/无限 先来先服务(FCFS);后来先服务; 随机服务; 有优先权的服务;
排队规则
3.服务机构
服务机构
服务设施, 服务渠道与服务台 服务台数量:1台和多台 服务时间分布:
指数, 常数,
排队模型分类-Kendall记号
Kendall 记号: X/Y/Z/ A/B/C 顾客到达时间间隔分布/服务时间分布/服务台数 目/排队系统允许的最大顾客容量/顾客总体数量/ 排队规则 M/M/1///FCFS M/M/1 / M: 指数分布 (Markovian) D: 定长分布 (常数时间) Ek: k级Erlang 分布 GI:一般相互独立的时间间隔分布 G: 普通的概率分布 (任意概率分布)
0.3 0.25 0.2 0.15 0.1 0.05 0 0 2 4 6 8 10 12 14 16 18 20 22 24 NUMBER IN SYSTEM 26 28 30 32 34 36 38 40
Probability
74.94% 0.2506 1.2294 1.9788 0.2734 0.4401 0.7494 0.1007
排队模型的记号
系统状态 = 排队系统顾客的数量。 N(t) = 在时间 t 排队系统中顾客的数量。 队列长度 = 等待服务的顾客的数量。 Pn(t) = 在时间t,排队系统中恰好有n个顾客的概率。 s = 服务台的数目。
交通流理论—排队论
组成
排队系统的组成 (1) 输入过程:就是指各种类型的"顾客(车辆或行人)"按怎样的规律到 达。有各式各样的输入过程,例如: D—定长输入:顾客等时距到达。 M—泊松输入:顾客到达时距符合负指数分布。 Ek—爱尔朗输入:顾客到达时距符合爱尔朗分布。
组成
排队系统的组成
(2)排队规则:指到达的顾客按怎样的次序接受服务。 例如: • 损失制:顾客到达时,若所有服务台均被占,该顾客就自动消失,永不再来。 • 等待制:顾客到达时,若所有服务台均被占,他们就排成队伍,等待服务,
离去 1
到达
离去 2
到达 1
离去
2
...
n
单通道多服务台系统
到达
离去
1
到达
离去
(组1)成单通道服务系统
到达
离去
服务台的排列方式1
服务台
单通道单服务台系统
(2)多通道服务系统
(2) 多通道服务系统
离去
1
到达
离去 2
3
离去
可通的多通道系统
到达 1
离去
2
...
n
单通道多服务台系统
到达
离去
1
到达
离去
2
到达
M/M/1系统及其应用
其他参数
平均非零排队长度:
qw
1
1
(qw q ) (辆)
即排队不计算没有顾客的时间,仅计算有顾客时的平均排队长度, 即非零排队。如果把有顾客时计算在内,就是前述的平均排队长度。
M/M/1系统及其应用
其他参数
系统中顾客数超过k的概率:
P(n k) 1 P(n k)
k
1- Pi 1 (1 (1 ) ... k (1 )) i 0
排队论
退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页退出前一页后一页退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望随机服务系统理论与展望退出前一页后一页。
排队论
1.基 本 概 念
3.服务台情况。服务台可以从以下3方面 来描述: (1) 服务台数量及构成形式。从数量上说, 服务台有单服务台和多服务台之分。从构成形 式上看,服务台有: ①单队——单服务台式; ②单队——多服务台并联式; ③多队——多服务台并联式; ④单队——多服务台串联式; ⑤单队——多服务台并串联混合式,以及 多队——多服务台并串联混合式等等。 见前面图1至图5所示。
Q——任一顾客在稳态系统中的等待
时间。
1.基 本 概 念
N,U,Q都是随机变量。
对于损失制和混合制的排队系统,顾客 在到达服务系统时,若系统容量已满, 则自行消失。这就是说,到达的顾客不 一定全部进入系统,为此引入:
1.基 本 概 念
e ——有效平均到达率,即每单位时间
内进入系统的平均顾客数(期望值); 这时就是期望每单位时间内来到系统 (包括未进入系统)的平均顾客数(期 望值) 对于等待制的排队系统,有e = 。
排队问题
前 言
排队论(Queuing Theory), 又 称 随 机 服 务 系 统 理 论 (Random Service System Theory),是一门 研究拥挤现象(排队、等待)的科 学。具体地说,它是在研究各种 排队系统概率规律性的基础上, 解决相应排队系统的最优设计和 最优控制问题。
1.基 本 概 念
(三)排队系统的描述符号与分类
为了区别各种排队系统,根据输入 过程、排队规则和服务机制的变化对排 队模型进行描述或分类,可给出很多排 队模型。为了方便对众多模型的描述, 20世纪50年代肯道尔(D.G.Kendall) 提出了一种目前在排队论中被广泛采用 的“Kendall记号”,完整的表达方式 通常用到6个符号并取如下固定格式: A/B/C/D/E/F 各符号的意义为:
运筹学排队论
降低平均服务时间
降低服务时间旳可变性
增长服务人员
降低平均到达人数
经过顾客预约等方法来降低到达旳可变性
集中使用服务资源
更加好地计划和调度
23
处理排队问题旳措施
2.其他措施
服务场合提供娱乐设施
医生等待室放报纸杂志
自动维修间用收音机或电视
航空企业提供空中电影
等待电梯处放镜子
超级市场把冲动性商品摆放在收款台附
排队论
1
2
•
排队论,又称随机服务系统理论(,是一
门研究拥挤现象(排队、等待)旳科学。详细
地说,它是在研究多种排队系统概率规律性
旳基础上,处理相应排队系统旳最优设计和
最优控制问题。
•排队论是1923年由丹麦工程师爱尔朗
(A.K.Erlang)在研究电活系统时创建旳.
3
案例-1 银行排队系统
4
案例-2 医院排队系统
用更快旳服务人员、机器或采用不同旳设施布局和政
策来影响顾客旳到达时间和服务时间。
9
1 排队论旳基本问题
1.1 排队论旳主要研究内容
• 数量指标
– 研究主要数量指标在瞬时或平稳状态下旳
概率分布及其数字特征,了解系统旳基本
运营特征。
• 统计推断
– 检验系统是否到达平稳状态;检验顾客到
达间隔旳独立性;拟定服务时间分布及参
数。
• 系统优化
– 系统旳最优设计和最优运营问题。
10
1.2排队论旳经济含义
• 排队问题旳关键问题实际上就是对不同
原因做权衡决策。管理者必须衡量为提
供更快捷旳服务(如更多旳车道、额外
旳降落跑道、更多旳收银台)而增长旳
42交通流理论排队论
泊松输入、定长服务、单个服务台的系统可以写 成M/D/1。
同样可以理解M/ Ek /N,D/M/N…等符号的含义。
如果不附其它说明,则这种符号一般都指先到先 服务,单个服务通道的等待制系统。
3)排队系统的主要数量指标
d n
w d 1
四、M/M/N系统
1 .计算公式 在 M / M / N 排队系统中,服务通道 有 N 条,所以也叫“多通道 服务”系统。 设 为进入多通道服务系统 车辆的平均到达率,排 队行列从每个服务台 接受服务后的平均输出 率为 ,则每个服务台的平均 服务时间是 1 / 。 仍记 / ,则 / N 称为 M / M / N 系统的服务强度或交通 强度,亦可称 为饱和度。和 M / M / 1相仿,当 / N 1时系统是稳定的,否则 不稳定,排 队长度将趋向于无穷大 。
M / M / N 系统根据车辆排队方式 的不同,可分为: 1)单路排队多通道服务 :指排成一个队等待数 条通道服务的情况,排 队 中头一车辆可视哪条通 道有空就到哪里去接受 服务;
2)多路排队多通道服务 的一队车辆服务,车辆 组成的系统,其计算公
:指每个通道各排一个 不能随意换队。此种情 式亦相同。
例:有一公路与铁路的交叉口,火车通过时,栅栏关闭的时
间 tr= 0.1h。已知公路上车辆以均一的到达率=900(辆/h)
到达交叉口,而栅栏开启后排队的车辆以均一的离去率u= 1200(辆/h)离开交叉口。试计算由于关闭栅栏而引起的:
单个车辆的最长延误时间tm, 最大排队车辆数Q, 排队疏散时间t 0, 排队持续时间t j 受限车辆总数n,
排队论
1.基 1.基 本 概 念
③随机服务。即当服务台空闲时,不按照 随机服务。即当服务台空闲时, 排队序列而随意指定某个顾客去接受服务, 排队序列而随意指定某个顾客去接受服务,如 电话交换台接通呼叫电话就是一例。 电话交换台接通呼叫电话就是一例。 ④优先权服务。如老人、儿童先进车站; 优先权服务。如老人、儿童先进车站; 危重病员先就诊; 危重病员先就诊;遇到重要数据需要处理计算 机立即中断其他数据的处理等,均属于此种服 机立即中断其他数据的处理等, 务规则。 务规则。
例如,通讯卫星与地面若干待传递的信息; 例如,通讯卫星与地面若干待传递的信息;生产线上的原 料、半成品等待加工;因故障停止运转的机器等待工人修理; 半成品等待加工;因故障停止运转的机器等待工人修理; 码头的船只等待装卸货物; 码头的船只等待装卸货物;要降落的飞机因跑道不空而在空中 盘旋等等。显然,上述各种问题虽互不相同, 盘旋等等。显然,上述各种问题虽互不相同,但却都有要求得 到某种服务的人或物和提供服务的人或机构。 到某种服务的人或物和提供服务的人或机构。排队论里把要求 服务的对象统称为“ 顾客” , 而把提供服务的人或机构称为 服务的对象统称为 “ 顾客 ” “服务 台”或“服务员”。不同的顾客与服务组成了各式各样的服务 服务员” 系 统。顾客为了得到某种服务而到达系统、若不能立即获得服务 顾客为了得到某种服务而到达系统、 而又允许排队等待,则加入等待队伍,待获得服务后离开系统. 而又允许排队等待,则加入等待队伍,待获得服务后离开系统.
前
言
面对拥挤现象,人们总是希望尽量设法减少排队, 面对拥挤现象,人们总是希望尽量设法减少排队,通 常的做法是增加服务设施。但是增加的数量越多,人力、 常的做法是增加服务设施。但是增加的数量越多,人力、 物力的支出就越大,甚至会出现空闲浪费, 物力的支出就越大,甚至会出现空闲浪费,如果服务设 施太少,顾客排队等待的时间就会很长, 施太少,顾客排队等待的时间就会很长,这样对顾客会带 来不良影响。于是, 来不良影响。于是,顾客排队时间的长短与服务设施规模 的大小,就构成了设计随机服务系统中的一对矛盾。 的大小,就构成了设计随机服务系统中的一对矛盾。如何 做到既保证一定的服务质量指标, 做到既保证一定的服务质量指标,又使服务设施费用经济 合理, 合理,恰当地解决顾客排队时间与服务设施费用大小这对 矛盾,这就是随机服务系统理论 矛盾,这就是随机服务系统理论——排队论所要研究解决 排队论所要研究解决 的问题。 的问题。
排队论
泊松输入中的顾客到达间隔时间 T 相互独立且服从同参数 λ 的负指数分 布,其密度函数为
其平均到达间隔时间为
λ 称为到达率。
三. 排队系统的主要特征
1. 输入过程 ⑴ 定长输入( D, Deterministic ) ⑵泊松输入 (最简单流, M ) ⑶ 一般独立输入( G,General Independent ) —— 指顾客到达间隔时间 T 为相互独立且同分布的随机变量。最简单 流是它的一个特例。 此外,在本章所讨论的排队系统中,总假定输入过程是平稳的,或 称对时间是齐次的。 平稳的输入过程 —— 指顾客到达间隔时间的分布与时间无关。否则就称 为非平稳的。
服务台m
服务台 1
⑸
服务台 2
服务台 1 服务台 2
···
···
服务台 m
服务台 m
三. 排队系统的主要特征
1. 输入过程 2. 服务时间 τ 的分布 3. 服务机构(服务台) 4. 服务规则
⑴ 先到先服务(FCFS) ⑵ 后到先服务(LCFS)
如信息处理、仓库中堆积的货物等。 ⑶ 随机服务(SIRO) ⑷ 优先权服务(PR) ⑸ 一般服务规则(GD)
1909年,由丹麦工程师爱尔朗(A.K.Erlang)在研究电话系统时初创的。
§l 排队论的基本概念及研究的问题
一.排队论中有两个基本概念:
顾客:把提出需求的对象称为顾客(或需求); 服务:把实现服务的设施称为服务机构(或服务台)。
顾客和服务机构组成一个排队系统,称为随机服务系统。 因此也称排队论为随机服务系统理论
⑴ 定长输入( D, Deterministic ) —— 每隔一定时间 α 到达一个顾客,顾客到达间隔时间 T 的分布函数为
三. 排队系统的主要特征
排队理论(queueing theory)
[编辑]
排队系统模型的基本组成部分
排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时 刻和对他服务的时间(即占用服务系统的时间)都是随机的。图 1 为一最简单的排队系统模型。 排队系统包括三个组成部分:输入过程、排队规则和服务机构。
[编辑]
输入过程
输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾 客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按 规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入 是指在时间 t 内顾客到达数 n(t)服从一定的随机分布。如服从泊松分布,则在时间 t 内到达 n 个顾客的概率为
在单队单服务台的情况下:
, 多队多服务台可看作是多个单队单服务台。在单队 k 个服务台的情况下:
,
三、超市收银台的优化设计
作为顾客来说,超市收银台越多越好越方便,而就超市经营者来说,增加收银台就要增加投 资。所以应该合理的规划收银台的数量,使得既不会因为收银台的数量过多而造成资源闲置浪
费,也不会因为收银台的数量过少而造成严重的排队现象。因此可对超市收银台进行管理和优化 设计。
Ls = Ls(C)
化简得:
(5)
通过计算机模拟依次算出 LS(1),LS(2),LS(3)…相邻两项之差,看常数落在哪两者之间,从而确 定使顾客损失费用和公司服务成本之和达到最优化服务台个数 C 的最优解 C * 。
1.对超市布局进行合理规划,为顾客营造出温馨,简便的购物环境。让顾客在尽量短的时间 内买到自己想买的商品,提高单位时间内进出超市的客流量,这样既节省了顾客的时间,也使超 市增加了顾客的流量,从而使超市的经营效率得到了提高。对于大型的超市在恰当的位置增加导 购员使一种很好的方法。对于第一次来消费的顾客,导购员的指导就会大量的减少他们的漫无目 的的逗留时间。收银台前的管理也是非常重要的,尽量让等待的顾客按顺序排队,避免过分的拥 挤和混乱。
排队论的基本原理
排队论的基本原理:
排队论(Queuing Theory)是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,其基本原理主要包括以下几个方面:
1.排队系统的组成:排队系统通常由输入过程、排队规则和服务机构三个部分组成。
输入过程是指顾客到达服务系统的随机方式,排队规则是指顾客到达后按照怎样的规则排队等待服务,服务机构则是指服务的提供方式。
2.概率论和随机过程:排队论中需要用到概率论和随机过程的数学知识,如概率分布、
期望、方差等。
这些知识用于描述顾客到达和服务时间的统计规律。
3.状态分析:排队论中的状态分析主要是指对排队系统的状态进行描述和分类,如空
闲状态、忙状态等。
通过对状态的分析,可以确定系统的各种性能指标,如等待时间、队长等。
4.最优化原理:排队论中的最优化原理是指通过调整系统参数,如服务时间、服务速
率等,使得系统的性能指标达到最优。
最优化原理的目的是在满足一定约束条件下,使系统的某种性能指标达到最优。
5.可靠性理论:可靠性理论是排队论中的一个重要组成部分,它研究的是系统可靠性
的概念、指标和计算方法。
可靠性理论可以帮助我们分析系统的可靠性、故障率和可用性等方面的问题,为系统的设计和优化提供依据。
运筹学中的排队论分析与应用
运筹学中的排队论分析与应用运筹学是一门研究如何最优化决策的学科。
在现代社会中,许多场景下都存在排队现象,例如银行、超市、机场等场所。
排队论作为运筹学的一个重要分支,专门研究如何通过合理的排队策略来优化服务效率与用户体验。
本文将介绍排队论的基本原理、应用场景以及如何利用排队论进行实际问题的分析与解决。
一、排队论的基本原理排队论是研究排队系统的理论与方法,其基本原理包括排队模型、排队规则以及排队指标。
1. 排队模型排队模型是对排队系统进行抽象和建模的过程,常用的排队模型有M/M/1、M/M/c、M/G/1等。
其中,M表示顾客到达过程符合泊松分布,而服务过程符合指数分布;1表示一个服务台,c表示多个服务台;G表示总体服从一般分布。
2. 排队规则排队规则是指在排队系统中,顾客到达和离开的规则。
常用的排队规则有先到先服务(First-Come-First-Serve,简称FCFS)、最短作业优先(Shortest Job First,简称SJF)、优先级法则等。
3. 排队指标排队指标是对排队系统性能的度量,常用的排队指标包括平均等待时间、平均逗留时间、系统繁忙度等。
这些指标可以帮助我们评估排队系统的效率,并进行比较和优化。
二、排队论的应用场景排队论的应用场景非常广泛,几乎可以涵盖各个行业。
下面以几个典型的应用场景为例,介绍排队论在其中的分析与应用。
1. 银行排队银行是排队论的典型应用场景之一。
通过排队论的分析,银行可以确定合理的柜台数量和工作人员配置,以减少客户的等待时间和提高服务效率。
此外,银行还可以考虑引入预约系统、自助服务等方式,进一步优化排队系统。
2. 售票窗口排队售票窗口也是一个常见的排队场景,如电影院、火车站等。
利用排队论,可以根据顾客到达的速率和服务时间的分布,预测等待时间,并提前安排足够的窗口进行服务,以提高售票效率和用户体验。
3. 交通信号灯优化交通信号灯的优化也可以借助排队论的方法。
通过对道路上车辆到达和通过的流量进行统计和分析,可以调整信号灯的信号周期和配时方案,以减少交通拥堵和减少等待时间。
排队论公式
1/ 每名客户
λ
ρ:系统忙着的概率,ρ =
cμ
系统(每小时)顾客平均数
(每小时)等待服务的平均 顾客数 (每位)顾客在店内的平均 逗留时间 (每位)顾客平均修理时间
2
2
ρ + λ D(v)
????= ρ +
2(1 - ρ )
?q? = λ ??q = ????- ρ ????
???? ??s =
λ
e
Lq Wq =
λ
e
μ:每小时可以服务的人数, 1/ 每名客户服务时间的分钟数
λ
e
=
λ( m -
LS)
μ ????= m - (1 - P0 )
λ
??q = ????- (1 - ??0 )
???? ??s =
λ
e
Lq Wq =
λ
e
λ
ρ:系统忙着的概率, ρ = μ
排队论公式二
M/M/C/ ∞ /m 多服务台模型 单队,并列 C个服务台
P0 = ∑
1
C-1
k=0
1 k!
( λ )k μ
+
1 C!
?
1
1 -
ρ
?
λ () μ
C
M/????/1/ ∞ /m
λ ????= ??q +
μ
C
(Cρ ) ρ
??q =
2 ??0
C! (1 - ρ )
LS ??s =
λ
??q ??q =
λ
n
= (1 - ρ ) ρ
1- ??0 =
ρ
排队论讲解
排队论是一种研究排队系统的数学理论,它主要用于研究系统在不同的服务策略下的性能指标,如平均等待时间、平均服务时间、系统吞吐量等。
排队系统是指由顾客和服务台组成的系统,顾客按照先来先服务的原则依次到达服务台,并在服务台得到服务。
排队论的基本模型包括M/M/s、M/M/c、M/G/s、M/G/c等模型,其中M表示顾客到达的随机变量是泊松分布,G表示服务时间的随机变量是几何分布,c表示服务台的容量限制,s表示系统的服务速度。
M/M/s模型是指服务台的服务速度s是固定的,即服务台的服务速度不受顾客到达的影响,这种模型主要用于研究系统的平均等待时间和平均服务时间。
M/M/c模型是指服务台的容量限制c是固定的,即服务台的服务速度受到顾客到达的影响,这种模型主要用于研究系统的排队长度和服务率。
排队论的应用非常广泛,包括电话系统、银行系统、航空系统、医疗系统等。
在实际应用中,排队论可以帮助企业优化服务流程,提高服务质量,减少顾客等待时间,提高顾客满意度,从而提高企业的竞争力和经济效益。
排队论的应用还在不断地拓展和深化,例如近年来出现的排队论模型包括多服务台排队模型、排队网络模型、排队论与动态优化模型等。
这些模型可以更好地模拟实际系统中的复杂排队情况,提高系统的服务质量和效率。
排队论方法讲解
排队论方法讲解
排队论是一种运用概率统计方法来分析和解决队列问题的学科。
队列问题是指在等待某个服务或进入某个系统时,人们形成的一种有序排列状态。
排队论主要关注等待时间、排队长度、服务效率等问题。
以下是排队论的一些常见方法:
1. 假设法:假设不同的排队系统具有不同的概率分布,分析不同系统中的各种运行参数,如平均等待时间、服务时间等。
2. 累积等待时间法:计算各客户平均等待时间的总和,再除以系统中客户的总数,用以评价该排队系统是否合理。
3. 平衡方程法:通过统计每个元素在系统中的进入量、离开量、排队量等,建立系统的平衡方程式来求解系统的各项参数。
4. 级数求和法:将排队论中的一些重要参数(如平均等待时间、利用率等)表示成一个级数之和的形式,从而求出这些参数的近似值。
5. Monte Carlo模拟方法:采用随机数模拟的方法,模拟排队系统的服务过程,从而得出系统的性能指标。
以上是排队论的一些常见方法,具体应用时需要考虑具体情况和问题,选择合适的方法进行分析。
排队论
后到先服务LCFS,
有优先权服务PS, 随机服务RF。
(c)混合制排队
队长有限 等待时间有限 逗留时间(等待时间与服务时间之和)有限
排队系统的三大要素描述 三、服务机制 主要包括服务设施的数量、连接形式、服务方式及服务时间 分布等. 服务设施的数量:一个或多个,分别称为单服务台与多服 务台排队系统; 连接形式:串联、并联、混联和网络等; 服务方式:单个或成批服务; 服务时间的分布:其中服务时间分布是最重要因素, 记服务台服务时间为V, 其分布函数为B(t), 密度函数为b(t), 常见的分布有: (1) 定长分布(D)
特别的,当t 1, 有E ( N (1)) , 可看成单位时间内到达顾客的平均数.
Poisson过程有如下性质:
(1) 在[t, t+△t] 时间内没有顾客到达的概率为
P0 (t ) e t (1 t ) o(t ) 1 t
(1) 在[t, t+△t] 时间内恰好有一个顾客到达的概率为 P (t ) 1 P0 (t ) (t ) t 1
无限状态生灭过程 定义:设{N(t),t ≥0 }是一个随机过程(其中N(t)表示时刻 t 系统中的顾客数)。若N(t)的概率分布具有如下性质: 1. 假设N(t) = n ,则从时刻 t 起到下一个顾客到达时刻止的 时间服从参数为 n 的负指数分布,n = 0,1,2,…。 2. 假设N(t) = n ,则从时刻 t 起到下一个顾客离去时刻止的 时间服从参数为 n 的负指数分布,n = 1,2,…。 3. 同一时刻只有一个顾客到达或离去。 则称{N(t),t ≥0 }是一个生灭过程。
Erlang输入(Ek) 顾客相继到达时间间隔{Xn}相互独立,具有相同的Erlang分布密度 函数
排队论
实用排队论排队论又称随机服务系统,它应用于一切服务系统,包括生产管理系统、通信系统、交通系统、计算机存储系统。
它通过建立一些数学模型,以对随机发生的需求提供服务的系统预测。
现实生活中如排队买票、病人排队就诊、轮船进港、高速路上汽车通过收费站、机器等待修理等等。
一、排队论的基本构成(1)输入过程输入过程是描述顾客是按照怎样的规律到达排队系统的。
包括①顾客总体:顾客的来源是有限的还是无限的。
②到达的类型:顾客到达是单个到达还是成批到达。
③相继顾客到达的时间间隔:通常假定是相互独立同分布,有的是等间隔到达,有的是服从负指数分布,有的是服从k 阶Erlang 分布。
(2)排队规则排队规则指顾客按怎样的规定的次序接受服务。
常见的有等待制,损失制,混合制,闭合制。
当一个顾客到达时所有服务台都不空闲,则此顾客排队等待直到得到服务后离开,称为等待制。
在等待制中,可以采用先到先服务,如排队买票;也有后到先服务,如天气预报;也有随机服务,如电话服务;也有有优先权的服务,如危重病人可优先看病。
当一个顾客到来时,所有服务台都不空闲,则该顾客立即离开不等待,称为损失制。
顾客排队等候的人数是有限长的,称为混合制度。
当顾客对象和服务对象相同且固定时是闭合制。
如几名维修工人固定维修某个工厂的机器就属于闭合制。
(3)服务机构服务机构主要包括:服务台的数量;服务时间服从的分布。
常见的有定长分布、负指数分布、几何分布等。
二、排队系统的数量指标(1)队长与等待队长队长(通常记为s L )是指系统中的平均顾客数(包括正在接受服务的顾客)。
等待队长(通常记为q L )指系统中处于等待的顾客的数量。
显然,队长等于等待队长加上正在服务的顾客数。
(2)等待时间等待时间包括顾客的平均逗留时间(通常记为s W )和平均等待时间(通常记为q W )。
顾客的平均逗留时间是指顾客进入系统到离开系统这段时间,包括等待时间和接受服务的时间。
顾客的平均等待时间是指顾客进入系统到接受服务这段时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般情况下,A支行 0.1952 的服务柜台数为3个, 则 为0.864。由此, A支行的客户排队模 第一PPT模板网, 型如图1所示:
窗口(1)
窗口(2)
0.1952
窗口(3)
0.1952
0.506
四、A支行的客户排队系统效率分析
在A支行的客户排队模型中,服务柜台数为三个,通过“多服务台Wq • μ 数值表”与线性插值法,即可求得:
排队论
第一PPT模板网,
输入过程
排队
服务机构
输 入 过 程
顾客流概率分布
第一PPT模板网, 顾客到达方式
顾客总体数
等待制
损失制
第一 PPT模板网, 先到先服
排队规则
随机服务 优先权服务
务
后到先服务
廖京辉:排队论
第一PPT模板网,
廖京辉:排队论
第一PPT模板网,
龚鑫烨:银行排队系统
刘加新:医院排队系统 任天悦:程序演示
二、获取银行排队系统模型的各项参数
1、该行客户所能接受的最长逗留时间Tq 客户能够接受的最长逗留时间 Tq是指客户自到达A支行营业厅开 始,包括等待以及接受服务到离开营业厅所能承受的最长时间,Tq 是排队系统服务效率的重要参考指标。如果客户在营业厅花费的时间 超过 Tq,客户就会认为该行的服务时间过长,服务效率较低,从而 第一PPT模板网, 产生焦躁与不满情绪。通过对 A支行营业厅随机到达办理业务的 40 位客户进行现场调查,可以获得Tq,具体数据如表1。
预约 系统 排队
第一组:
廖京辉 任天悦 刘加新 龚鑫烨
廖京辉:排队论
第一PPT模板网,
龚鑫烨:银行排队系统
刘加新:医院排队系统 任天悦:程序演示
排队论
廖京辉:排队论
第一PPT模板网,
排队论
排队论是1909年由丹麦工 程师爱尔朗(A.K.Erlang) 在研究电活系统时创立的。 几十年来排论的应用领域 越来越广泛,理论也日渐完 第一PPT模板网, 善。特别是自二十世纪60 年代以来,由于计算机的飞 发展更为排队论的应用开 拓了宽阔的前景。排队是 我们在日常生活和生产中 经常遇到的现象。
Wq • μ= 1.0787
(0.864 0.8) (2.7235 1.0787 ) 2.13 0.9 0.8
因μ为0.1952,所以可以计算求得,Wq为10.9分钟,客户在营业厅 平均逗留时间Ws为16.02分钟,已经远远超过10分钟,这意味着大多 数客户会产生不满。可以想象,在业务高峰时段,客户的等待时间会 更长。 另外, 为0.864,说明A支行的服务柜台比较繁忙。此时,该支行 客户排队系统的负荷较大,客户排队时间较长,系统的业务处理效率 较低,亟待进行改进。
一、基于排队论的银行排队系统模 型 排队论 (queueing theory)通过对服务对象的到来及服务时间进行统计研
究,得出相关服务指标(等待时间、排队长度、忙期长短等)的统计规律, 并据此改进服务系统的结构或重新组织被服务对象。排队论是分析、解决服 务系统效率问题的重要方法之一。 为了深入分析银行排队系统的效率问题,我就选取某银行A支行为研究样 第一PPT模板网, 本,对该行客户的排队情况进行实地调研。 A支行客户排队系统的客户源可以认为是无限的,客户到达银行后,在排 队叫号机上选择业务类别,按先后顺序单列排队等候,排队规则为先到先服 务,队长无限制;客户到达时间和间隔时间相互独立,客户到达人数服从泊 松分布,各服务柜台相互独立工作,各服务台的服务率基本相同,服务时间 服从负指数分布,则该行客户排队问题服从于多服务台单队系统的M/M/C随 机排队模型。
第一PPT模板网,
从上表可以清晰看出,大多数客户 能够认可的 Tq时间为“10分钟”; 而当 Tq超过15分钟时,没有客户 可以接受。这说明对于A支行而言, 应把10分钟作为服务效率的上限。
2、该行客户平均到达率λ λ 获取A支行客户平均到达率 的方法是根据该行营业厅每天实 际发生的业务量来确定,同一客 户办理多笔业务,可以视同多个 第一PPT模板网, 客户同时到达。为了保证调研数 据的均衡性,本文调取了RX支行 连续十天的客户数据(以每十五 分钟为单位),并整理成客户到 达数的分布表(表2)。
龚鑫烨:银行排队系统
刘加新:医院排队系统 任天悦:程序演示
第一PPT模板网,
基于排队论的银行排队系统
Made by Gong Xinye
第一PPT模板网,
以前,客户往往会因 为在银行排队时间过 长或有人插队而引发 强烈不满,解决银行 排队系统效率问题, 不仅可以科学配置企 业资源,节约客户时 间与精力成本,提高 客户满意度,提升系 统服务效率,而且对 其它随机排队系统的 类似问题具有较高参 考价值。
通过上表,可以计算 A支行营业厅的客户平均到达率
nf 2428 7.59(人 一刻钟) f 320 第一PPT 模板网,
即该营业厅的客户平均到达率 0.506(人 分钟)
3、该行客户平均服务率μ 在实际工作中,客户存取款、转账汇款、缴费、理财、开销户 等业务是随机发生的,客户办理业务的种类不同,服务时间必然有 所差别。同时,每位柜员的业务技能素质也不尽相同,故在现场调 查中随机抽取了4名柜员办理的240笔各类业务进行统计分析。 经统计测算,240 笔业务的总服务时间为 1229.123 (分钟 /人),平均服务时间为 5.123(分钟 / 人),则客户平均服务率为μ 为0.1952(人/分钟)。经统计检验,A支 行的客户到达规律服从参数为 0.506的泊松分布,服务时间服从参 数为0.1952的负指数分布。
A.K.Erlang
排队论
有型排队: • 顾客到商店购买物品 • 病人到医院看病 • 旅客到售票处购买车票 无形排队: 顾客打咨询电话,他们分散在不同 地方却形成了一个无形队列在等待 第一PPT模板网, 咨询。
主体: 排队的不一定是人,也可以是物,如: 因故障停止运转的机器等待工人修 理, 码头的船只等待装卸货物, 要 降落的飞机因跑道不空而在空中盘 旋等。
第一PPT模板网,
五、银行排队系统效率问题的优化方案
• 1、切实贯彻以客户为中心的经营理念 • 2、多措并举,提升柜员的平均服务率 a 加强员工培训,健全激励考核机制 b现金与非现金业务分离处理 第一 模板网, cPPT 进一步优化业务流程 • 3、科学配置内部资源,设立弹性窗口 • 4、着力推广电子银行,有效分流客户 • 5、不断创新业务服务模式