解读以高等数学知识为背景的高考数学试题

合集下载

一道高考数学试题的高等数学背景研究

一道高考数学试题的高等数学背景研究

从高考数学命 题技 术看 , 是 通过 语 言转换 , 一 将 高 中生 不熟悉 的 高等 数学 术语 “ 有界 变差 数列 ”
1 2 3 …) 有界 变 差. 明凡 有 有 界 变差 的 , ,, 有 证
用 其 英 文 简 写 “ 数 列 ” b u d d ai in (o n e vr t ao sq e c) eun e 这一 新定 义替代 , 高数语 言初 等化 , 持 保 原题条件不 变 , 变其 结论 ( 改 原题 第 2问的否 定 即 是本试题 的() , J) 以达 到考 查有 界变 差数列 性质 的
若 数 列 { a }满 足 : 在 正 数 M , 一 切 有 存 对
函数 中 的有 界 变差 函数一 脉相 承.
1 命 题 渊 源
1 1 命 题 背 景 .
A 一 I 2 1l 3 2l … +I 口 一a 十I 一a + a n 一 l『 a ≤ M. 明 : 列 { 与 { 都 收敛. 证 数 n} A }
叙 列 : ,一 1, ,一 , ,一 , , , 1 …
厶 厶 J 0
( 首项 为 1 公 比为 q 1 < 1 I) 、 ( ql )的等 比数 列 是 否为 B 数 列 ? 说 明理 由 ; 一 请
(1 设 S 是 数 列 { } I) 的前 项 和 , 出 下 列 给 两 组论 断 :
列c 一1 o +寺 +÷ +…+ 是发散的, 又是递增
rt
请 以其 中一 组 中的 一个 论 断为 条 件 , 一 组 另
中的一个论 断 为结 论 组 成 一个 命 题 . 断所 给 命 判 题 的真假 , 并证 明你 的结论 ; (l) 数列 { ,b} 是 B 数 列 , 明 : I 若 1 a } { 都 一 证 数

数学2024高考试卷解析

数学2024高考试卷解析

数学2024高考试卷解析一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合A = {xx^2-3x + 2 = 0},B={xx>1},则A∩ B = ( )A. {1}B. {2}C. {1,2}D. varnothing解析:先求解集合A,对于方程x^2-3x + 2 = 0,分解因式得(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。

又因为B = {xx>1},所以A∩ B={2},答案为B。

2. 复数z=(1 + i)/(1 - i),则z的共轭复数¯z=( )A. -iB. iC. 1 - iD. 1 + i解析:对z=(1 + i)/(1 - i)进行化简,分子分母同时乘以1 + i,得到z=frac{(1 +i)^2}{(1 - i)(1 + i)}=frac{1 + 2i+i^2}{2}=i,共轭复数实部相同,虚部相反,所以¯z=-i,答案为A。

3. 已知向量→a=(1,2),→b=(m, - 1),若→a⊥→b,则m = ( )A. 2C. (1)/(2)D. -(1)/(2)解析:因为→a⊥→b,根据向量垂直的性质→a·→b=0,即1× m+2×(- 1)=0,解得m = 2,答案为A。

4. 函数y=sin(2x+(π)/(3))的最小正周期是(\space)A. πB. 2πC. (π)/(2)D. (2π)/(3)解析:对于函数y = Asin(ω x+φ),其最小正周期T=(2π)/(ω),这里ω = 2,所以T=π,答案为A。

5. 在等差数列{a_n}中,a_1=1,公差d = 2,则a_5=( )A. 9B. 11C. 13D. 15解析:根据等差数列通项公式a_n=a_1+(n - 1)d,当n = 5时,a_5=1+(5 - 1)×2=1 + 8 = 9,答案为A。

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

2023年新高考1卷数学真题试卷附详解

2023年新高考1卷数学真题试卷附详解

2023年高考数学试卷新课标Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A. {}2,1,0,1--B. {}0,1,2C. {}2-D. 22. 已知1i22iz -=+,则z z -=( ) A.i -B. iC. 0D. 13. 已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+,则( ) A. 1λμ+= B. 1λμ+=- C. 1λμ= D. 1λμ=-4. 设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A. (],2-∞-B. [)2,0-C. (]0,2D. [)2,+∞5. 设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ( )A.B.C.D.6. 过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A. 1B.C.D.7. 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( ) A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件 8. 已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=( ). A.79 B.19C. 19-D. 79-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差10. 噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级20lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则( ). A. 12p p ≥ B. 2310p p > C. 30100p p =D. 12100p p ≤11. 已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A. ()00f =B. ()10f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点12. 下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有( )A. 直径为0.99m 的球体B. 所有棱长均为1.4m 的四面体C. 底面直径为0.01m ,高为1.8m 的圆柱体D. 底面直径为1.2m ,高为0.01m 的圆柱体三、填空题:本题共4小题,每小题5分,共20分.13. 某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).14. 在正四棱台1111ABCD A B C D -中,1112,1,AB A B AA ===,则该棱台的体积为________.15. 已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.16. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.18. 如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上,22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P . 19. 已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+. 20. 设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求d .21. 甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .22. 在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于2023年高考数学试卷新课标Ⅰ卷答案一、选择题.1. C解:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C . 2. A解:因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-. 故选:A . 3. D解:因为()()1,1,1,1a b ==-,所以()1,1a b λλλ+=+-,()1,1a b μμμ+=+- 由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= 即()()()()11110λμλμ+++--=,整理得:1λμ=-. 故选:D . 4. D解:函数2xy =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥.所以a 的取值范围是[)2,+∞. 故选:D. 5. A解:由21e ,得22213e e =,因此2241134a a --=⨯,而1a >,所以a =故选:A. 6. B解:因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =过点()0,2P -作圆C 的切线,切点为,A B因为PC ==,则PA ==可得sin APC APC ∠==∠==则sin sin 22sin cos 2APB APC APC APC ∠=∠=∠∠==22221cos cos 2cos sin 04APB APC APC APC ∠=∠=∠-∠=-=-<⎝⎭⎝⎭即APB ∠为钝角.所以()sin sin πsin 4APB APB =-∠=∠=α. 故选:B. 7. C解:甲:{}n a 为等差数列,设其首项为1a ,公差为d 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+ 因此{}nS n为等差数列,则甲是乙的充分条件. 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥ 两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立 因此{}n a 为等差数列,则甲是乙的必要条件. 所以甲是乙的充要条件,C 正确. 故选:C. 8. B解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=则2sin()sin cos cos sin 3αβαβαβ+=+=所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=. 故选:B.二、选择题.9. BD解:对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n 则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小 例如:1,2,3,4,5,6,可得 3.5m n ==. 例如1,1,1,1,1,7,可得1,2m n ==. 例如1,2,2,2,2,2,可得112,6m n ==;故A 错误; 对于选项B :不妨设123456x x x x x x ≤≤≤≤≤可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确; 对于选项C :因为1x 是最小值,6x 是最大值则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差例如:2,4,6,8,10,12,则平均数()12468101276n =+++++= 标准差1s ==4,6,8,10,则平均数()14681074m =+++= 标准差2s ==5>,即12s s >;故C 错误; 对于选项D :不妨设123456x x x x x x ≤≤≤≤≤则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确; 故选:BD. 10. ACD解:由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈= 对于选项A :可得1212100220lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯ 因为12p p L L ≥,则121220lg0p p p L L p =-⨯≥,即12lg 0pp ≥ 所以121p p ≥且12,0p p >,可得12p p ≥,故A 正确; 对于选项B :可得2332200320lg20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯ 因为2324010p p p L L L -=-≥,则2320lg10p p ⨯≥,即231lg 2p p ≥ 所以23pp ≥23,0p p >,可得23p ≥ 当且仅当250p L =时,等号成立,故B 错误; 对于选项C :因为33020lg40p p L p =⨯=,即30lg 2pp =可得3100p p =,即30100p p =,故C 正确; 对于选项D :由选项A 可知:121220lgp p p L L p =-⨯ 且12905040p p L L ≤-=-,则1220lg40p p ⨯≤ 即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确; 故选:ACD. 11. ABC解:因为22()()()f xy y f x x f y =+对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确. 对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确. 对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=令21,()()(1)()y f x f x x f f x =--=+-=又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误. 12. ABD解:对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长 所以能够被整体放入正方体内,故A 正确;对于选项B :, 1.4> 所以能够被整体放入正方体内,故B 正确;对于选项C :, 1.8< 所以不能够被整体放入正方体内,故C 正确;对于选项D :, 1.2>设正方体1111ABCD A B C D -的中心为O ,以1AC 为轴对称放置圆柱,设圆柱的底面圆心1O 到正方体的表面的最近的距离为m h如图,结合对称性可知:11111110.62OC C A C O OC OO ===-= 则1111C O h AA C A =,即0.61h -=解得10.340.012h =>> 所以能够被整体放入正方体内,故D 正确; 故选:ABD.三、填空题.13. 64解:(1(当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2(当从8门课中选修3门①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种. 故答案为:64. 14.解:如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高因为1112,1,AB A B AA ===则111111111122222AO AC B AO AC ======故()1112AM AC A C =-=,则1A M ===所以所求体积为1(413V =⨯++=故答案为:6. 15. [2,3)解:因为02x π≤≤,所以02x πωω≤≤ 令()cos 10f x x ω=-=,则cos 1x ω=有3个根 令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<故答案为:[2,3).16.解:依题意,设22AF m =,则2113,22BF m BF AF a m ===+在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m=-(舍去)所以124,2AF a AF a ==,213BF BF a ==,则5AB a = 故11244cos 55AF a F AF ABa ∠===所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =故5c e a ==.四、解答题.17. (1 (2)6 【小问1详解】3A B C += π3C C ∴-=,即π4C =又2sin()sin sin()A C B A C -==+2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+ sin cos 3cos sin A C A C ∴= sin 3cos A A ∴=即tan 3A =,所以π02A <<sin10A ∴==. 【小问2详解】由(1)知,cos10A ==由sin sin()B A C =+sin cos cos sin A C A C =+=+=由正弦定理,sin sin c bC B=,可得52b ==11sin 22AB h AB AC A ∴⋅=⋅⋅sin 6h b A ∴=⋅==. 18. (1)证明见解析 (2)1 【小问1详解】以C 为坐标原点,1,,CD CB CC 所在直线为,,x y z 轴建立空间直角坐标系,如图则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A2222(0,2,1),(0,2,1)B C A D ∴=-=- 2222B C A D ∴∥又2222B C A D ,不在同一条直线上2222B C A D ∴∥.【小问2详解】 设(0,2,)(04)P λλ≤≤则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---设平面22PA C 的法向量(,,)n x y z =则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩ 令 2z =,得3,1y x λλ=-=-(1,3,2)n λλ∴=--设平面222A C D 的法向量(,,)m a b c =则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ 令 1a =,得1,2==b c(1,1,2)m ∴=cos ,cos1506n m n m n m⋅∴===︒=化简可得,2430λλ-+= 解得1λ=或3λ=(0,2,1)P ∴或(0,2,3)P21B P ∴=.19. (1)答案见解析 (2)证明见解析 【小问1详解】解:因为()()e x f x a a x =+-,定义域为R ,所以()e 1xf x a '=-当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减; 当ln x a >-时,0fx,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增. 【小问2详解】由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立. 令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增.所以()2min 1ln 02222g a g ⎛⎛==--=>⎝⎭⎝⎭,则()0g a >恒成立. 所以当0a >时,3()2ln 2f x a >+恒成立,证毕. 20.(1)3n a n = (2)5150d =【小问1详解】21333a a a =+,132d a d ∴=+,解得1a d = 32133()6d d S a a =+==∴又31232612923T b b b d d d d=++=++= 339621S T d d∴+=+= 即22730d d -+=,解得3d =或12d =(舍去) 1(1)3n a a n d n ∴=+-⋅=.【小问2详解】{}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+ 2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d = 1d >,0n a ∴>又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去) 当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解; 当1a d =时,501495051a a d d =+==,解得5150d =. 综上,5150d =. 21. (1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 【小问1详解】记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B 所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.【小问2详解】设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+ 构造等比数列{}i p λ+设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭ 又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭. 【小问3详解】因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅ 所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- 故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 22. (1)214y x =+ (2)见解析 【小问1详解】设(,)P x y ,则y =两边同平方化简得214y x =+ 故21:4W y x =+. 【小问2详解】法一:设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0.则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<- 同理令0BC k b c n =+=>,且1mn =-,则1m n=-设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+则11||||(((2C AB BC b a c b c a n n ⎛=+=--≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 令()0f x '=,解得x =当0,2x ⎛∈ ⎝⎭时,()0f x '<,此时()f x 单调递减当,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增则min 27()4f x f ==⎝⎭故122C ≥=,即C ≥当C =时,n m ==,且((b a b a -=-,即m n =时等号成立,矛盾,故C >得证.法二:不妨设,,A B D 在W 上,且BA DA ⊥依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线BA ,DA 的斜率均存在且不为0则设BA ,DA 的斜率分别为k 和1k-,由对称性,不妨设1k ≤ 直线AB 的方程为21()4y k x a a =-++则联立22141()4y x y k x a a ⎧=+⎪⎪⎨⎪=-++⎪⎩得220x kx ka a -+-=()()222420k ka a k a ∆=--=->,则2k a ≠则||2|AB k a =-同理||2AD a =+||||2|2AB AD k a a ∴+=-1122k a a k k ⎫≥-++≥+=⎪⎭令2k m =,则(]0,1m ∈,设32(1)1()33m f m m m m m+==+++则2221(21)(1)()23m m f m m m m '-+=+-=,令()0'=f m ,解得12m =当10,2m ⎛⎫∈ ⎪⎝⎭时,()0f m '<,此时()f m 单调递减 当1,2m ⎛⎫∈+∞⎪⎝⎭,()0f m '>,此时()f m 单调递增 则min 127()24f m f ⎛⎫==⎪⎝⎭||||AB AD ∴+≥但12|2|2|2k a a k a a k ⎫-+≥-++⎪⎭,此处取等条件为1k =,与最终取等时k =,故AB AD +>. 法三:为了计算方便,我们将抛物线向下移动14个单位得抛物线2:W y x '=,\矩形ABCD 变换为矩形A B C D '''',则问题等价于矩形A B C D ''''的周长大于设 ()()()222001122,,,,,B t t A t t C t t ''', 根据对称性不妨设 00t ≥.则 1020,A B B C k t t k t t ''''=+=+, 由于 A B B C ''''⊥, 则 ()()10201t t t t ++=-.由于 1020,A B t B C t ''''=-=-, 且 0t 介于 12,t t 之间,则 1020A B B C t t ''''+=--. 令 20tan t t θ+=10πcot ,0,2t t θθ⎛⎫+=-∈ ⎪⎝⎭,则2010tan ,cot t t t t θθ=-=--,从而))002cot tan 2A B B C t t θθ''''+=++-故330022222(cos sin )11sin cos sin cos 2sin cos cos sin sin cos sin cos t A B B C t θθθθθθθθθθθθθθ''''-+⎛⎫+=-++=+ ⎪⎝⎭①当π0,4θ⎛⎤∈ ⎥⎝⎦时第 21 页 共 21 页332222sin cos sin cos sin cos cos sin A B B C θθθθθθθθ''''++≥=+≥=≥ ②当 ππ,42θ⎛⎫∈⎪⎝⎭ 时,由于102t t t <<,从而000cot tan t t t θθ--<<- 从而0cot tan 22t θθ-<<又00t ≥ 故0tan 02t θ≤<,由此330222(cos sin )sin cos sin cos sin cos t A B B C θθθθθθθθ''''-++=+ 3323222sin (cos sin )(sin cos )sin cos 1cos sin cos sin cos cos sin θθθθθθθθθθθθθθ-+>+=+==2≥≥=当且仅当cos 3θ=时等号成立,故A B B C ''''+>,故矩形周长大于。

2024 高考数学真题及解析(新课标Ⅰ卷)

2024 高考数学真题及解析(新课标Ⅰ卷)

2024高考数学真题解析新课标Ⅰ卷一、选择题1.已知集合A={x|−5<x3<5},B={−3,−1,0,2,3},则A∩B=()A.{−1,0}B.{2,3}C.{−3,−1,0}D.{-1,0,2}=1+i,则z=()A.−1−iB.−1+iC.1−iD.1+i3.已知向量a=(0,1),b=(2,x),若b b丄(−4a),则x=()A.-2B.-1C.1D.24.已知cos(α+β)=m,tanαtanβ=2,则cos(α−β)=()A.−3mB.−C.D.3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为()A.23πB.33πC.63πD.93π6.已知函数为在R上单调递增,则a的取值范围是()A.(−∞,0]B.[−1,0]C.[−1,1]D.[0,+∞)7.当x∈时,曲线y=sin x与y=2sin的交点个数为()A.3B.4C.6D.88.已知函数f(x)的定义域为R,f(x)>f(x−1)+f(x−2),且当x<3时,f(x)=x,则下列结论中一定正确的是()A.f(10)>100B.f(20)>1000C.f(10)<1000D.f(20)<10000二、多选题9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差S2=0.01,已知该种植区以往的亩收入X服从正态分布N(1.8,0.12),假设推动出口后的亩收入Y服从正态分布N(x,S2),则()(若随机变量Z服从正态分布N(μ,σ2),则P(Z<μ+σ)≈0.8413)A.P(X>2)>0.2B.P(X>2)<0.5C.P(Y>2)>0.5D.P(Y>2)<0.810.设函数f(x)=(x−1)2(x−4),则A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f(x2)C.当1<x<2时,−4<f(2x−1)<0D.当−1<x<10时,f(2−x)>f(x)11.造型可以看作图中曲线C的一部分,已知C过坐标原点O,且C上的点满足:横坐标大于-2;到点F(2,0)的距离与到定直线x=a(a<0)的距离之积为4,则()A.a=−2B.点(2,0)在C上C.C在第一象限的点的纵坐标的最大值为1D.当点在C上时,y≤三、填空题12.设双曲线的左右焦点分别为F1,F2,过F2作平行于y轴的直线交C于A,B两点,若F1A=13,AB=10,则C的离心率为13.若曲线y=e x+x在点(0,1)处的切线也是曲线y=ln(x+1)+a的切线,则a=14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用)。

2022年全国统一高考数学试卷(新高考ⅱ)(含解析)

2022年全国统一高考数学试卷(新高考ⅱ)(含解析)

2022年全国统一高考数学试卷(新高考Ⅱ)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{1A =-,1,2,4},{||1|1}B x x =- ,则(A B =)A .{1-,2}B .{1,2}C .{1,4}D .{1-,4}2.(22)(12)(i i +-=)A .24i-+B .24i--C .62i+D .62i-3.图1是中国古代建筑中的举架结构,AA ',BB ',CC ',DD '是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中1DD ,1CC ,1BB ,1AA 是举,1OD ,1DC ,1CB ,1BA 是相等的步,相邻桁的举步之比分别为110.5DD OD =,111CCk DC =,121BB k CB =,131AAk BA =.已知1k ,2k ,3k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3(k =)A .0.75B .0.8C .0.85D .0.94.已知向量(3,4)a =,(1,0)b =,c a tb =+,若a <,c b >=<,c >,则(t =)A .6-B .5-C .5D .65.甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有()A .12种B .24种C .36种D .48种6.若sin()cos()2)sin 4παβαβαβ+++=+,则()A .tan()1αβ+=B .tan()1αβ+=-C .tan()1αβ-=D .tan()1αβ+=-7.已知正三棱台的高为1,上、下底面边长分别为33和3,其顶点都在同一球面上,则该球的表面积是()A .100πB .128πC .144πD .192π8.已知函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++-=,f (1)1=,则221()k f k ==∑()A .3-B .2-C .0D .1二、选择题:本题共4小题,每小题5分,共20分。

高等数学背景下的高考命题探究_2_省略_12年全国数学高考理科卷第22题_杨思源

高等数学背景下的高考命题探究_2_省略_12年全国数学高考理科卷第22题_杨思源

2, 4]上连续, f ' ( x) = 在区间[ 2x - 2 > 0, f ″ ( x ) = 2 > 0, 且 f( 2 ) = - 3 < 0 , f( 4 ) = 5 > 0 . 图3
第1 期
杨思源: 高等数学背景下的高考命题探究
· 25· x n +1 - 3 = xn + 1 = xn - 3 ; xn + 2 ( 3) ( 4)
( 由 αγ≠β 可知 λ ≠α) .
2 当( γ - α) + 4 β≠0 时, 有
a n + 1 - λ1 = a n + 1 - λ2 = 从而
α - λ1 ( a - λ1 ) ; an + γ n α - λ2 ( a - λ2 ) , an + γ n
3 或 x = - 1, 因此
a n + 1 - λ1 α - λ1 a n - λ1 = · , a n + 1 - λ2 α - λ2 a n - λ2
· 24·
中学教研 ( 数学)
2013 年
高 等数学背景下的高考命题探究
— — —2012 年全国数学高考理科卷第 22 题
●杨思源
( 嘉定区第一中学 上海 201808 )
2 题目 设函数 f ( x ) = x - 2 x - 3 , 定义数列 { x n } 如 下: x1 = 2 , xn + 1 是 过 点 P ( 4, 5) , Qn ( xn , f( x n ) ) 的直线 PQ n 与 x 轴交点的横坐标. ( 1 ) 证明: 2 ≤x n < x n + 1 < 3 ; ( 2 ) 求数列{ x n } 的通项公式.
5( xn + 1) . xn + 2

2024年高考数学试题(新课标I卷)解析版

2024年高考数学试题(新课标I卷)解析版

2024年高考数学试题(新课标I 卷)一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.1.已知集合A =x |-5<x 3<5 ,B ={-3,-1,0,2,3},则A ∩B =A.{-1,0} B.{2,3}C.{-3,-1,0}D.{-1,0,2}【答案】A【解析】A =(-35,35)⇒A ∩B ={-1,0},选A.2.若zz -1=1+i ,则z =A.-1-i B.-1+iC.1-iD.1+i【答案】C【解析】z z -1=1+i ⇒z =1+i i =1-i ,选C.3.已知向量a =0,1 ,b =2,x ,若b ⊥b -4a ,则x =A.-2 B.-1C.1D.2【答案】D【解析】b ⊥b -4a ⇒2×2+x (x -4)=0⇒x =2,选D.4.已知cos α+β =m ,tan αtan β=2,则cos α-β =A.-3m B.-m3C.m 3D.3m【答案】A【解析】αcos βcos -αsin βsin =m ,αsin βsin =2αcos βcos ⇒αcos βcos =-m ,αsin βsin =-2m ,所以cos α-β =αcos βcos +αsin βsin =-3m ,选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23π B.33πC.63πD.93π【答案】B【解析】如图所示,h =3,圆锥母线长l =r 2+3,h h rrl由题知23πr =πr r 2+3⇒r =3⇒V 锥=13×π×32×3=33π.选B.6.已知函数f x =-x 2-2ax -a ,x <0,e x +ln x +1 ,x ≥0 在R 上单调递增,则实数a 的取值范围是A.(-∞,0]B.-1,0C.-1,1D.[0,+∞)【答案】B 【解析】由题知-a ≥0,-a ≤1⇒-1≤a ≤0,选B.7.当x ∈0,2π 时,曲线y =sin x 与y =2sin (3x -π6)的交点个数为A.3 B.4C.6D.8【答案】C【解析】作出两个函数的图象,2π3π2ππ2Oxy 由图知,两个函数的交点个数为6,选C.【总结】五点作图法,处理作图,好像没有其他解法.8.已知函数f x 的定义域为R ,f x >f x -1 +f x -2 ,且当x <3时,f x =x ,则下列结论中一定正确的是A.f 10 >100 B.f 20 >1000C.f 10 <1000D.f 20 <10000【答案】B【解析】由已知得f (1)=1,f (2)=2,思路一:常规推理+计算因为f x >f x -1 +f x -2 ,所以f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,f (11)>144,f (12)>233,f (13)>377,f (14)>610,f (15)>987,f (16)>1597,f (17)>2584,f (18)>4181,f (19)>6765,f (20)>10946,⋯,所以f (20)>f (19)>⋯>f (16)>1000,选B.思路二:推理+估算由题知,当x >3时,f (x )上不封顶,C ,D 错误;f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,当x >4时,f (x )>f x -1 +f x -2 >2f (x -2),所以f (20)>2f (18)>22f (16)>⋯>25f (10)>1000,A 错误,B 正确;故选B.【总结】需要耐心的计算.二、多选题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差s 2=0.01,已知该种植区以往的亩收入X 服从正态分布N 1.8,0.12 ,假设推动出口后的亩收入Y 服从正态分布x ,s 2,则(若随机变量Z 服从正态分布N μ,σ2 ,则P Z <μ+σ ≈0.8413)A.P X >2 >0.2 B.P X >2 <0.5C.P Y >2 >0.5 D.P Y >2 <0.8【答案】BC【解析】画个图,对于X :μ=1.8,σ=0.1;对于Y :μ=2.1,σ=0.1,1.81.7 1.92.12.0 2.22.0由题知P (X <1.9)=0.8413,所以P (X >2)<P (x >1.9)=0.1587<0.2<0.5,A 错误,B 正确;因为P (Y <2.2)=0.8413,所以P Y >2 =P Y <2.2 =0.8413>0.8>0.5,C 正确,D 错误;故选BC.10.设函数f x =x -1 2x -4 ,则A.x =3是f x 的极小值点B.当0<x <1时,f x <f x 2C.当1<x <2时,-4<f 2x -1 <0D.当-1<x <0时,f 2-x >f x【答案】ACD【解析】f '(x )=2(x -1)(x -4)+(x -1)2=3(x -1)(x -3),作出f (x )的图象如图所示,x =1x =3所以x =1是f x 的极大值点,x =3是f x 的极小值点,A 正确;当0<x <1时,f (x )在(0,1)↗,因为x >x 2,所以f (x )>f (x 2),B 错误;当1<x <2时,t =2x -1∈(1,3),因为f (t )在(1,3)↘,所以f (t )∈(-4,0),即-4<f 2x -1 <0,C 正确;当-1<x <0时,x -1<0,f 2-x -f x =(x -1)2(-2-x )-x -1 2x -4 =-2(x -1)3>0,所以f 2-x >f x ,D 正确;综上,选ACD.【总结】选项B 用了单调性法,选项C 转化为值域,选项D 用了最常见的作差法.11.造型Ժ可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点F 2,0 的距离与到定直线x =a a <0 的距离之积为4,则OxyFA.a =-2B.点22,0 在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD 【解析】如图所示,OxyFx =aP对于A ,由题知,O 到点F 的距离等于与到定直线x =a a <0 的距离之积为4,所以(-a )∙2=4,解得a =-2,A 正确;对于B ,设点P (x ,y )是曲线C 上任意一点,则(x +2)(x -2)2+y 2=4,即(x -2)2+y 2=(4x +2)2,因为(22-2)2=(422+2)2,所以点22,0 在C 上,B 正确;对于C ,因为y 2=(4x +2)2-(x -2)2,记f (x )=(4x +2)2-(x -2)2,x >0,所以f '(x )=-32(x +2)3-2(x -2)=2[-16(x +2)3+2-x ],发现f (2)=1,f '(2)=-12<0,所以存在0<x 1<2,使得当x ∈(x 1,2)时,f '(x )<0,所以f (x )在(x 1,2)↘,所以f (x )>f (2)=1,即f (x )的最大值一定大于1,C 错误;对于D ,y 02=(4x 0+2)2-(x 0-2)2≤(4x 0+2)2,所以y 0≤4x 0+2,D 正确;综上,选ABD.【总结】本题相对要难一点,选出来一个答案不难.三、填空题:本大题共3小题,每小题5分,共计15分.12.设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2作平行于y 轴的直线交C 于A ,B两点,若F 1A =13,AB =10,则C 的离心率为.【答案】32【解析】由题知|F 1F 2|=2c =12,F 2A =b 2a =5,c 2=a 2+b2 ,解得a =4,b =25,c =6,所以C 的离心率e =c a =32.13.若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln x +1 +a 的切线,则a =.【答案】2ln 【解析】设f (x )=e x +x ,g (x )=ln x +1 +a ,则f '(x )=e x +1,g '(x )=1x +1,即f '(0)=2,所以f (x )在(0,1)处的切线方程为l :y -1=2(x -0),即y =2x +1,设l 与g (x )相切于点A (x 0,(x 0+1)ln +a ),则g '(x 0)=1x 0+1=2,解得x 0=-12,所以(-12+1)ln +a =0,解得a =2ln .14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为.【答案】12【解析】因为甲出1一定输,要使甲的总分不小于2,则甲得3分或得2分.第一类:甲得3分只有一种可能:1-8,3-2,5-4,7-6.第二类:甲得2分(1)甲出3和出5赢,其余输,共1种:3-2,5-4,1-6,7-8;(2)甲出3和出7赢,其余输,共3种:3-2,7-6,1-4,5-8;3-2,7-4,1-6,5-8;3-2,7-4,1-8,5-6;(3)甲出5和出7赢,其余输,共7种:5-4,7-6,1-2,3-8;5-4,7-2,1-6,3-8;5-4,7-2,1-8,3-6;5-2,7-6,1-4,3-8;5-2,7-6,1-8,3-4;5-2,7-4,1-6,3-8;5-2,7-4,1-8,3-6;所以甲的总得分不小于2的共有12种可能,所以所求的概率p =12A 44=12.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos B ,a 2+b 2-c 2=2ab .(1)求B ;(2)若△ABC 的面积为3+3,求c .【答案】(1)B =π3;(2)2 2.【解析】(1)因为a 2+b 2-c 2=2ab ,所以C cos =a 2+b 2-c 22ab =2ab 2ab=22,因为0<C <π,所以C =π4,又sin C =2cos B ,所以22=2B cos ,即B cos =12,因为0<B <π,所以B =π3.(2)方法一:由(1)知A =π-B -C =5π12,所以A sin =(π6+π4)sin =6+24,因为a A sin =b B sin =cCsin =k >0,所以S =12ac B sin =12k 2A sin B sin C sin =12k 2∙6+24∙32∙22=3+3,所以k 2=16,即k =4,所以c =k C sin =4×22=2 2.16.(15分)已知A 0,3 和P (3,32)为椭圆C :x 2a 2+y 2b2=1a >b >0 上两点.(1)求椭圆C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求直线l 的方程.【答案】(1)12;(2)x -2y =0或3x -2y -6=0.【解析】(1)由题知b =3,9a 2+94b2=1,解得a =23,b =3 ,所以c =a 2-b 2=3,所以椭圆C的离心率e=ca=12.(2)由(1)知,椭圆C的方程为x212+y29=1.O xyPABD当直线l的斜率不存在时,B(3,-32),此时S=92,不满足题意;当直线l的斜率存在时,设l:y=k(x-3)+3 2,代入x212+y29=1,整理得(3+4k2)x2-8k(3k-32)x+36k2-36k-27=0,设B(x1,y1),由韦达定理得3+x1=8k(3k-32)3+4k2,3x1=36k2-36k-273+4k2所以|BP|=1+k2|x1-3|=1+k2(8k(3k-32)3+4k2)2-364k2-4k-33+4k2=43k2+13k2+9k+2744k2+3,点A到直线PB的距离h2=|3k+32|k2+1,所以△ABP的面积S=12|BP|∙h2=|3k+32|k2+1=9,解得k=12或32,所以直线l的方程为y=12x或y=32x-3.综上,直线l的方程为x-2y=0或3x-2y-6=0.17.(15分)如图,四棱锥P-ABCD中,P A⊥底面ABCD,P A=AC=2,BC=1,AB=3.(1)若AD⊥PB,证明:AD⎳平面PBC;(2)若AD⊥DC,且二面角A-CP-D的正弦值为427,求AD.AB CDP 【答案】(1)略;(2)3.【解析】(1)证明:因为P A ⊥底面ABCD ,BC ⊂底面ABCD ,所以P A ⊥BC ,P A ⊥AD ,因为AC =2,BC =1,AB =3,所以AB 2+BC 2=AC 2,即AB ⊥BC ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥平面P AB ,因为PB ⊥AD ,P A ∩PB =P ,P A ,PB ⊂平面P AB ,所以AD ⊥平面P AB ,所以AD ⎳BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以AD ⎳平面PBC .(2)过D 作DQ ⊥平面ABCD ,以DA ,DC ,DQ 分别为x ,y ,z 轴,建立空间直角坐标系D -xyz ,A BCDPz xyQ设DA =a ,DC =b ,则D (0,0,0),A (a ,0,0),C (0,b ,0),P (a ,0,2),且a 2+b 2=4,①所以AC =(-a ,b ,0),AP =(0,0,2),DC =(0,b ,0),DP =(a ,0,2),设平面APC 的一个法向量为n 1=(x 1,y 1,z 1),则AC∙n 1=0,AP ∙n 1=0 ,即-ax 1+by 1=0,2z 1=0 ,令x 1=b ,则n 1=(b ,a ,0),设平面PCD 的一个法向量为n 2=(x 2,y 2,z 2),则DC∙n 2=0,DP ∙n 2=0 ,即by 2=0,ax 1+2z 1=0 ,令x 1=2,则n 2=(2,0,-a ),所以‹n 1,n 2›cos =n 1∙n 2|n 1||n 2|=2ba 2+b 2a 2+4=ba 2+4,设二面角A -CP -D 的平面角为θ,则θsin =427,所以|θcos |=|‹n 1,n 2›cos |=b a 2+4=17,即7b 2=a 2+4,②由①②得a =3,b =1,所以AD =a = 3.【总结】本题建系可以设两个变量,也可以设一个变量,注意运算.18.(17分)已知函数f x =lnx2-x+ax +b x -1 3.(1)若b =0,且f x ≥0,求a 的最小值;(2)证明:曲线y =f x 是中心对称图形;(3)若f x >-2当且仅当1<x <2,求b 的取值范围.【答案】(1)-2;(2)略;(3)[-23,+∞).【解析】(1)由x2-x>0,得0<x <2,所以f (x )的定义域为(0,2),当b =0时,f (x )=ln x 2-x +ax ,f '(x )=1x +12-x +a ≥0,因为1x +12-x ≥(1+1)2x +2-x =2,当且仅当x =1时取等号,所以f '(x )min =2+a ≥0,解得a ≥-2,所以a 的最小值为-2;(2)发现f (1)=a ,猜测f (x )关于(1,a )对称,下面尝试证明此结论,因为f (1+x )+f (1-x )=ln 1+x 1-x +a (1+x )+bx 3+ln 1-x1+x+a (1-x )+b -x 3=2a ,所以f (x )关于(1,a )对称.(3)当且仅当1<x <2时f (x )>-2,则f (1)=a =-2,所以f (x )=ln x2-x-2x +b x -1 3,f '(x )=1x +12-x -2+3b (x -1)2=(x -1)22(2-x )+3b (x -1)2=(x -1)2[2x (2-x )+3b ]~2x (2-x )+3b ,发现f '(1)=2+3b ≥0,则b ≥-23,当b ≥-23时,2x (2-x )+3b ≥2x (2-x )-2=2(x -1)22(2-x )≥0,即f '(x )≥0,所以f (x )在(0,2)↗,因为f (1)=-2,所以f (x )>-2=f (1)⇔1<x <2,符合题意;当b <-23时,则2x (2-x )∈[2,+∞),f '(x )∈[3b +2,+∞),存在1<x 1<2,使得当x ∈(1,x 1)时,f '(x )<0,f (x )在(1,x 1)↘,所以f (x )<f (1)=-2,不符合题意;综上,实数b 的取值范围是[-23,+∞).19.(17分)设m 为正整数,数列a 1,a 2,⋯,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使得数列a 1,a 2,⋯,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,⋯,a 4m +2是2,13 -可分数列;(3)从1,2,⋯,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)(1,2),(5,6),(1,6);(2)略;(3)略.【解析】(1)对于特殊的情况,我们不难分析出来,要么一边删除2个,要么两边各删除1个,所以满足题意的(i ,j )为:(1,2),(5,6),(1,6).(2)下标和项是成等差的充要条件,即m ,n ,k 成等差⇔a m ,a n ,a k 成等差(证明略).首先我们证明,当m =3时成立,那么m ≥3时都会成立.当m =3时,4m +2=14,那么当m >3时,整个{a n }可以拆成两段,为1≤n ≤14和n >14,不管m 取值如何,都有4m -12个数,也就是可以分成m -3组,而这m -3组只要按照原来的顺序依次分组,显然都是等差数列.如:m =6,前面14个按照m =3分组,后面的按照顺序,每4个一组,显然这样分满足题意.下面证明m =3时成立,可以采用列举法,只要有一种方法成立就行,去掉i =2,j =13,可以分为{1,4,7,10},{5,8,11,14},{3,6,9,12}这三组,满足题意.(3)设在给定m 的情况下,(i ,j )的组数为b m ,当m 变成m +1时,数列就变成了a 1,a 2,a 3,a 4,a 5,⋯,a 4m +2,a 4m +3,a 4m +4,a 4m +5,a 4m +6,这里可以分成3组,前4个一组即{a 1,a 2,a 3,a 4},中间的一组,后4个一组即{a 4m +3,a 4m +4,a 4m +5,a 4m +6},此时我们要在这里面删除2个数,那么会有以下几种情况:一、两个都在中间中间有4m -2个数,且为等差数列,删除2个的话,总数为b m -1种;二、一个在第一组,一个在中间组或两个都在第一组第一组和中间组连起来,会变成4m +2个数的等差数列,这里面总共有b m 种方法,但是要去掉两个都在中间的情况,共有b m -b m -1种;三、一个在中间组,一个在最后一组,或者都在最后一组和上面一样,也是共有b m -b m -1种;四、一个在第一组,一个在最后一组此时,将a 1,a 4m +6同时删除是肯定可以的,这算一种;然后,从(2)的结果来看,把a 2,a 4m +5同时删除也是可以的,因为m =3成立之后,当m >3时,只是相当于往中间加了4个连续的等差数而已,其它是不变的,这也算一种.综上,就会有b m +1≥b m -1+2(b m -b m -1)+2=2b m -b m -1+2,因为b 0=0,b 1=3,所以b m ≥m 2+2m ,如果你是随便删除,总共有C 24m +2=8m 2+6m +1种,所以P m =b m C 24m +2≥m 2+2m 8m 2+6m +1>18.。

2024年上海高考真题数学(含解析)

2024年上海高考真题数学(含解析)

2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。

2024年高考数学试题库与解析

2024年高考数学试题库与解析

2024年高考数学试题库与解析随着时光的流逝,2024年高考的临近已经让无数学子开始蓄势待发。

作为高考的重要科目之一,数学试题的复习和解析对于学生们来说尤为关键。

为了帮助广大学子更好地备考,本文将针对2024年高考数学试题库进行详细解析。

第一部分:选择题选择题是数学试卷中的常见题型,对于掌握基础知识和思维能力的测试非常具有代表性。

下面我们来看一道2024年高考数学试题的选择题。

【2024年高考数学试题】题目:已知函数 $f(x)=2x^2+3$,则 $f(\frac{1}{2}+x)-f(\frac{1}{2}-x)$ 的值等于_____。

解析:首先,我们将所给条件以及待求的式子进行整理。

根据已知条件,代入函数 $f(x)$ 的表达式可得:$$f(\frac{1}{2}+x)=2(\frac{1}{2}+x)^2+3$$$$f(\frac{1}{2}-x)=2(\frac{1}{2}-x)^2+3$$接着,我们将上述两个式子带入待求的表达式中,并进行计算:$$f(\frac{1}{2}+x)-f(\frac{1}{2}-x)=2(\frac{1}{2}+x)^2+3-[2(\frac{1}{2}-x)^2+3]$$进一步化简,得到:$$f(\frac{1}{2}+x)-f(\frac{1}{2}-x)=2x^2+2x+x^2-x$$$$f(\frac{1}{2}+x)-f(\frac{1}{2}-x)=3x^2+2x$$综上所述,答案为 $3x^2+2x$。

通过上述解析过程,我们可以清楚地了解到这道选择题的解题思路和步骤。

在高考数学中,选择题往往是学生们最容易得分的题型,因此我们在备考时务必熟练掌握各类题目的解题方法。

第二部分:填空题填空题在数学试题中占有一定的比例,它旨在考查学生对知识点的理解和对结果的准确把握。

下面我们来看一个2024年高考数学试题的填空题。

【2024年高考数学试题】题目:已知等差序列 $\{a_n\}$ 的公差$d=3$,且 $a_1=2$。

高考数学试卷2024解析

高考数学试卷2024解析

高考数学试卷2024解析一、单选题(本大题共8小题,每小题5分,共40分)1. 设集合A = {xx^2-3x + 2 = 0},B={xx^2-ax + a - 1 = 0},若A∩ B = B,则实数a的值为()A. 2B. 3C. 2或3D. 1或2解:先解方程x^2-3x + 2 = 0,即(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。

对于方程x^2-ax + a - 1 = 0,可化为(x - 1)[x-(a - 1)] = 0,解得x = 1或x=a - 1,所以B = {1,a - 1}。

因为A∩ B = B,所以B⊆ A。

当a - 1 = 1时,a = 2;当a - 1 = 2时,a = 3。

综上,a = 2或a = 3,答案选C。

2. 复数z=(1 + i)/(1 - i)的共轭复数¯z为()A. -iB. iC. 1 - iD. 1 + i解:化简z=(1 + i)/(1 - i)=frac{(1 + i)^2}{(1 - i)(1 + i)}=frac{1 +2i+i^2}{2}=(2i)/(2)=i。

共轭复数实部相同,虚部互为相反数,所以¯z=-i,答案选A。

3. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x的值为()A. -2B. 2C. -(1)/(2)D. (1)/(2)解:因为→a⊥→b,所以→a·→b=0。

→a·→b=1× x+2×1 = 0,即x + 2 = 0,解得x=-2,答案选A。

4. 在等差数列{a_n}中,a_1=1,公差d = 2,则a_5的值为()A. 9B. 10C. 11D. 12解:根据等差数列通项公式a_n=a_1+(n - 1)d。

当n = 5时,a_5=a_1+4d=1+4×2 = 9,答案选A。

5. 函数y=sin(2x+(π)/(3))的最小正周期为()A. πB. 2πC. (π)/(2)D. (2π)/(3)解:对于函数y = Asin(ω x+φ),其最小正周期T=(2π)/(ω)。

全国卷Ⅰ2023年新高考数学真题及答案解析(多解版)

全国卷Ⅰ2023年新高考数学真题及答案解析(多解版)

绝密★启用前2023年普通高等学校招生全国统一考试数学一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N = ()A.{}2,1,0,1-- B.{}0,1,2 C.{}2- D.2【答案】C 【解析】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .2.已知1i22iz -=+,则z z -=()A.i -B.iC.0D.1【答案】A 【解析】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .3.已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A.1λμ+=B.1λμ+=-C.1λμ= D.1λμ=-【答案】D 【解析】因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= ,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .4.设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A.(],2-∞- B.[)2,0- C.(]0,2 D.[)2,+∞【答案】D 【解析】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞.故选:D5.设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ()A.3B.C.D.【答案】A 【解析】由21e =,得22213e e =,因此2241134a a --=⨯,而1a >,所以233a =.故选:A 6.过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64【答案】B 【解析】方法一:因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,因为PC ==,则PA ==可得106sin44APC APC ∠==∠=,则10615sin sin 22sin cos 2444APB APC APC APC ∠=∠=∠∠=⨯⨯=,22226101cos cos 2cos sin 0444APB APC APC APC ⎛⎫⎛∠=∠=∠-∠=-=-< ⎪ ⎪ ⎝⎭⎝⎭,即APB ∠为钝角,所以()15sin sin πsin 4APB APB =-∠=∠=α;法二:圆22410x y x +--=的圆心()2,0C,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,连接AB ,可得PC ==,则PA PB ===,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB +-⋅∠=+-⋅∠且πACB APB ∠=-∠,则()336cos 5510cos πAPB APB +-∠=+--∠,即3cos 55cos APB APB -∠=+∠,解得1cos 04APB ∠=-<,即APB ∠为钝角,则()1cos cos πcos 4APB APB =-∠=-∠=α,且α为锐角,所以15sin 4α==;方法三:圆22410x y x +--=的圆心()2,0C ,半径r =,若切线斜率不存在,则切线方程为0y =,则圆心到切点的距离2d r =>,不合题意;若切线斜率存在,设切线方程为2y kx =-,即20kx y --=,=,整理得2810k k ++=,且644600∆=-=>设两切线斜率分别为12,k k ,则12128,1k k k k +=-=,可得12k k -==所以1212tan 1k k k k -==+α,即sin cos αα=,可得cos =α,则2222sin sin cos sin 115+=+=αααα,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 0α>,解得15sin 4α=.故选:B.7.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C 【解析】方法一,甲:{}n a 为等差数列,设其首项为1a ,公差为d ,则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件;反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C 正确.方法二,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+,则11(1)222n S n d d a d n a n -=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+,即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立,于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.故选:C 8.已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A.79 B.19C.19-D.79-【答案】B 【解析】因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=.故选:B 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则()A.2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B.2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C.2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D.2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差【答案】BD 【解析】对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n ,则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=,因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小,例如:1,2,3,4,5,6,可得 3.5m n ==;例如1,1,1,1,1,7,可得1,2m n ==;例如1,2,2,2,2,2,可得112,6m n ==;故A 错误;对于选项B :不妨设123456x x x x x x ≤≤≤≤≤,可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确;对于选项C :因为1x 是最小值,6x 是最大值,则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差,例如:2,4,6,8,10,12,则平均数()12468101276n =+++++=,标准差13s =,4,6,8,10,则平均数()14681074m =+++=,标准差2s =,显然53>,即12s s >;故C 错误;对于选项D :不妨设123456x x x x x x ≤≤≤≤≤,则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确;故选:BD.10.噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则().A.12p p ≥B.2310p p >C.30100p p =D.12100p p ≤【答案】ACD 【解析】由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈=,对于选项A :可得1212100220lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯,因为12p p L L ≥,则121220lg0p p p L L p =-⨯≥,即12lg 0pp ≥,所以121p p ≥且12,0p p >,可得12p p ≥,故A 正确;对于选项B :可得2332200320lg20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯,因为2324010p p p L L L -=-≥,则2320lg10p p⨯≥,即231lg 2p p ≥,所以23p p ≥23,0p p >,可得23p ≥,当且仅当250p L =时,等号成立,故B 错误;对于选项C :因为33020lg40p p L p =⨯=,即30lg 2pp =,可得3100p p =,即30100p p =,故C 正确;对于选项D :由选项A 可知:121220lgp p p L L p =-⨯,且12905040p p L L ≤-=-,则1220lg40p p ⨯≤,即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确;故选:ACD.11.已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A.()00f =B.()10f =C.()f x 是偶函数 D.0x =为()f x 的极小值点【答案】ABC 【解析】方法一:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误.方法二:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,当220x y ≠时,对22()()()f xy y f x x f y =+两边同时除以22x y ,得到2222()()()f xy f x f y x y x y=+,故可以设2()ln (0)f x x x x =≠,则2ln ,0()0,0x x x f x x ⎧≠=⎨=⎩,当0x >肘,2()ln f x x x =,则()212ln (2ln 1)x x x x xf x x =+⋅=+',令()0f x '<,得120ex -<<;令()0f x ¢>,得12e x ->;故()f x 在120,e -⎛⎫⎪⎝⎭上单调递减,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,因为()f x 为偶函数,所以()f x 在12,0e -⎛⎫- ⎪⎝⎭上单调递增,在12,e -⎛⎫ ⎪⎝∞⎭-上单调递减,显然,此时0x =是()f x 的极大值,故D 错误.故选:ABC .12.下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m 的球体B.所有棱长均为1.4m 的四面体C.底面直径为0.01m ,高为1.8m 的圆柱体D.底面直径为1.2m ,高为0.01m 的圆柱体【答案】ABD 【解析】对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长,所以能够被整体放入正方体内,故A 正确;对于选项B 1.4>,所以能够被整体放入正方体内,故B 正确;对于选项C 1.8<,所以不能够被整体放入正方体内,故C 正确;对于选项D :因为1.2m 1m >,可知底面正方形不能包含圆柱的底面圆,如图,过1AC 的中点O 作1OE AC ⊥,设OE AC E =I ,可知1131,=2AC CC AC ===,则11tan CC OE CAC AC AO ∠==,=,解得64OE =,且2263990.6482425⎛==>= ⎝⎭,即0.64>,故以1AC 为轴可能对称放置底面直径为1.2m 圆柱,若底面直径为1.2m 的圆柱与正方体的上下底面均相切,设圆柱的底面圆心1O ,与正方体的下底面的切点为M ,可知:111,0.6AC O M O M ⊥=,则1111tan CC O MCAC AC AO ∠==,10.6AO =,解得1AO =,根据对称性可知圆柱的高为2 1.732 1.21.4140.03520.01-⨯≈-⨯=>,所以能够被整体放入正方体内,故D 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).【答案】64【解析】(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种.故答案为:64.14.在正四棱台1111ABCD A B C D -中,1112,1,AB A B AA ===的体积为________.【答案】6【解析】【分析】结合图像,依次求得111,,AO AO A M ,从而利用棱台的体积公式即可得解.【详解】如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高,因为1112,1,AB A B AA ===则1111111111222222A O A C B AO AC ==⨯⨯====故()111222AM AC A C =-=,则162A M ===,所以所求体积为1676(41326V =⨯++⨯=.故答案为:766.15.已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.【答案】[)2,3【解析】【分析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[)2,3.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________.【答案】355【解析】方法一:依题意,设22AF m =,则2113,22BF m BF AF a m ===+,在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m =-(舍去),所以124,2AF a AF a ==,213BF BF a ==,则5AB a =,故11244cos 55AF a F AF ABa ∠===,所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =,故355c e a ==.方法二:依题意,得12(,0),(,0)F c F c -,令()00),,(0,A x y B t ,因为2223F A F B =- ,所以()()002,,3x c y c t -=--,则00235,3x c y t ==-,又11F A F B ⊥ ,所以()1182,,33F A F B c t c t ⎛⎫⋅=-⎪⎝⎭ 2282033c t =-=,则224t c =,又点A 在C 上,则2222254991c t a b -=,整理得2222254199c t a b -=,则22222516199c c a b-=,所以22222225169c b c a a b -=,即()()2222222225169cca a c a c a --=-,整理得424255090c c a -+=,则()()22225950c a ca --=,解得2259c a =或225c a =,又1e >,所以5e =或5e =(舍去),故5e =.故答案为:355.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010(2)6【解析】【小问1详解】3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,sin10A∴==.【小问2详解】由(1)知,10cos10A==,由sin sin()B A C=+sin cos cos sin)210105A C A C=+==,由正弦定理,sin sinc bC B=,可得255522b⨯==,11sin22AB h AB AC A∴⋅=⋅⋅,sin610h b A∴=⋅==.18.如图,在正四棱柱1111ABCD A B C D-中,12,4AB AA==.点2222,,,A B C D分别在棱111,,AA BB CC,1DD上,22221,2,3AA BB DD CC====.(1)证明:2222B C A D∥;(2)点P在棱1BB上,当二面角222P A C D--为150︒时,求2B P.【答案】(1)证明见解析;(2)1【解析】【小问1详解】以C为坐标原点,1,,CD CB CC所在直线为,,x y z轴建立空间直角坐标系,如图,则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A ,2222(0,2,1),(0,2,1)B C A D ∴=-=-,2222B C A D ∴ ∥,又2222B C A D ,不在同一条直线上,2222B C A D ∴∥.【小问2详解】设(0,2,)(04)P λλ≤≤,则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---,设平面22PA C 的法向量(,,)n x y z =,则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩ ,令2z =,得3,1y x λλ=-=-,(1,3,2)n λλ∴=--,设平面222A C D 的法向量(,,)m a b c =,则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ ,令1a =,得1,2==b c ,(1,1,2)m ∴=,2263cos ,cos150264(1)(3)n m n m n m λλ⋅∴==︒=+-+- ,化简可得,2430λλ-+=,解得1λ=或3λ=,(0,2,1)P ∴或(0,2,3)P ,21B P ∴=.19.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案见解析(2)证明见解析【解析】【小问1详解】因为()()e xf x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.【小问2详解】方法一:(函数最值)由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则202a <<;令()0g a '>,则22a >;所以()g a 在20,2⎛⎫⎪ ⎪⎝⎭上单调递减,在2,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 2212ln ln 02222g a g ⎛⎫⎛==--=⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法二:(切线放缩1x e x ≥+)令()e 1xh x x =--,则()e 1xh x '=-,由于e x y =在R 上单调递增,所以()e 1xh x '=-在R 上单调递增,又()00e 10h '=-=,所以当0x <时,()0h x '<;当0x >时,()0h x '>;所以()h x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()00h x h ≥=,则e 1x x ≥+,当且仅当0x =时,等号成立,因为()2ln 22()e e eln 1xx x af x a a x a a x a x x a a x +=+-=+-=+-≥+++-,当且仅当ln 0x a +=,即ln x a =-时,等号成立,所以要证3()2ln 2f x a >+,即证23ln 12ln 2x a a x a +++->+,即证21ln 02a a -->,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在20,2⎛⎫⎪ ⎪⎝⎭上单调递减,在2,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 1ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法三:(切线放缩ln 1x x ≤-)由(1)得,()()()ln min 2ln ln ln e1af a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,又因为221110224a a a ⎛⎫-+=-+> ⎪⎝⎭,所以2112a a ->-,而ln 1a a ≤-,所以21ln 2a a ->,故3()2ln 2f x a >+成立,得证明.方法四:(同构+切线放缩)当0a >时,要证3()2ln 2f x a >+,即证明()32ln 2x a e a x a +->+,只需证:232ln 02x ae x a a -+-->,即证()()ln 22211ln 11ln 022x a e x a a a a +-+++--+>,因为1x e x ≥+,故()ln ln 10x a e x a +-++≥,因为ln 1x x ≤-,故()2211ln 02a a --≥,又2102a >,故()()ln 22211ln 11ln 022x a e x a a a a +-+++--+>成立,即3()2ln 2f x a >+成立,得证明.20.设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .【答案】(1)3n a n =(2)5150d =【解析】【小问1详解】21333a a a =+ ,132d a d ∴=+,解得1a d =,32133()6d d S a a =+==∴,又31232612923T b b b d d d d=++=++=,339621S T d d∴+=+=,即22730d d -+=,解得3d =或12d =(舍去),1(1)3n a a n d n∴=+-⋅=.【小问2详解】{}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+,2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d =,1d > ,0n a ∴>,又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=,505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去)当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解;当1a d =时,501495051a a d d =+==,解得5150d =.综上,5150d =.21.甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .【答案】(1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】【小问1详解】记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.【小问2详解】设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+,构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭,又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=+ ⎪ ⎪⎝⎭⎝⎭.【小问3详解】因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nnnn n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- ,故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【答案】(1)214y x =+(2)见解析【解析】【小问1详解】设(,)P x y ,则y =,两边同平方化简得214y x =+,故21:4W y x =+.【小问2详解】法一:设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0,则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<-,同理令0BC k b c n =+=>,且1mn =-,则1m n=-,设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+,则11||||(((2C AB BC b a c b c a n n ⎛=+=--≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()0f x '=,解得22x =,当0,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,此时()f x 单调递减,当2,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增,则min 227()24f x f ⎛⎫== ⎪⎪⎝⎭,故122C ≥=,即C ≥.当C =时,2,2n m ==,且((b a b a -=-m n =时等号成立,矛盾,故C >得证.法二:不妨设,,A B D 在W 上,且BA DA ⊥,依题意可设21,4A a a ⎛⎫+⎪⎝⎭,易知直线BA ,DA 的斜率均存在且不为0,则设BA ,DA 的斜率分别为k 和1k-,由对称性,不妨设1k ≤,直线AB 的方程为21()4y k x a a =-++,则联立22141()4y x y k x a a ⎧=+⎪⎪⎨⎪=-++⎪⎩得220x kx ka a -+-=,()()222420k ka a k a ∆=--=->,则2k a≠则||2|AB k a =-,同理||2AD a =,||||2|2AB AD k a a ∴+=-1122k a ak k ⎫≥-++≥+=⎪⎭令2k m =,则(]0,1m ∈,设32(1)1()33m f m m m m m +==+++,则2221(21)(1)()23m m f m m m m '-+=+-=,令()0'=f m ,解得12m =,当10,2m ⎛⎫∈ ⎪⎝⎭时,()0f m '<,此时()f m 单调递减,当1,2m ⎛⎫∈+∞⎪⎝⎭,()0f m '>,此时()f m 单调递增,则min 127()24f m f ⎛⎫==⎪⎝⎭,||||2AB AD ∴+≥,12|2|2|2k a a k a a k ⎫-≥-++⎪⎭,此处取等条件为1k =,与最终取等时22k =不一致,故332AB AD +>.法三:为了计算方便,我们将抛物线向下移动14个单位得抛物线2:W y x '=,矩形ABCD 变换为矩形A B C D '''',则问题等价于矩形A B C D ''''的周长大于设()()()222001122,,,,,B t t A t t C t t ''',根据对称性不妨设00t ≥.则1020,A B B C k t t k t t ''''=+=+,由于A B B C ''''⊥,则()()10201t t t t ++=-.由于1020,A B t B C t ''''=-=-,且0t 介于12,t t 之间,则1020A B B C t t ''''+=-+-.令20tan t t θ+=,10πcot ,0,2t t θθ⎛⎫+=-∈ ⎪⎝⎭,则2010tan ,cot t t t t θθ=-=--,从而))002cot tan 2A B B C t t θθ''''+=++-故330022222(cos sin )11sin cos sin cos 2sin cos cos sin sin cos sin cos t A B B C t θθθθθθθθθθθθθθ''''-+⎛⎫+=-++=+⎪⎝⎭①当π0,4θ⎛⎤∈ ⎥⎝⎦时,332222sin cos sin cos sin cos cos sin A B B C θθθθθθθθ''''++≥=+≥=≥②当ππ,42θ⎛⎫∈⎪⎝⎭时,由于102t t t <<,从而000cot tan t t t θθ--<<-,从而0cot tan 22t θθ-<<又00t ≥,故0tan 02t θ≤<,由此330222(cos sin )sin cos sin cos sin cos t A B B C θθθθθθθθ''''-++=+3323222sin (cos sin )(sin cos )sin cos 1cos sin cos sin cos cos sin θθθθθθθθθθθθθθ-+>+=+==2≥,当且仅当cos 3θ=时等号成立,故332A B B C''''+>,故矩形周长大于..。

以数学思想为背景的高观点试题探析

以数学思想为背景的高观点试题探析

些探究 ,希望 能起 到抛砖 引玉的作用 .
1 极 限 的 思 想 为 背 景 的 高观 点 试 题 .以
题 人手 ,把握学 科 的整体 意义 ,用统 一 的数学 观点 组织 材料 , 侧 重体现对知识 的理解 和应用 ,尤其是综 合和 灵活 的应 用 ,以
极 限思想作 为反 映客观事 物在运 动 、变 化过程 中 由量变转
学交会是高考命 题 的六大交会 之一 ,是现代数 学新 高考创新题
的 重 要题 源 .
A( ) Ⅱ
二、以数 学思想为 背景 的高观点试题
数学思想是 数学 知识 在更 高层次上 的抽象 和概括 ,是数学 知识 的精髓 ,是 分析 和解 决数 学问题 的基 本原则 ,也是 数学素 养的重要 内涵 ,它蕴含在数学 知识 发生 、发展和应用 的过 程中 ,
此来检 测考生将 知识迁移 到不 同情 境 中去 的能力 ,从而检 测 出 化 为质 变时 的数 量关 系或空 间形 式 ,能够通过 旧质 的量 的变化 考生个体理性 思维 的广度 和深度 ,以及进一步 学习 的潜能 .“ 以 规律,去计算新质 的量.因此 ,它具有 由此达彼 的重大创新作用. 能力立意命题 ” ,正是为 了更 好地考查数学思想 ,促进 考生数学 极 限思 想是高等 数学知识 最基础 的一块 ,也是 高等数学教 学 的
@ ⑥ ⑤

郭丽 云 ( 江省 温岭 中学) 浙
⑨ ⑥

20 0 8年浙江省 《 高考数学科 考试说 明》 提出 :对 数学能力 就 以高等数 学的数学 思想 为背景 的高观点试 题为例 对其解法作
的考查 ,强调 “ 以能力为立 意” ,就是 以数学 知识 为载体 ,从 问

全国卷Ⅰ2024年高考数学压轴卷理含解析

全国卷Ⅰ2024年高考数学压轴卷理含解析

(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。

例析高等数学背景下的高考数学题

例析高等数学背景下的高考数学题

②在 ep,若 1-90P, ̄,JlAql +1 ̄1 =I
③在 曰c中.1IAcll+lI∞ll>IIAsI{.
其 中真命题的个数为 ( )
A. 0
B. 1
C. 2 D. 3
解 析 对 于 直 角 坐 标 平 面 内 的 任 意 两 点
A(x。, ),B(x2,Y2),定义它们之 间的一种“距离”:

福 建 中 学数 学
2009年第 l0期
{fABIf=? !~ f+ —j }.①若点C在线段AB上.
设 C点坐标为 ( 【】' ).X。在 X.、 :之间 .Y。在 、
Y 之间,则lIACll+IC8 1l
= I 0一 l l+j)’t)一 ’i l+i 2~ j:+{ :一 0{
高等数学背景下的高考数 学题也 叫“高观点题”. “高观点题”指与高等数学相联 系的问题 .这样 的问题 或以高等数 学知识 为背景 。或体现高等数 学 中常用 的数学思想 方法 ,本文将例 析这类 问题 的基本类型 和 相 应 解 法 .
1. 以高等数学运算为背景 例 1(2006年高考四川卷 ) 非空集合 G关 于运算 0满足 :(1)对任 意的 口。 b∈G 。都 有 a0b∈G ;(2)存 在 e∈G ,都 有 a0e=e0a=a , 则 称 G 关 于 运 算 0 为 “融 洽 集 ”.现 给出下列集合和运算 : ① G={非负整数 },0 为整数 的加法 ; ② G={偶数 },0 为整数 的乘法 ; ③ G={平面 向量 },0 为平面向量 的加 法; ④ G={二次三项式 },0 为多项式 的加 法; ⑤ G={虚数 },0 为复数 的乘 法. 其 中 G关于运算 0 为“融洽集”的是 (写 出所有“融洽集 ”的序 号 ) 解析 本 题 源 自大学 数学 专业 课 中的 《近 世代 数 》,给 出了一个新 的概念“融洽集”,考查学生理解 并且会运用此概念 来判断 以下给出的条件 是否满足 成 为“融洽集”的能力. ① G:{非负整数 },0 为整数 的加法。满足任 意 a,b∈G都 有 口庄 ∈G,且令 e--0,有 a@0=0@a=a, 所以① 符合要求. ② G={偶 数 }, 0 为 整数 的 乘 法 ,若 存 在 e∈G。a0e=axe=a,则 e=1,矛盾 。.·.② 不符 合要 求. ③ G=f平面 向量 },0 为平 面向量 的加 法,取

聚焦高等数学知识背景 审视高考数学创新题型

聚焦高等数学知识背景 审视高考数学创新题型


1 5

1 5




解 得

5≤) ,1 ≤ 5




午一 1 sH ,曲 午:且 =一 双 线

图 1 1
渐 近线斜 率 为 k = , 。 直线 系斜 率为 1如 图 l. , 1 当

D/


/ 4


函数 ) —n + ) e 一 1 ] = I( m 在[ ~ m, 一 上为
连续 减 函数 , 因此 e 一m):e 一 — n e 一 一 ~ m l( 一 m+m):
e~ >0.
() 2 定理 : 函数 g ) [ , ] 若 ( 在 。 b 上连续 , 且
g 口 与 g() 号 , 至少 存在 一点 . ∈( ,) 使 () b异 则 1 5 ab , 。

4 0・
中学教研 ( 学) 数
21 0 0卑
即 :. 萼 当线+=通点÷ ), 一, 直 S 2 过 (, =手 Uv 。 时
即 一 5≤y

此 一, 一 , ) 于是 y ≥ ≤ .
侈 求 Y = +2 一 43 vl + + 的值 域. 2 4 3 解 由 2 + + 0 4 4 3 另 式 为 A < , 函数 定义 域为 R. 0得 令 u∈R, >0 则 双 曲线 方 程 为 ,
类似地 ,
由 1( 。 )>1 (2 ) 2 2 ; : + x + +2 l2 x ]:
1 m + = 2 + = 兰 一3 . m > , 0
厂 e 一m)= 一3 >( +1 一 m> ( e m 1 ) 3

2024年高考数学(新高考卷)(全解全析)

2024年高考数学(新高考卷)(全解全析)

2024年高考押题预测卷【新高考卷】数学·全解全析第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

12345678BDBCABCD1.定义差集{M N x x M -=∈且}x N ∉,已知集合{}2,3,5A =,{}3,5,8B =,则()A A B -= ()A.∅B.{}2 C.{}8 D.{}3,51.【答案】B 【解析】因为{}2,3,5A =,{}3,5,8B =,所以{}3,5A B = ,所以(){}2A A B -= .故选:B2.已知函数()2sin cos (0)f x x x x ωωωω=+>的最小正周期为π,下列结论中正确的是()A.函数()f x 的图象关于π6x =对称B.函数()f x 的对称中心是()ππ,0122k k ⎛⎫+∈ ⎪⎝⎭Z C.函数()f x 在区间5π,1212π⎡⎤⎢⎥⎣⎦上单调递增D.函数()f x 的图象可以由()1cos22g x x =+的图象向右平移π3个单位长度得到2.【答案】D【解析】A 选项,()21cos23sin2sin cos 22x xf x x x x ωωωωω-=+=+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭,因为函数()f x 的最小正周期为2ππ2ω=,解得1ω=,所以()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,当π6x =时,πππ1sin 2sin 6362x ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;B 选项,令π2π,6x k k -=∈Z ,即ππ,122k x k =+∈Z ,函数()f x 的对称中心是()ππ1,1222k k ⎛⎫+∈⎪⎝⎭Z ,故B 错误;C 选项,π5π,1212x ⎡⎤∈⎢⎥⎣⎦时,π2π20,63u x ⎡⎤=-∈⎢⎥⎣⎦,显然()1sin 2f x u =+在其上不单调,故C 错误;D 选项,()1cos22g x x =+的图象向右平移π3个单位长度,得到()π2π1π1cos 2sin 233262g x x x f x ⎛⎫⎛⎫⎛⎫-=-+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故D 正确.故选:D .3.2024年3月16日下午3点,在贵州省黔东南苗族侗族自治州榕江县“村超”足球场,伴随平地村足球队在对阵口寨村足球队中踢出的第一脚球,2024年第二届贵州“村超”总决赛阶段的比赛正式拉开帷幕.某校足球社的五位同学准备前往村超球队所在村寨调研,将在第一天前往平地村、口寨村、忠诚村,已知每个村至少有一位同学前往,五位同学都会进行选择并且每位同学只能选择其中一个村,若学生甲和学生乙必须选同一个村,则不同的选法种数是()A.18B.36C.54D.723.【答案】B【解析】若五位同学最终选择为3,1,1,先选择一位同学和学生甲和学生乙组成3人小组,剩余两人各去一个村,进行全排列,此时有1333C A 18=种选择,若五位同学最终选择为2,2,1,将除了甲乙外的三位同学分为两组,再进行全排列,此时有213313C C A 18=种选择,综上,共有181836+=种选择.故选:B4.南丁格尔玫瑰图是由近代护理学和护士教育创始人南丁格尔()Florence Nightingale 设计的,图中每个扇形圆心角都是相等的,半径长短表示数量大小.某机构统计了近几年中国知识付费用户数量(单位:亿人次),并绘制成南丁格尔玫瑰图(如图所示),根据此图,以下说法错误..的是()A.2015年至2022年,知识付费用户数量逐年增加B.2015年至2022年,知识付费用户数量逐年增加量2018年最多C.2015年至2022年,知识付费用户数量的逐年增加量逐年递增D.2022年知识付费用户数量超过2015年知识付费用户数量的10倍4.【答案】C【解析】对于A ,由图可知,2015年至2022年,知识付费用户数量逐年增加,故A 说法正确;对于B 和C ,知识付费用户数量的逐年增加量分别为:2016年,0.960.480.48-=;2017年,1.880.960.92-=;2018年,2.95 1.88 1.07-=;2019年,3.56 2.950.61-=;2020年,4.15 3.560.59-=;2021年,4.77 4.150.62-=;2022年,5.27 4.770.5-=;则知识付费用户数量逐年增加量2018年最多,知识付费用户数量的逐年增加量不是逐年递增,故B 说法正确,C 说法错误;对于D ,由5.27100.48>⨯,则2022年知识付费用户数量超过2015年知识付费用户数量的10倍,故D 说法正确.综上,说法错误的选项为C.故选:C5.在ABC 中,D 为边BC 上一点,2π,4,23DAC AD AB BD ∠===,且ADC △的面积为43,则sin ABD ∠=()A.1538 B.1538+ C.534- D.534+5.【答案】A【解析】因为113sin 4222ADC S AD AC DAC AC =⋅∠=⨯⨯⨯=△,解得4AC =,所以ADC △为等腰三角形,则π6ADC ∠=,在ADB 中由正弦定理可得sin sin AB DB ADB BAD=∠∠,即21sin 2DB DBBAD =∠,解得1sin 4BAD ∠=,因为5π6ADB ∠=,所以BAD ∠为锐角,所以15cos 4BAD ∠==,所以()πsin sin sin 6ABD ADC BAD BAD ⎛⎫∠=∠-∠=-∠⎪⎝⎭ππsin cos cos 81sin 5663BAD BAD =∠=-∠.故选:A6.已知正项数列{}n a 的前n 项和为1,1n S a =,若13n n n n S a S a ++=,且13242111n n M a a a a a a ++++< 恒成立,则实数M 的最小值为()A.13 B.49C.43D.36.【答案】B【解析】因为13n n n nS a S a ++=,所以()133n n n n n n n a S a S a S S +==++,即()13n n n n a S S S +-=,即13n n n a a S +=,则1213n n n a a S +++=,与上式作差后可得()()121133n n n n n n a S a a S a ++++-=-=,因为正项数列{}n a ,所以23n n a a +-=,所以22223111113n n n n n n n n a a a a a a a a ++++⎛⎫⎛⎫-==- ⎪ ⎪⎝⎭⎝⎭,因为11a =,11212333n n n a S a a a a a +=⇒=⇒=,所以1324213243521111111111113n n n n a a a a a a a a a a a a a a ++⎛⎫+++=-+-+-+- ⎪⎝⎭1212121111111111333n n n n a a a a a a ++++⎛⎫⎛⎫⎛⎫=+--=⨯+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12411499n n a a ++⎛⎫=-+< ⎪⎝⎭,所以实数M 的最小值为49,故选:B.7.设方程33log 1xx ⋅=的两根为1x ,()212x x x <,则()A.101x <<,23x >B.121x x >C.1201x x <<D.124x x +>7.【答案】C【解析】由33log 1xx ⋅=可得311log 33xx x ⎛⎫== ⎪⎝⎭,在同一直角坐标系中同时画出函数3log y x =和13xy ⎛⎫= ⎪⎝⎭的图象,如图所示:由图象可知,因为1311log 133⎛⎫<= ⎪⎝⎭,23311log 2log 239⎛⎫=>= ⎪⎝⎭,所以12012x x <<<<,所以1213x x <+<故A ,D 错误;()12312313211log log log 33x xx x x x ⎛⎫⎛⎫=+=-+ ⎪ ⎪⎝⎭⎝⎭,因为12x x <,所以121133x x⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以()312log 0x x <,所以1201x x <<,即121x x <,故B 错误,C 正确.故选:C8.在棱长为2的正方体1111ABCD A B C D -中,P ,Q ,R 分别为棱BC ,CD ,1CC 的中点,平面PQR 截正方体1111ABCD A B C D -外接球所得的截面面积为()A.215π3B.8π3C.35π3D.5π3【答案】D【解析】取正方体的中心为O ,连接,,OP OQ OR,由于正方体的棱长为2,所以正方体的面对角线长为,体对角线长为正方体外接球球心为点O,半径12R =⨯=,又易得12OP OQ OR ===⨯=,且12PQ PR QR ===⨯=,所以三棱锥O PQR -为正四面体,如图所示,取底面正三角形PQR 的中心为M,即点O 到平面PQR 的距离为OM ,又正三角形PQR 的外接圆半径为MQ ,由正弦定理可得262sin 60332PQMQ ===︒,即63MQ =,所以233OM==,即正方体1111ABCD A B C D-外接球的球心O到截面PQR的距离为3OM=,所以截面PQR被球O所截圆的半径r==,则截面圆的面积为25ππ3r=.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011AB AD BD9.已知,z z∈C是z的共轭复数,则()A.若13i13iz+=-,则43i5z--=B.若z为纯虚数,则20z<C.若(2i)0z-+>,则2iz>+D.若{||3i3}M z z=+≤∣,则集合M所构成区域的面积为6π9.【答案】AB【解析】()()()213i13i43i13i13i13i5z++-+===--+,所以43i5z--=,故A正确;由z为纯虚数,可设()i R,0z b b b=∈≠,所以222iz b=,因为2i1=-且0b≠,所以20z<,故B正确;由()2i0z-+>,得i(2)z a a=+>,因为i(2)z a a=+>与2i+均为虚数,所以二者之间不能比较大小,故C错误;设复数i,,Rz a b a b∈=+,所以()3ia b++由|3i3z +≤∣得()2239a b ++≤,所以集合M 所构成区域是以()0,3-为圆心3为半径的圆,所以面积为9π,故D 错误.故选:AB.10.已知向量a 在向量b 方向上的投影向量为33,22⎛⎫ ⎪ ⎪⎝⎭,向量(b = ,且a 与b 夹角π6,则向量a 可以为()A.()0,2 B.()2,0C.(D.)10.【答案】AD【解析】由题设可得(233,22a b b ⎛⎫⋅= ⎪ ⎪⎝⎭,故22a b b ⋅=,而2b = ,a 与b 夹角π6,故33242a b ⨯= ,故2a = ,对于A ,233cos ,222a b ==⨯ ,因[],0,πa b ∈ ,故π6,a b = ,故A 正确.对于B ,21cos ,222a b ==⨯ ,因[],0,πa b ∈ ,故π,3a b = ,故B 错误.对于C ,4cos ,122a b ==⨯ ,因[],0,πa b ∈ ,故,0a b = ,故C 错误.对于D ,233cos ,222a b ==⨯ ,因[],0,πa b ∈ ,故π6,a b = ,故D 错误.故选:AD.11.已知抛物线2:2(0)C y px p =>的焦点为()()()112233,,,,,,F A x y B x y D x y 为抛物线C 上的任意三点(异于坐标原点O ),0FA FB FD ++=,且6FA FB FD ++=,则下列说法正确的有()A.4p =B.若FA FB ⊥,则FD AB=C.设,A B 到直线=1x -的距离分别为12,d d ,则12d d AB+<D.若直线,,AB AD BD 的斜率分别为,,AB AD BD k k k ,则1110AB AD BDk k k ++=11.【答案】BD【解析】对于A ,因为,,A B D 为抛物线上任意三点,且0FA FB FD ++=,所以F 为ABD 的重心,,02p F ⎛⎫⎪⎝⎭,所以1231233,02px x x y y y ++=++=又123362pFA FB FD x x x ++=+++=,即2p =,故A 错误;对于B ,延长FD 交AB 于点E ,因为F 为ABD 的重心,所以2FD FE =,且F 是AB 的中点,因为FA FB ⊥,在Rt FAB 中,有2AB FE =,所以FD AB =,故B 正确;对于C ,抛物线方程为24y x =,所以抛物线的准线为=1x -,所以,A B 到直线=1x -的距离之和12d d FA FB +=+,因为,,F A B 三点不一定共线,所以FA FB AB +≥,即12d d AB +≥,故C 错误;对于D ,因为2114y x =,2224y x =,两式相减,得:()()()1212124y y y y x x +-=-,所以1212124AB y y k x x y y -==-+,同理可得324BD k y y =+,134AD k y y =+,所以()123211104AB AD BD y y y k k k ++++==,故D 正确.故选:BD.第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档