塑胶改性工艺配方与应用
塑料改性与相容剂应用
目 录
一、相容剂及生产 二、相容剂对PBT增韧改性 三、相容剂对PP/PA6合金的改性
四、相容剂对PC/ABS合金的改性
相容剂的制作
相容剂的种类 基料 LDPE LLDPE HDPE POE PP EPDM SBS SEBS ABS HIPS 接枝单体 马来酸酐,丙烯酸酯,双马来酰亚胺等
33
A—B型的具体品种有
聚合物A PS PS PS PS PS PS PS PS
聚合物B A—B型相容剂 PI PS-b-PI PMMA PS-b-PMMA或PS-g-PMMA PP PS-g-PP PE PSb-PE或PS-g-PE PA PS-b-PA或PS-g-PA PPO PS-α -PPO PC Ps-g-Pc PF PS-α-PF
相容性原则 溶解度相近相近原则 极性相近原则 结构相近原则 结晶能力相近原则 表面张力相近原则 粘度相近原则
10
溶解度相近原则
溶解度参数:单位体积内聚能密度的平方根 小分子 |δ A-δ B|<1.5
CCl4 δA =8.6 天然橡胶 δB=8.5 |δA-δB|=0.45 相容性好
塑料改性原理及相容剂应用
苑会林
北京化工大学
材料科学与工程学院
塑料改性的意义
宗旨: 满足用户的使用要求 目的: 1. 改善加工性能(如:PVC、LLDPE、PPO) 2. 改善树脂的内在性能 3. 降低成本
2
改善树脂的内在性能
阻燃性 抗静电性 导电性
阻隔性
耐热性 增强改性
降解性
耐磨性 增韧改性
防老化性
12
结构相近原则
塑料共混改性粒料的配制
✓聚合物粉料的粒径大小、分布、密度均有要求。 ✓干粉混合分散效果较差,常作为融熔共混的初混过程。
熔融共混 ✓ 将聚合物各组分在熔融状态下(即粘流流温度以上)用各种 混炼设备加以混合,获得混合分散均匀的共混物熔体,经冷 却、粉碎或粒化的方法。 ✓为增加共混效果,有时先进行干粉混合,作为熔融共混法 中的初混合。
16
例如:将PC、PA6置于100℃鼓风烘箱中干燥6h,增容剂在
80℃下干燥6h,然后将其按一定质量配比,以PC为基体, PA6
的固定用量为20%,用双螺杆挤出机熔融共混,挤出物料切粒
后在100℃下干燥8h以上备用。
溶液共混:将共混聚合物各组分溶于溶剂中搅拌混合均
匀,然后加热驱除溶剂。
例如:利用一步溶液共混法,将预糊化的淀粉糊与PVA溶 液共混,用乙二醛进行交联,制备淀粉/聚乙烯醇(PVA) 完全生物降解塑料薄膜。
① 对聚合物进行化学改性
特点:共混的聚合物分子链上含有某种可相互作用的官能团。 如:PMMA与聚乙烯醇(PVA)、聚丙烯酸(PAA)或聚丙烯酰
胺(PAM)等。 方法:在分子链上引入极性基团(高分子氯化、磺化)。
如:氯化聚乙烯与PMMA有较好相容性; 通过共聚的方法改变聚合物分子链结构。如:PS-SAN
但是,共混物不同聚合物大分子之间难免有少量的化学键存 在。例如:在强剪切力作用下的熔融混炼过程中,可能由于 剪切作用使得大分子断裂,产生大分子自由基,从而形成少 量嵌段或接枝共聚物。此外,进来为强化参与共混物聚合物 组分之间的界面粘接而采用的反应增容措施,也必然在组分 之间引入化学键。
聚合物共混物是一个多组分体系。在此多组分聚合物体系中 ,各组分始终以自身聚合物的形式存在。在显微镜下观察可 以发现其具有类似金属合金的相结构(即宏观不分离,微观非 均相结构),故聚合物共混物通常又称聚合物合金或高分子合 金。
PPS的8种改性方式和应用!
聚苯硫醚(PPS)具有机械强度高、耐高温、高阻燃、耐化学药品性能强等优点;具有硬而脆、结晶度高、难燃、热稳定性好、机械强度较高、电性能优良等优点。
聚苯硫醚PPS是工程塑料中耐热性最好的品种之一,一般大于260度,其流动性仅次于尼龙。
PPS 分子结构此外,它还具有成型收缩率小(约0.8%),防火性好,耐震动疲乏性好等优点。
PPS的发展成熟,全球产能达5万吨/年以上,其价格相对较低,相比于动辄数百元每公斤的其他特种工程塑料,性价比高,常作为结构性高分子材料使用,并应用于不同领域。
聚苯硫醚(PPS)与聚醚醚酮(PEEK),聚砜(PSF),聚酰亚胺(PI),聚芳酯(PAR),液晶聚合物(LCP)一起被称为6大特种工程塑料。
PPS的软化点为277~282℃,Tg为85~93℃。
PPS性能优良,尤其通过增强、改性、共混合金化及原位复合技术制成了用途广泛的各种复合材料。
PPS改性和应用实例根据结构不同,PPS分为交联型与直链型两种。
直链型有优良的韧性和延伸性;交联型在氧气存在的情况下能加热固化,超过200℃热处理时熔融指数急剧下降,利用该性能可将聚合终了的低黏度PPS通过热处理制造适合注塑、挤出任意黏度的聚合物。
但是,PPS具有耐冲击性能差、性脆的致命缺点。
未改性的PPS较脆、热变形温度低,影响其应用领域和范围。
为了进一步改善PPS的性能,扩大适用范围,须对其进行改性,改性方向主要有:•提高强度;•提高冲击性能;•提高润滑性;•改善电性能以及研制具有特殊性能的共混材料;•合金化新型材料。
研究表明,PPS添加无机填料后仍能与其他聚合物有良好的相容性,这为其合金化和复合改性创造了有利条件。
最早开发成功的是PPS与氟塑料共混合金,此后形成了合金系列。
PPS 合金化后拉伸强度、弯曲强度、抗冲击性能、耐热性能大幅提高,为进一步的挤出、吹塑成型工艺的实施提供了可能。
目前,全世界销售的PPS复合改性品种多达200余种,主要有玻纤GF增强、碳纤维CF增强、无机填料填充、GF和填料共同填充增强等共混改性。
塑料改性工艺配方及应用
塑料改性工艺配方及应用塑料改性工艺是通过添加一定的添加剂或采用特定的工艺方法,改善塑料的性能或赋予其新的功能,以适应特定的应用需求。
塑料改性工艺配方的设计与应用根据不同的目标要求,包括增强塑料的力学性能、提高耐热性、增强耐化学性、改善光学性能、改良表面性能等。
下面将介绍几种常见的塑料改性工艺配方及其应用。
1. 增强剂改性工艺配方:增强剂常用于改善塑料的力学性能。
常见的增强剂包括玻璃纤维、碳纤维、纳米填料等。
这些增强剂可以提高塑料的强度、刚度和耐冲击性。
例如,在汽车零部件中,使用玻璃纤维增强的聚丙烯可以提高部件的强度和刚度,增加其耐冲击性,以满足汽车安全的要求。
2. 阻燃剂改性工艺配方:塑料的燃烧性能不佳,容易引发火灾。
为此,可以添加阻燃剂来改善塑料的燃烧性能。
阻燃剂可以抑制火焰蔓延,减少烟雾和有毒气体的产生。
常见的阻燃剂包括氧化铝、磷酸盐、氯化物等。
这些阻燃剂广泛应用于电子电器、建筑材料和汽车等领域。
3. 抗氧剂改性工艺配方:塑料在长期暴露于紫外线或高温环境下会发生老化,导致力学性能下降。
为了提高塑料的耐候性,可以添加抗氧剂。
抗氧剂可以延缓塑料的老化过程,减少氧化反应。
常见的抗氧剂有苯并三氮膦类、羟基苯基三氮膦类等。
抗氧剂广泛应用于塑料制品、橡胶制品、涂料等。
4. 增韧剂改性工艺配方:塑料的脆性是其性能上的短板,为了提高其韧性,可以添加增韧剂。
增韧剂可以改善塑料的抗冲击性能和耐疲劳性能。
常见的增韧剂包括弹性体、改性沥青、改性脂肪族胺等。
增韧剂广泛应用于电子电器、建筑材料和运动器材等领域。
塑料改性工艺配方的应用十分广泛,下面将介绍几个典型的应用案例:1. 汽车行业:塑料在汽车零部件中的应用越来越广泛。
例如,在车身上使用增强剂改性的塑料可以减轻整车重量,提高燃油经济性。
在车内使用阻燃剂改性的塑料可以提高车内的安全性。
在汽车内饰中使用抗氧剂改性的塑料可以延长使用寿命。
2. 电子电器:塑料在电子电器中的应用也非常重要。
SEBS性能应用配方改性大全
SEBS性能、应用、配方、改性大全SEBS具有优异的耐老化性能,既具有可塑性,又具有高弹性,无需硫化即可加工使用,边角料可重使用,广泛用于生产高档弹性体、塑料改性、胶粘剂、润滑油增粘剂、电线电缆的填充料和护套料等。
1) 产品特性SEBS是热塑性弹性体SBS的加氢产物,常称为氢化SBS。
这种被氢化的SBS 由于具有较高含量的1,2结构,在氢化后组成为聚苯乙烯(S)—聚乙烯(E)—聚丁烯—1(B)—聚苯乙烯(S),故简称为SEBS SEBS是1974年由Shell公司首次在世界上实现工业化生产,商品名为KratonG。
随着SEBS应用增长,参与SEBS开发、生产的厂商日益增多,到目前全球SEBS生产、销售能力达到20万吨,其中Shell公司11万吨/年,其余厂家生产能力共计9万吨左右。
由于SEBS中丁二烯段的碳—碳双键被氢化饱和,因而其具有良好的耐候性、耐热性、耐压缩变形性和优异的力学性:⑴较好的耐温性能,其脆化温度≤-60℃,最高使用温度达到149℃,在氧气气氛下其分解温度大于270℃。
⑵优异的耐老化性能,在人工加速老化箱中老化一星期其性能的下降率小于10%,臭氧老化(38℃)100小时其性能下降小于10%。
⑶优良的电性能,其介电常数在一千赫为1.3*10-4,一兆赫为2.3*10-4;体积电阻是一分钟9*1016Ω/cm;二分钟为2*1017Ω/cm。
⑷良好的溶解性能、共混性能和优异的充油性,能溶于许多常用溶剂中,其溶解度参数在7.2~9.6之间,能与多种聚合物共混,能用橡胶工业常用的油类进行充油,如白油或环烷油。
⑸无需硫化即可使用的弹性体,加工性能与SBS类似,边角料可重复使用,符合环保要求,无毒,符合美国FDA要求。
⑹比重较轻,约为0.91,同样的重量可生产出更多体积的产品。
2) 产品用途1.SEBS通过与聚丙烯、环烷油或氢化环烷油、白油等混合可生产邵氏硬度在A0-95的弹性体,此类弹性体有优秀的表面质感和耐候抗老化性能,可广泛用于软接触材料如手柄、文具、玩具、运动器材的握手、密封条、电线电缆、牙刷柄及其它包覆材料等。
PP改性指南(含配方)
PP改性指南(含配方)1. 简介本指南旨在介绍PP改性的基本原理和常用的改性方法,并提供一些常见的PP改性配方供参考。
2. PP改性原理PP(聚丙烯)是一种常用的塑料材料,具有优异的物理和化学性质。
然而,PP在某些方面仍存在一些不足之处,例如耐热性、抗冲击性和抗紫外线性能。
通过改性,可以有效提高PP的性能,使其适用于更广泛的应用领域。
3. 常用的PP改性方法3.1 增强剂- 玻纤增强剂:通过添加适量的玻璃纤维,可提高PP的强度和刚度。
- 碳纤维增强剂:添加适量的碳纤维可提升PP的强度和导电性能。
- 矿物填料:添加矿物填料(如滑石、氧化铝等)可改善PP的阻燃性能和导热性能。
3.2 功能性添加剂- 抗氧化剂:添加适量的抗氧化剂可提高PP的耐热性和抗老化性能。
- 紫外线吸收剂:通过添加紫外线吸收剂,可增强PP对紫外线的抵抗能力。
- 扩链剂:通过添加扩链剂,可提高PP的韧性和冲击性能。
3.3 共混改性将PP与其他改性塑料进行共混,可以改善PP的各项性能,如增强强度、改善耐热性等。
4. 常见的PP改性配方以下为一些常见的PP改性配方供参考:- PP-玻纤复合材料配方- PP-碳纤维复合材料配方- PP-矿物填料复合材料配方- PP-抗氧化剂配方- PP-紫外线吸收剂配方- PP-扩链剂配方请注意,具体配方应根据实际需求和使用条件进行微调和优化。
5. 结论通过PP改性,可以显著提高PP的性能,使其具备更广泛的应用性。
本指南介绍了PP改性的基本原理、常用的改性方法和一些常见的PP改性配方。
希望能给您的PP改性工作带来一些参考和启示。
塑料改性的方法和技术参数
1、母料核母料核的在母料中的量一般在20%以上。
2、分散剂其功能是将填料与载体树枝有很好的相容性,而且熔点和熔体黏度应低于载体树脂。
常见的分散剂有硬脂酸及其盐类、芥酸酰胺、固体石蜡、液体石蜡、聚乙烯蜡 (地相对分子量聚乙烯)、氧化PE、α-甲基苯乙烯等。
分散剂的熔点较低,当温度上升时能迅速熔融,并包覆在经过偶联剂、交联剂处理过的无机填料表面。
使母料表面张力更与主体树脂接近,因而大大改善无机填料的分散性,并能使复合材料的黏度下降,流动性提高,一般用量约在5%。
3、载体树脂填充母料在主体树脂中能否均匀分散,关键是载体树脂的选择,无规聚丙烯软点较低,对碳酸钙等颗粒的包覆效果好,填充母料的熔体流动速率很高,母料在主体树脂中的分散很好,但对制品的力学性能影响较大,达不到制品的更好需求。
由于填充母料主要用于聚乙烯或聚丙烯等聚烯烃塑料制品加工,因而可供选择的载体树脂主要有LDPE、PS、EVA、CPE等,但HDPE、PP、PS单独用作载体树脂生产的填充母料,料条较脆,不易切粒(粒子易碎),LLDPE熔体流动速率低,所制母料不易分散。
4、ABS塑料对PVCABS塑料对PVC可以明显增强冲击强度,而对拉伸强度下降很小,有些品种兼有加工助剂的功能,一般用量5~15份。
ABS由于组成及相对分子量的不同,往往改性效果也不尽相同。
5、ABS塑料和MBS塑料ABS塑料和MBS塑料都是PVC的有效冲击改性剂,其主要区别在于前者主要用于挤出管材、型材和压延以及吹塑瓶,应予注意的是此类改性聚合物由于组分中都还有丁二烯的不饱和双键结构,因此与PVC共混的耐候性均较差,在配方中应加光稳定剂。
两者毒性都很小,可用于与食品接触的场合。
6、CPECPE一般含氯量为20%~50%,含氯量大于25%是具有不燃性。
CPE改性PVC,最大特点就是耐候性好,一般认为含氯量36%的品种,在硬质PVC 中的改型效果最好,可以获得良好的加工性、分散性和耐冲击性。
聚丙烯塑料的改性及应用
聚丙烯塑料的改性及应用概述聚丙烯(Polypropylene,简称PP)是一种常见的塑料材料,具有良好的加工性能、强度和耐化学腐蚀性。
然而,聚丙烯在某些方面的性能还有待改善。
改性聚丙烯通过添加不同的添加剂、改变配方比例或改变加工工艺等方式,改善了聚丙烯的某些性能,扩展了其应用范围。
本文将介绍聚丙烯塑料的改性方法及其在各个领域中的应用。
聚丙烯塑料的改性方法1. 添加剂改性添加剂改性是最常见的一种聚丙烯塑料改性方法。
通过向聚丙烯中添加不同的添加剂,可以改变聚丙烯的物理、化学性能,提高其加工性能和耐候性。
常见的添加剂包括: - 填充剂:如碳酸钙、滑石粉等,可以提高聚丙烯的刚性和抗冲击性; - 阻燃剂:如氯化磷、硫酸铵等,可以提高聚丙烯的阻燃性能; - 稳定剂:如抗氧剂、紫外线吸收剂等,可以提高聚丙烯的耐氧化和耐候性; - 助剂:如流动剂、增韧剂等,可以改善聚丙烯的加工性能。
2. 共混改性通过与其他聚合物进行混合,可以改善聚丙烯的性能。
常见的共混改性方法有物理共混和化学共混两种。
•物理共混:将聚丙烯与其他聚合物机械混合,形成共混体系。
物理共混可以改善聚丙烯的强度、韧性和耐热性。
•化学共混:通过共聚反应或交联反应,将聚丙烯与其他聚合物进行化学结合。
化学共混可以显著改善聚丙烯的力学性能、热性能和耐化学性。
3. 改变配方比例通过改变聚丙烯的配方比例,如增加共聚单体的含量、调节分子量分布等方式,可以改变聚丙烯的结晶度、熔体流动性和力学性能。
•增加共聚单体含量:在聚丙烯的聚合过程中,加入适量的共聚单体,如丙烯酸、丙烯酸酯等,可以改善聚丙烯的柔韧性、降低结晶度。
•调节分子量分布:通过控制聚合反应条件,可以得到不同分子量分布的聚丙烯,从而改善聚丙烯的加工性能和力学性能。
聚丙烯塑料的应用领域聚丙烯的优良性能使其在各个领域都有广泛的应用。
1. 包装行业聚丙烯具有较高的刚性和抗冲击性,被广泛用于包装行业。
聚丙烯制成的塑料包装材料可以应用于食品包装、医药包装、化妆品包装等领域。
改性工程塑料生产工艺
改性工程塑料生产工艺改性工程塑料是指在传统工程塑料的基础上,通过添加改性填料、添加剂等方式改善其性能和扩展其应用领域的塑料。
改性工程塑料具有良好的耐热性、力学性能、耐化学性和电性能等特点,广泛应用于汽车、电子、航空航天等行业。
本文将介绍改性工程塑料的生产工艺。
改性工程塑料的生产工艺主要包括原料处理、调配、混炼、成型等环节。
首先是原料处理。
改性塑料的原料一般包括基础树脂、改性填料、添加剂等。
基础树脂可以选择聚酯树脂、聚酰胺树脂、聚醚酮树脂等。
改性填料可以根据要求选择增强填料、阻燃填料、导电填料等。
添加剂包括稳定剂、增塑剂、抗老化剂等。
在原料处理过程中,需要对原料进行干燥、筛选等处理,确保原料的质量和稳定性。
其次是调配。
根据塑料的使用要求和配方要求,将不同的原料按照一定的比例混合在一起,以获得满足要求的改性塑料配方。
调配过程需要控制好原料的比例和混合方式,确保各种原料能够充分混合均匀。
然后是混炼。
调配好的原料需要通过混炼设备进行混炼,使得各种原料充分融合在一起。
混炼过程中需要控制好温度、时间和剪切力等参数,确保塑料的混炼效果和质量。
常用的混炼设备有双螺杆挤出机、开炼机等。
最后是成型。
混炼好的改性塑料可以通过注塑、挤出、压延等方式进行成型。
注塑是将塑料熔融注入模具中,通过冷却固化成型。
挤出是将塑料通过挤出机挤压成型。
压延是将塑料通过一对压辊压制成型。
成型过程需要控制好温度、压力和速度等参数,确保塑料的成型效果和尺寸精度。
综上所述,改性工程塑料的生产工艺包括原料处理、调配、混炼、成型等环节。
通过合理的工艺控制,可以生产出满足不同要求的改性工程塑料产品。
这些改性工程塑料产品在汽车、电子、航空航天等领域具有广泛的应用前景。
SEBS性能应用配方改性大全
SEBS性能、应用、配方、改性大全SEBS具有优异的耐老化性能,既具有可塑性,又具有高弹性,无需硫化即可加工使用,边角料可重使用,广泛用于生产高档弹性体、塑料改性、胶粘剂、润滑油增粘剂、电线电缆的填充料和护套料等。
1) 产品特性SEBS是热塑性弹性体SBS的加氢产物,常称为氢化SBS。
这种被氢化的SBS 由于具有较高含量的1,2结构,在氢化后组成为聚苯乙烯(S)—聚乙烯(E)—聚丁烯—1(B)—聚苯乙烯(S),故简称为SEBS SEBS是1974年由Shell公司首次在世界上实现工业化生产,商品名为KratonG。
随着SEBS应用增长,参与SEBS开发、生产的厂商日益增多,到目前全球SEBS生产、销售能力达到20万吨,其中Shell公司11万吨/年,其余厂家生产能力共计9万吨左右。
由于SEBS中丁二烯段的碳—碳双键被氢化饱和,因而其具有良好的耐候性、耐热性、耐压缩变形性和优异的力学性:⑴较好的耐温性能,其脆化温度≤-60℃,最高使用温度达到149℃,在氧气气氛下其分解温度大于270℃。
⑵优异的耐老化性能,在人工加速老化箱中老化一星期其性能的下降率小于10%,臭氧老化(38℃)100小时其性能下降小于10%。
⑶优良的电性能,其介电常数在一千赫为1.3*10-4,一兆赫为2.3*10-4;体积电阻是一分钟9*1016Ω/cm;二分钟为2*1017Ω/cm。
⑷良好的溶解性能、共混性能和优异的充油性,能溶于许多常用溶剂中,其溶解度参数在7.2~9.6之间,能与多种聚合物共混,能用橡胶工业常用的油类进行充油,如白油或环烷油。
⑸无需硫化即可使用的弹性体,加工性能与SBS类似,边角料可重复使用,符合环保要求,无毒,符合美国FDA要求。
⑹比重较轻,约为0.91,同样的重量可生产出更多体积的产品。
2) 产品用途1.SEBS通过与聚丙烯、环烷油或氢化环烷油、白油等混合可生产邵氏硬度在A0-95的弹性体,此类弹性体有优秀的表面质感和耐候抗老化性能,可广泛用于软接触材料如手柄、文具、玩具、运动器材的握手、密封条、电线电缆、牙刷柄及其它包覆材料等。
PCPCABS回料改性工艺流程
PCPCABS回料改性工艺流程PC(聚碳酸酯)和PCABS(聚碳酸酯丙烯腈-丁苯共聚物)是一种热塑性工程塑料,具有优良的力学性能,电气性能和耐化学腐蚀性。
但在实际应用中,由于成本考虑和可持续发展的要求,废弃的PC和PCABS材料回收再利用的需求日益增加。
因此,本文就PC和PCABS回料改性工艺流程进行探讨。
一、回料准备工作2.清洗:使用专门的设备对回料进行清洗,去除表面附着的杂质和污染物。
3.破碎:对回料进行机械破碎,将其分解成经过合适尺寸的颗粒,便于后续的加工。
4.固相分离:使用适当的设备对材料进行固相分离,除去多余的金属和异物。
1.配方设计:根据回料的性质和要求,设计合适的配方,确定添加剂的种类和用量。
2.预混料:将回料和添加剂进行预混,确保添加剂均匀分散在回料中。
3.熔体混合:将预混料加入到挤出机或注射成型机中,进行熔体混合,使回料和添加剂充分热熔和混合。
4.挤出/注射成型:将熔融的混合物挤出或注射成型,制成所需的零件或产品。
5.冷却固化:将挤出或注射成型后的产品进行冷却固化,使其保持所需的形状和力学性能。
6.测试和检验:对改性后的产品进行测试和检验,确保其达到要求的物理性能和品质标准。
7.包装和储存:对通过测试和检验的产品进行包装和储存,保证其质量和可追溯性。
三、常见问题及解决方法1.回料纯度不足:加强回料的分拣和清洗工作,合理控制回料中的杂质含量。
2.添加剂分散不均匀:优化预混料和熔体混合工艺参数,确保添加剂能够均匀分散在回料中。
3.产品强度不足:调整改性配方,增加增强剂的含量或改变添加剂的种类,提高产品的强度和耐久性。
4.产品表面质量差:加强熔体混合和成型工艺控制,避免出现气泡、缺陷或表面不光滑等问题。
在PC和PCABS回料改性工艺流程中,需要注意材料的预处理工作,配方的设计和调整,熔体混合和成型工艺的控制,以及产品的测试和检验等环节。
通过合理的流程和严格的质量控制,可以提高回料改性材料的质量和性能,从而实现可持续发展的目标。
PP改性
PP改性前言:聚丙烯是一种性能优良的塑料,它的耐腐蚀性、耐折叠性和电绝缘性好,耐热性和机械强度由于聚乙烯,而且价格低廉,容易加工,顾广泛应用。
但是聚乙烯的抗冲击强度不够高,低温下发脆。
为了提高它的韧性,常常将聚丙烯和橡胶弹性体共混改善提高它的韧性。
同其他塑料一样,聚丙烯容易燃烧。
对其进行阻燃改性最常用的方法是把无机阻燃剂填充到聚合物基体中赋予聚合物以阻燃性。
关键词:第一部分聚丙烯改性(一)聚丙烯改性原理介绍经过短短几十年的发展,塑料已渗透到国民经济生活的各个领域,如刚才、水泥、木材并列成为四大基本材料。
随塑料应用范围的不断扩展和深化,给塑料提出了各种各样的要求,如:耐老化、阻燃、抗静电、降低成本、增强、增韧,而要开发一种全新结构的高分子化合物以满足这些要求,耗资巨大,有时甚至是不可能的,而采用塑料改性则常常很容易实现。
塑料改性是一门新兴的科学技术,在塑料行业中占据着重要的地位。
通常把塑料改性方法分为化学改性和物理改性两大类。
所谓化学改性,原则上是指在高分子化合物主链或侧链上发生化学反应,从而使高分子化合物具有更好的性能或全新的功能。
这种化学反应有的是在高分子化合物形成时进行的,有的则是在已形成的高分子化合物链上再进行,通常提到的化学改性方法是指嵌段共聚、接枝共聚、交联或降解等。
而物理改性原则上应当是指在整个改性过程中不发生化学反应,仅仅依靠各组分本身的物理特性、力学形变特性、形态的变化等实现其性能的改善或获得新的功能。
物理改性的方法有填充改性、共混改性两大类,人们通常吧具有增强效果的填充改性单独列出,称之为增强改性。
填充改性就是在塑料成型加工过程中加入加入无机填料或有机填料,是塑料制品的原料成本降低而达到增量的目的,或使塑料制品上午性能呢个有明显改变,即使在牺牲某些性能的同时,使人们所希望的另一些性能得到明显的提高。
增强改性往往是通过使用玻璃纤维、碳纤维、金属纤维以及云母硅灰石等具有特大长径或径厚比的填料加入到塑料中,对材料的力学性能有显著贡献。
PP共混改性配方大全
PP共混改性配方大全之五兆芳芳创作聚丙烯是目前用量最大的通用塑料之一,但较高的结晶度也给PP造成低温韧性差、成型收缩率大和缺口敏理性大等缺点,在一定程度上限制了其更普遍的应用.共混改性是PP增韧的最有效途径.它是利用组份之间的相容性或反响共混的原理,将两种或两种以上的聚合物与助剂在一定温度下进行机械共混,最终形成一种宏不雅上均匀,微不雅上相别离的新资料.通过对PP的共混故性,可以使其综合性能大大提高,从而和工程塑料及聚合物合金在众多应用领域里竞争.PP共混改性使用的主要共混物物及改性效果如下表:PP接下来就是干货满满的具体改性配方和工艺啦!1、PP/LDPE共混改性配方树脂PP100;相容剂PEgMAH5;LDPE20;润滑剂HSt0.3;加工工艺将PP与PE、相容剂及助剂按配方比例混杂、搅拌、挤出造粒,制成改性资料.挤出机料筒温度为:一段210℃,二段215℃,三段210℃;螺杆长径比为25:1;螺杆转速为120~160r/min.性能PP与PE共混,可改良PP的韧性,增大低温下落球冲击强度.按配方比例的共混资料的屈服应力13.6MPa;屈服应变率为12.3%,断裂应力为4.78MPa;断裂应变率为114.6%.2、PP/HDPE共混改性配方树脂PP57.35;抗氧剂10760.2;HDPE40;PEPQ0.2;交联剂叔丁基过氧基异丙苯0.15;加工助剂硬脂酸镁0.1;填充剂硅灰石2;加工工艺在常温常压下,将各组分按配方比例在高速混杂机中混杂10min,然后采取双螺杆挤出机进行熔融共混,挤出造粒.挤出温度150220℃,螺杆转速为300r/min,经切粒、枯燥工序制得PP/HDPE共混改性资料.性能拉伸强度34.8MPa,悬臂梁冲击强度49.3J/m.该资料概略消光效果良好,可用于包装、日用品和修建资料等领域.3、PP/LLDPE共混改性配方树脂PP(EPF30R)6070;钛酸酯偶联剂(ND2311)适量;LLDPE1520;抗氧剂增韧剂POE(8150)5~10;光稳定剂适量;填充剂滑石粉(平均粒径12μm)10~15;加工工艺等高速混杂机预热至110℃,参加一定量的无机填料,低速搅拌15min后,分三次参加填料质量分数为2%的偶联剂,每次参加偶联剂后,高速搅拌5min,然后放出填料备用.按配方比例准确称取PP、PE、POE、填料和其他助剂,混杂后参加双螺杆挤出机料斗中,挤出造粒.挤出温度190220℃,主螺杆转速200r/min,喂料螺杆转速20r/min.粒料枯燥后注塑成所需制品,注射温度190210℃,注塑和保压压力Mpa,预塑压力6MPa.性能采取PP与LLDPE共混,可提高PP的韧性和耐情况应力开裂性,同时添加POE进行增韧,使共混料的韧性大幅度提高;用滑石粉进行增刚,包管资料有足够的刚性.其拉伸强度≥26MPa,断裂伸长率≥400%,弯曲弹性模量≥1.6GPa,热变形温度≥110℃,成型收缩率 1.15%.本产品主要用作轻型汽车门内衬板资料.4、超韧PP/POE共混改性配方树脂PP(K7726)329;PP(K8303)120;PP(2401)90;增韧剂POE(8150)256;抗氧剂10101.2;抗氧剂DLTP2.4;润滑剂ZnSt2.4;着色剂炭黑0.5;加工工艺首先将各组分按配方比例称重,放入高速混杂机中低速搅拌1min,然后高速搅拌1min,出料,放入双螺杆挤出机中,混杂挤出造粒.双螺杆挤出造粒采取中等偏强剪切的螺杆组合,各段温度为:第一段180℃,第二段195℃,第三段210℃,第四段220℃,第五段235℃,机头230℃,螺杆转速350r/min性能拉伸强度17MPa;断裂伸长率500%;弯曲强度18MPa;弯曲弹性模量700MPa;悬臂梁缺口冲击强度(常温)750J/m,(40℃)320J/m;热变形温度(1.82MPa)102℃.5、PP/HDPE/POE共混改性配方共聚型PP(M1600)30;填充剂CaCO3(400目)20;均聚型PP(V30G)15;钛酸酯偶联剂0.2;HDPE(8920)20;20分离剂液体石蜡0.1;增韧剂POE15;加工工艺先将CaCO3在110℃下枯燥4h,按配方比例参加高速混炼机中混杂1min,然后参加钛酸酯偶联剂和分离剂低速混杂3min,进行概略活化处理.活化处理的目的在于增加无机填料与树脂之间的混溶性.然后将PP、HDPE、POE及经概略活化处理的CaCO3混杂搅拌均匀,混杂搅拌温度为100~105℃,时间为5min.最后用φ58双螺杆挤出机共混挤出造粒.挤出温度210℃,螺杆转速140r/min.性能拉伸强度为18.5MP,断裂应变率为61%,缺口冲击强度32.0kJ/m2.PP的填充改性中滑石粉的增强效果好过CaCO3,但具有更高的塑性及韧性保持率.与EPDM相比,POE的增韧效果更好一些.6、PP/HDPE/EPDM共混改性配方树脂PP100;增韧剂EPDM15%;HDPE20;润滑剂HSt0.4;加工工艺按配方比例将PP、HDPE、EPDM及润滑剂一起参加高速混炼机中,混杂搅拌均匀,混杂搅拌温度为100~105℃,时间为5min.然后用挤出机共混挤出造粒.挤出机长径比为25:1;料筒温度为一段170~175℃,二段180~190℃,三段200~210℃,四段210~220℃;螺杆转速60~100r/min.性能拉伸强度27.5MPa;弯曲强度34.2MPa;缺口冲击强度24.8KJ/m2.三元乙丙橡胶(EPDM)与PP具有相近的溶解度参数和概略张力值,可以认为两者具有一定相容性,共混时,起到较好的相容和增韧作用.7、PP/HDPE/EV A共混改性配方树脂PP(粉料)100;EV A(V A含量18%)15;填充剂活性CaCO3(800目)30;HDPE(5000s)10;稳定剂BaSt0.3;润滑剂HSt0.5;加工工艺按配方配比将各物料依次参加高速混杂机中,高速混杂搅拌10min,料温达90~100℃,使活性CaCO3粉料、HDPE、EV A与PP粉料混杂均匀便可出料.将混杂好的物料用φ45挤出机挤出,口模挤出料条经水槽冷却、空气冷却,再经牵引进入切粒机切粒.挤出机料筒为:加料段80100℃,压缩段170~180℃,均化段180~190℃,口模温度190℃;螺杆转速60~120r/min.性能拉伸强度25.5MPa;弯曲强度38.9MPa;断裂伸长率255%;缺口冲击强度9.1kJ/m2;热变形温度(18.6MPa)59℃.EV A改性PP料冲击性能高、韧性好、光泽度高、成本低,在工程方面有广漠的应用前景.8、PP/PS共混改性配方树脂PP100;PS10;相容剂SBS10;润滑剂HSt0.4;加工工艺将各组分按配方比例称重,放入高速混杂机中混杂搅拌均匀,出料,然后在挤出机中熔融共混挤出造粒.挤出温度170230℃.性能屈服强度29.2MPa;断裂伸长率7%;弹性模量1432MPa;冲击强度27kJ/m2.PP与PS是不相容体系,而SBS的参加,减小了分离相的尺寸,促使体系分离均匀,从而起到增韧兼相容作用.9、PP/HIPS共混改性配方树脂PP51.8;成核剂磷酸钠0.1;HIPS18;二环庚烷二羧酸钠0.1;填充剂滑石粉30;加工工艺将各组分按配方比例称量,放入高速混杂机中混杂搅拌均匀,出料,然后在双螺杆挤出机中熔融共混挤出造粒.挤出温度190一210℃,螺杆D/L≥32.性能该资料制备的汽车制件线性膨胀系数低,并且具有均向性,制件的尺寸稳定,装配间隙小,满足汽车在不合温度情况下使用.10、PP/PA66共混改性配方树脂PP100;相容剂PPgMAH10;PA6620;助剂0.2;加工工艺把PP、PA及助剂在高速混杂机中混杂搅拌,然后挤出造粒.混杂温度80100℃,搅拌时间10min;挤出温度为45℃,螺杆转速60120r/min性能PA66与PP共混,使共混资料在常温及低温下缺口冲击强度有较大提高,在掺入10%PPgMAH后,共混物的缺口冲击强度达到108.9J/m2;拉伸强度38.8MPa;弹性模量1710Mpa;断裂伸长率37%.11、PP/PET共混改性配方树脂PP100;成核剂0.1;PET15;相容剂PPgAA5;加工工艺将各组分按配方比例称量,放入高速混杂机中混杂搅拌均匀,出料,然后在挤出机中熔融共混挤出造粒.挤出机L/D为25:1;料筒温度30℃,螺杆转速60100r/min.性能拉伸强度34.2MPa;弯曲强度63.1MPa.PET与PP共混,既可以改良PET的缺点,又可以提高,又可以提高PP的冲击强度和力学性能.但两种树脂极性相差较大,PET是极性聚合物,PP是非极性聚合物,两者相容性差.参加PPAA5,可明显地改良两者相间的相容性.12、PP/PBT共混改性配方树脂PP100;PBT20;润滑剂EBS0.5;相容剂E/EA/GMA5;加工工艺将各组分按配方比例称量,放入高速混杂机中混杂搅拌均匀,出料,然后在挤出机中熔融共混挤出造粒.挤出机的L/D≥20:1;料筒温度190~230℃;螺杆转速100~160r/min.性能拉伸强度37.2MP;弯曲强度76.5MPa;冲击强度10KJ/m2.PBT是极性聚合物,而PP是非极性高份子,两者之间不相容,采取E/EA/GMA相容剂,提高界面粘接力,起到良好的相容作用.13、PP/SBS共混改性配方树脂PP100;增韧剂SBS20;抗氧剂1520D0.4;润滑剂EBS0.2;加工工艺将各组分按配方比例称量,放入高速混杂机中混杂搅拌均匀,出料,然后在挤出机中熔融共混挤出造粒.挤出机的长径比为25:1:挤出温度155215℃;螺杆转速为100~160r/min.性能随着SBS参加量的增加,共混资料的冲击强度、断裂伸长率逐步提高,拉伸强度、弯曲强度、模量和硬度则会下降.14、PP/SBR共混改性配方树脂PP60;交联剂BP03;增韧剂粉末丁苯橡胶(SBR)14;润滑剂硬脂酸0.8;抗氧剂1680.2;填料纳米碳酸钙20;β晶成核剂2加工工艺将PP、SBR和填料按配方比例称量,放入高速混杂机中混杂搅拌均匀,出料;将成核剂、交联剂、抗氧剂、润滑剂按配方比例称量,混杂搅拌均匀;然后将两种混杂料一同参加高速混杂机中进行充分混杂,混杂好的物料参加到双螺杆挤出机中混炼,经双螺杆挤出机挤出冷却,通过切粒机造粒.机筒温度:一区195℃,二区200℃,三区205℃,四区200℃,五区195℃;螺杆转速为300r/min性能拉伸强度35.8MPa;断伸长率12.3%,弯曲强度34.2MPa;缺口冲击强度15.4KJ/m2.。
塑料热学性能改性配方设计
优缺点
❖ 以添加量少,阻燃效果显著; ❖ 卤系阻燃剂作用时会产生大量的烟雾,有毒且具有腐蚀
性的卤化氢气体,不仅妨碍救援工作,而且会腐蚀仪器 和设备,产生二次灾害;燃烧时所产生的有毒(二wu 英)的烟雾,对环境污染严重。
❖ 阻燃剂:能阻止塑料引燃或抑制火焰传播的助剂,是仅 次于填料、增塑剂的第三大助剂品种。
❖ 阻燃剂:第V族的N、P、As、Sb、Bi和第VII族F、Cl、 Br、I及B、Al、Mg、Ca、Zn、Sn、Mo、Ti、Cu、Fe 的等的化合物
❖ 最常用的为N、P、B、Sb、Cl、Br、Al、Mg、Fe、Zn 的化合物。
0. 03~0.05μm;白烟为悬浮在空气中的微小粒子。 ✓ ②、不可见部分为气体,如HCl、CO2、CO、HCN及
甲烷等,其中HCl、CO及HCN为有毒气体。
消烟机理
❖ 塑料消烟的基本原理为加入无机消烟剂,改变塑料的降 解方式,抑制炭微粒的形成,使之形成焦炭,并吸收有 毒气体。
三、常用塑料阻燃材料
<22:易燃;22~27:自熄性;>27:难燃
2、美国UL标准(UL-94)
❖ 美国UL-94标准的测试方法为观察塑料在直接接触火源 时的燃烧情况,并划分为三个级别。
✓ V-0级:离火后10s熄灭,并不引燃其下方30cm处的药棉 ✓ V-1级:离火后10~30s熄灭,并不引燃其下方30cm处的
药棉。 ✓ V-2级:离火后30s熄灭,并引燃其下方30cm处的药棉。 ❖ 在我国,主要以氧指数法为主。
应用比例和发展方向
改性聚丙烯八大应用领域
改性聚丙烯八大应用领域一、以PP为载体的碳酸钙填充母料碳酸钙填充母料自上世纪八十年代初诞生以来,已为塑料加工行业和全社会做出了巨大贡献,年产量达一百多万吨,是改性塑料重要的品种之一。
填充母料的载体最初使用的是聚丙烯聚合时的副产物——无规聚丙烯(APP),故亦称之为APP母料。
后因北京燕山石化公司技术改造,无规聚丙烯的来源枯竭,而碳酸钙作为合成树脂紧缺年代的替代物,市场需求旺盛。
在此背景下以聚乙烯树脂为载体的碳酸钙填充母料应运而生,如LDPE1F7B至今仍然是多数填充母料的主要原料。
由于填充母料的主要用途是聚丙烯编织袋用的扁丝和打包带,从价格、相容性和扁丝强度等方面考虑,使用聚丙烯为载体树脂更适合于此种填充母料。
二十世纪九十年代初,当时的轻工业部塑料加工应用研究所率先推出以粉状聚丙烯为载体树脂的碳酸钙填充母料,称之为PPM母料,并于一九九二年获得国家级新产品称号。
PPM母料以小本体PP粉料为载体,在价格上比起1F7B等PE 树脂有显著优势,至今也仍保持着1000元/吨以上的差价。
同时PP 本身的密度低,意味着相同质量的树脂有更多数量的聚合物承担载体树脂的任务。
此外PP的强度高于PE,同样情况下可使扁丝、打包带等具有更高的强度,见表13、表14。
到及扁丝、打包带等制品类似的结果,即将PP为载体树脂的填充母料及其它树脂为载体的填充母料相比,按QB 1126-91《聚烯烃填充母料》行业标准规定制成的注塑样条中,当配方相同、制样设备、条件相同时,PP为载体的填充母料效果最好,见表15。
①粉状PP比粒状PP更便宜,更易及碳酸钙混合均匀,应优先使用。
②粉状PP的熔体流动速率不宜过大,4~10g/10min为好。
③粉状PP中没有加入抗氧剂、润滑剂等助剂,必须适量添加。
④粉状PP在存放过程中会逐渐降解,放出酸味,因此一定要问清生产时间,并及时使用,最好在聚合出后的一个月内用完。
⑤以粉状PP为载体的碳酸钙填充母料可以使用同向平行双螺杆挤出机加工,碳酸钙的比例可以达到80%以上。
改性塑料生产工作流程
改性塑料生产工作流程改性塑料是在基础塑料中添加特定的成分,以提高其性能和应用范围的一种塑料制品。
改性塑料广泛应用于包装、电子、汽车和建筑等行业。
本文将介绍改性塑料生产的工作流程。
一、原料准备阶段改性塑料生产的第一步是原料的准备。
原材料有基础塑料和改性剂两类。
基础塑料通常是聚乙烯(PE)、聚氯乙烯(PVC)、聚丙烯(PP)等。
改性剂可以是填料、增强剂、稳定剂或增塑剂等。
这些原料根据配方比例准备好,以备后续使用。
二、混炼和造粒阶段混炼是将基础塑料和改性剂混合均匀的过程。
混炼通常使用专用的混炼设备,如混炼机或挤出机。
在混炼的同时,可以加入其他需要的添加剂,如颜料、抗氧化剂等。
混炼完成后,将混炼好的塑料料坯送入造粒机进行造粒。
造粒是将塑料料坯加热、熔融,并通过模具制成颗粒状的成品。
三、挤出阶段改性塑料的挤出是将造粒好的材料通过挤出机加热并挤出成型的过程。
挤出机通常由供料装置、加热装置和挤出装置组成。
在挤出装置中,材料被加热至熔融状态后,通过模具挤出,形成所需的形状和尺寸。
挤出成型的改性塑料可以是管材、板材、薄膜等。
四、成型和冷却阶段挤出成型的改性塑料需要经过成型和冷却来得到最终的产品。
成型可以通过注塑成型、吹塑成型或压延成型等方式进行。
成型过程中,根据需求可以采用不同的技术手段,如压力控制、温度控制等。
成型完成后,通过冷却装置对产品进行冷却,使其固化并保持所需的形状和尺寸稳定。
五、后处理阶段改性塑料的后处理包括除湿、清洁和包装等过程。
由于改性塑料对湿度敏感,所以需要进行除湿处理,确保其质量和稳定性。
清洁是为了去除生产过程中可能残留的污染物和杂质,保证产品的纯净度。
最后,将成品包装,以便运输和储存。
综上所述,改性塑料生产的工作流程包括原料准备、混炼和造粒、挤出、成型和冷却以及后处理等阶段。
通过这些工艺步骤,原材料经过加工和处理,最终得到性能优良、用途广泛的改性塑料制品。
改性塑料的生产工作流程能够满足不同行业对塑料产品的需求,推动了相关行业的发展。
PP共混改性配方大全
PP共混改性配方大全聚丙烯是目前用量最大的通用塑料之一,但较高的结晶度也给PP造成低温韧性差、成型收缩率大和缺口敏感性大等缺点,在一定程度上限制了其更广泛的应用。
共混改性是PP增韧的最有效途径。
它是利用组份之间的相容性或反应共混的原理,将两种或两种以上的聚合物与助剂在一定温度下进行机械共混,最终形成一种宏观上均匀,微观上相分离的新材料。
通过对PP的共混故性,可以使其综合性能大大提高,从而和工程塑料及聚合物合金在众多应用领域里竞争。
PP共混改性使用的主要共混物物及改性效果如下表:PP接下来就是干货满满的具体改性配方和工艺啦!1、PP/LDPE共混改性配方树脂PP100;相容剂PE-g-MAH5;LDPE20;润滑剂HSt0.3;加工工艺将PP与PE、相容剂及助剂按配方比例混合、搅拌、挤出造粒,制成改性材料。
挤出机料筒温度为:一段210℃,二段215℃,三段210℃;螺杆长径比为25:1;螺杆转速为120~160r/min。
性能PP与PE共混,可改善PP的韧性,增大低温下落球冲击强度。
按配方比例的共混材料的屈服应力13.6MPa;屈服应变率为12.3%,断裂应力为4.78MPa;断裂应变率为114.6%。
2、PP/HDPE共混改性配方树脂PP57.35;抗氧剂10760.2;HDPE40;PEPQ0.2;交联剂叔丁基过氧基异丙苯0.15;加工助剂硬脂酸镁0.1;填充剂硅灰石2;加工工艺在常温常压下,将各组分按配方比例在高速混合机中混合10min,然后采用双螺杆挤出机进行熔融共混,挤出造粒。
挤出温度150-220℃,螺杆转速为300r/min,经切粒、干燥工序制得PP/HDPE共混改性材料。
性能拉伸强度34.8MPa,悬臂梁冲击强度49.3J/m。
该材料表面消光效果良好,可用于包装、日用品和建筑材料等领域。
3、PP/LLDPE共混改性配方树脂PP(EPF30R)60-70;钛酸酯偶联剂(ND2-311)适量;LLDPE15-20;抗氧剂增韧剂POE(8150)5~10;光稳定剂适量;填充剂滑石粉(平均粒径12μm)10~15;加工工艺等高速混合机预热至110℃,加入一定量的无机填料,低速搅拌15min后,分三次加入填料质量分数为2%的偶联剂,每次加入偶联剂后,高速搅拌5min,然后放出填料备用。
聚丙烯塑料的改性及应用(三)
据日本理化株式会社介绍,日本7%的PP为透明PP,透明PP的产量在400kt/a以上。
日本透明PP市场以微波炉炊具及家具两方面的消耗量最大。
日本出光化学公司制造出与PVC具有同样透明性和光泽性的透明PP,此刻可以广泛替代普通透明PVC制作文具、笔记本一类的包装物,价格只相当于PVC的20%-30%,1999年出售了1200 t透明PP。
韩国LG Caitex公司将透明PP作为PET的替代品推向市场,应用于水瓶、洗涤剂瓶、个人护理品的包装等方面。
Fina公司市场部声称,他们的透明PP新产物将打人具有300kt/a市场容量的PS食品包装。
德国BASF公司的PP无规共聚物Novolen3248 TC,具有高流动性〔熔体流动速率为48g/l0min〕、低翘曲性,透明度达90%,雾度10%,适用于薄壁包装与日用品。
Solvay公司研制的PP无规共聚物EltexPKLl76,含有乙烯和透明剂,主要用于制造单层透明瓶和挤压片材,片材可热压成型各种容器及装饰品。
其产物具有玻璃般的光泽、很好的化学不变性、耐环境应力开裂性和冲击强度。
德国Schneioler公司和Klein公司用透明聚丙烯替代PVC用于透明硬包装。
美国Amoco公司用透明改性剂出产的聚丙烯树脂经注、拉、吹工艺加工而成的水瓶可替代聚酯水瓶。
Montell Polyolefins公司比来推出了α烯烃改性PP树脂,牌号别离为273RCXP和276RCXP,主要用于注塑成型。
两种牌号的树脂都没有添加成核剂和透明助剂,此中273RCXP树脂的熔体速率为14g/10min,表示出低的气味性以及好的耐应力发白性能。
该树脂的透光性能相当于最好的PP无规共聚物,具有较高的光泽度,可制作成母粒形状用于出产固体或类似于用尼龙做成的半透明色母粒。
276RCXP树脂的熔体流动速率为16g/l0min,透光性和光泽度稍差些,但该树脂却展示出极佳的低温冲击性能,在低温下储藏后能经反复加热且耐冲击,可制作放于微波炉中的容器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塑胶改性工艺配方与应用本书前3章简要介绍了塑料改性的基础知识和高分子材料的结构与性能特点,并对塑料改性的原理和塑料改性的设备、工艺和工厂设计进行了较为详细的论述,便于读者系统地了解塑料改性的基本知识。
第4章~第8章按塑料品种详细论述了其改性技术,同时加入了大量的应用实例,有利于读者对塑料改性的理解,并指导实际生产应用。
本书适用于塑料生产单位的工程技术人员以及管理人员,也适用于家电、汽车、电子、通讯等行业的工程技术人员、设计人员和高等院校师生。
目录第1章塑料改性基础1.1塑料改性的目的、意义和发展1.2高分子材料的结构与性能1.2.1高分子的结构1.2.2聚合物的分子运动和热转变1.2.3高分子的黏弹性1.2.4高分子材料的力学性能1.3聚合物加工流变学1.4高分子材料加工基础1.4.1加工过程中的结晶1.4.2加工过程中聚合物的取向1.4.3聚合物在加工过程中的降解1.4.4加工过程中的交联1.5塑料注射成型1.6塑料挤出成型1.7重要性能的测试1.7.1拉伸强度和杨氏模量1.7.2弯曲强度和模量1.7.3冲击强度1.7.4热性能1.7.5老化性能试验1.7.6燃烧性能1.7.7熔体流动速率参考文献第2章塑料改性原理2.1概述2.2塑料的共混改性2.2.1聚合物共混理论及改性技术的发展2.2.2聚合物?聚合物相容性2.2.3聚合物共混物的形态结构2.2.4共混改性塑料的界面层2.2.5塑料共混的增容2.2.6增韧理论2.3塑料的填充改性2.3.1填料的定义、分类与性质2.3.2常用填料2.3.3填料表面处理2.3.4表面处理剂2.3.5填充改性塑料的力学性能2.4塑料的增强改性2.4.1热塑性增强材料的性能特点2.4.2增强材料2.4.3玻璃纤维的表面处理2.4.4聚合物基纤维复合材料的界面2.5塑料的阻燃改性原理2.5.1聚合物燃烧过程与燃烧反应2.5.2卤锑系阻燃剂的阻燃机理2.5.3磷系、氮系阻燃剂的阻燃机理2.5.4膨胀阻燃及无卤阻燃阻燃机理2.5.5塑料的抑烟技术2.5.6成炭及防熔滴技术2.6塑料的化学改性参考文献第3章塑料改性设备与工艺3.1塑料改性通用设备3.1.1初混设备3.1.2间歇式熔融混合设备3.1.3干燥设备3.2混炼型单螺杆挤出机3.2.1单螺杆挤出机的螺杆结构3.2.2分离型螺杆3.2.3BM型屏障螺杆3.2.4销钉型螺杆3.2.5DIS(分布混合)螺杆3.2.6波状螺杆3.2.7静态混合器3.2.8组合型螺杆3.3双螺杆挤出机3.3.1结构3.3.2分类3.3.3啮合同向旋转双螺杆挤出机输送机理3.3.4双螺杆挤出机的主要技术参数3.3.5啮合同向旋转双螺杆挤出机的挤出过程3.3.6螺杆元件3.3.7螺杆的拆卸组装3.3.8啮合同向平行双螺杆挤出机的料筒结构3.4塑料改性工艺流程3.4.1常用工艺流程3.4.2切粒方法的选择3.4.3螺杆元件的组合3.4.4玻璃纤维增强塑料制备工艺流程3.4.5填充改性的工艺流程3.4.6双阶挤出机组3.4.7塑料共混工艺流程3.5塑料改性的工厂设计参考文献第4章聚氯乙烯的改性及应用4.1聚氯乙烯的性能特点4.2聚氯乙烯的共聚改性4.2.1氯乙烯的无规共聚改性4.2.2氯乙烯的接枝共聚改性4.3聚氯乙烯的化学反应改性4.3.1聚氯乙烯的氯化反应4.3.2聚氯乙烯的交联反应4.4聚氯乙烯的共混改性4.4.1聚氯乙烯/ABS共混体系4.4.2聚氯乙烯/ACR共混体系4.4.3聚氯乙烯/氯化聚乙烯共混体系4.4.4聚氯乙烯与EPDM、EV A、MBS、NBR的共混体系4.4.5聚氯乙烯/聚丙烯共混体系4.5聚氯乙烯的填充改性4.5.1聚氯乙烯/碳酸钙复合体系4.5.2聚氯乙烯/滑石复合材料4.5.3聚氯乙烯/粉煤灰复合体系4.5.4聚氯乙烯/凹凸棒土复合材料4.5.5聚氯乙烯/植物纤维粉复合材料4.6聚氯乙烯的阻燃改性4.7聚氯乙烯的增强改性4.8聚氯乙烯的发泡改性4.9实例及应用4.9.1UPVC给水管材、管件4.9.2PVC微发泡仿木结皮板材4.9.3透明PVC医用厚片材制品4.9.4NBR/PVC摩托车橡胶护套4.9.5PVC冰箱门封条4.9.6UPVC塑钢门窗参考文献第5章聚乙烯的改性及应用5.1概述5.2聚乙烯的化学改性5.2.1茂金属聚烯烃弹性体5.2.2聚乙烯的氯化5.2.3聚乙烯的接枝改性5.2.4聚乙烯的交联改性5.3聚乙烯的填充与增强5.3.1碳酸钙填充改性聚乙烯5.3.2滑石粉填充改性聚乙烯5.3.3高岭土填充改性聚乙烯5.3.4其它填充改性5.4聚乙烯的共混改性5.4.1不同聚乙烯的共混改性5.4.2聚乙烯与EV A的共混改性5.4.3聚乙烯与尼龙的共混改性5.4.4聚乙烯与氯化聚乙烯的共混改性5.4.5聚乙烯与丁腈橡胶的共混改性5.4.6聚乙烯与其它弹性体的共混改性5.5聚乙烯的阻燃改性5.5.1聚乙烯燃烧及阻燃机理5.5.2十溴二苯乙烷协同三氧化二锑阻燃聚乙烯5.5.3联枯(DMDPB)对聚乙烯的阻燃作用5.5.4聚乙烯的无机阻燃剂阻燃5.5.5磷系阻燃剂对聚乙烯的阻燃作用5.5.6膨胀型阻燃剂5.5.7氮系、硅系阻燃剂5.6实例及应用5.6.1农业大棚膜中的应用5.6.2汽车工业中的应用5.6.3矿井管道中的应用5.6.4电缆中的应用参考文献第6章聚丙烯的改性与应用6.1概述6.2聚丙烯的化学改性6.2.1聚丙烯的共聚改性6.2.2聚丙烯的接枝改性6.2.3聚丙烯的氯化改性6.2.4聚丙烯的交联改性6.2.5聚丙烯的控制降解6.3聚丙烯的共混改性6.3.1聚丙烯与聚乙烯的共混改性6.3.3聚丙烯/聚氯乙烯共混改性6.3.4聚丙烯与茂金属聚烯烃弹性体的共混改性6.3.5聚丙烯与乙丙橡胶的共混改性6.4聚丙烯的填充改性6.5聚丙烯的阻燃改性6.5.1含卤阻燃聚丙烯6.5.2无卤阻燃聚丙烯6.5.3膨胀型石墨阻燃聚丙烯6.5.4氢氧化铝及氢氧化镁阻燃的聚丙烯6.6聚丙烯的抗老化改性6.7实例及应用6.7.1空调室外机壳——耐候PP6.7.2洗衣机滚筒——硅灰石增强PP6.7.3音箱专用料——高密度PP6.7.4冰箱抽屉专用料——填充增韧PP6.7.5电饭煲、电热杯专用料——高光泽PP6.7.6汽车保险杠专用料——增韧PP6.7.7汽车仪表板专用料——增强耐热PP6.7.8汽车用PP塑料水箱6.7.9汽车暖风机罩——矿物增强PP6.7.10洗衣机滚筒专用料——玻璃纤维增强PP参考文献第7章聚苯乙烯的改性及应用7.1概述7.2聚苯乙烯的化学改性7.2.1聚苯乙烯与马来酸酐的接枝改性7.2.2茂金属间规聚苯乙烯7.3聚苯乙烯的阻燃改性7.3.1聚苯乙烯的卤系阻燃7.3.2脂肪族溴系及氯系阻燃体系7.3.3卤系阻燃体系对阻燃聚苯乙烯性能的影响7.3.4聚苯乙烯的磷系阻燃及抑烟7.3.5聚苯乙烯的交联成炭阻燃7.3.6聚苯乙烯的新型阻燃体系和无卤阻燃7.4聚苯乙烯的填充与增强7.4.1碳酸钙填充改性聚苯乙烯7.4.2滑石粉填充改性聚苯乙烯7.4.3蒙脱土填充改性聚苯乙烯7.4.4二氧化钛改性聚苯乙烯7.5聚苯乙烯的共混改性7.5.1聚苯乙烯与线型低密度聚乙烯的共混改性7.5.2聚苯乙烯与低密度聚乙烯的共混7.5.4聚苯乙烯与SBS的共混改性7.5.5聚苯乙烯与其它聚合物的共混改性7.6实例及应用7.6.1低烟阻燃HIPS的制备7.6.2超韧HIPS材料的制备及其在军事上的应用参考文献第8章ABS树脂改性及应用8.1概述8.2ABS的化学改性8.3ABS的共混改性8.3.1ABS与聚氯乙烯的共混改性8.3.2ABS与尼龙的共混合金8.3.3ABS与聚对苯二甲酸丁二醇酯的共混合金8.3.4ABS与聚碳酸酯的共混合金8.4ABS的增强改性8.4.1玻璃纤维增强ABS的性能与玻璃纤维含量的关系8.4.2偶联剂对玻璃纤维增强ABS材料性能的影响8.4.3其它偶联剂及新技术对玻璃纤维增强ABS性能的影响8.4.4长纤维与短纤维增强ABS性能的比较8.5ABS的阻燃、填充改性8.5.1ABS常用的阻燃体系8.5.2玻璃微珠填充ABS8.5.3蒙脱土、硅酸盐与ABS的复合8.6ABS的抗老化和抗静电改性8.6.1ABS的抗老化改性8.6.2ABS的抗静电改性8.7特种耐候ABS系树脂的制备及性能8.7.1ACS的制备及应用8.7.2ASA(AAS)的制备及应用8.7.3AES的制备及应用8.8实例及应用8.8.1空调电器箱体用阻燃ABS的制备8.8.2空调轴流风扇用玻璃纤维增强ABS的制备8.8.3洗衣机面板、冰箱面板用耐候ABS制备8.8.4特种工程塑料——超耐候ASA的制备8.8.5手机外壳、笔记本电脑外壳用PC/ABS合金的制备8.8.6手机充电器座用阻燃PC/ABS合金的制备。