植物的矿质营养
《植物的矿质营养》教案

《植物的矿质营养》教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!《植物的矿质营养》教案《植物的矿质营养》教案(通用3篇)《植物的矿质营养》教案篇1第五节植物的矿质营养教学目的 1.植物必需的矿质元素及其种类(b:识记)。
《植物的矿质营养》教学设计(热门三篇)

《植物的矿质营养》教学设计(热门三篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《植物的矿质营养》教学设计(热门三篇)《植物的矿质营养》教学设计篇1一、说教学理念《普通高中生物课程标准》明确指出:高中生物课程将在义务教育基础上,进一步提高学生的科学素养,使学生掌握社会生活、生产实践中所需要的生物科学知识,努力发展学生的科学探究能力以及相关的情感态度和价值观。
植物的矿质营养

植物的矿质营养1. 引言植物的生长和发育需要多种营养物质,其中矿质营养在植物的生命活动中起着至关重要的作用。
矿质营养是指植物从土壤中吸收的无机物质,包括常见的氮、磷、钾等元素,以及微量元素如锌、铜、锰等。
本文将重点介绍植物的矿质营养的种类、功能以及影响因素等内容。
2. 植物的矿质营养种类植物的矿质营养主要包括宏量元素和微量元素两大类。
2.1 宏量元素宏量元素是植物需要吸收的主要无机元素,它们以百分之几的质量存在于植物体内。
常见的宏量元素有氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)和硫(S)等。
•氮素(N):植物体内氨基酸、DNA、RNA等生物大分子的组成成分,是植物生长发育的基础元素。
•磷素(P):是ATP(三磷酸腺苷)等能量转化过程中的重要组成元素,同时也是细胞质膜、DNA和RNA等的构成成分。
•钾素(K):促进植物的光合作用、调控植物的水分平衡和营养转运,对提高植物的抗病性和抗逆性具有重要作用。
•钙素(Ca):调节细胞的渗透平衡,影响细胞的生长分裂和细胞壁的合成,同时也参与信号传导。
•镁素(Mg):是叶绿素的组成部分,对光合作用和能量转化过程具有重要影响。
•硫素(S):是蛋白质、蛋白质酶、维生素B1和维生素B6等的组成成分,参与植物的生命活动。
2.2 微量元素微量元素是植物体内含量较低的无机元素,但对植物的生长发育同样至关重要。
常见的微量元素有铁(Fe)、锌(Zn)、锰(Mn)、铜(Cu)、钼(Mo)和镍(Ni)等。
•铁(Fe):是光合作用和呼吸作用中的重要催化剂,参与植物体内的电子转运和能量转化过程。
•锌(Zn):是植物体内多种酶的重要成分,参与DNA和蛋白质的合成过程。
•锰(Mn):是植物体内氧气释放过程的关键酶的组成成分。
•铜(Cu):参与咖啡因合成、植物生长和光合作用等多种重要生理过程。
•钼(Mo):是植物体内硝化细菌和固氮细菌的酶的辅助因子,参与氮代谢过程。
•镍(Ni):催化植物体内亚硝酸盐的还原过程。
第三章矿质营养

第三章矿质营养
7. 硅
◇ 吸收形式:单硅酸〔Si (OH)4〕。 ◇ 硅多集中在表皮细胞内,使细胞壁硅质化,增强
了植物对病虫害的抵抗力和抗倒伏的能力。 ◇ Si对生殖器官的形成有促进作用,如对穗数、小穗
◇ 有益元素或有利元素 有些元素并非植物必需的,但能促进某
些植物的生长发育,这些元素称为有益元素或有利元素,常见的有钠、 硅、钴、硒、钒等,如Si对水稻、Al对茶树等。
●稀土元素 指元素周期表中原子序数在57~71的镧系元素及
其化学性质与镧系元素相近的钪和钇。植物体内普遍含有稀土元素,稀 土元素对植物的生长发育有良好的作用,如低浓度稀土元素可以促进种 子萌发和幼苗生长。
第三章矿质营养
●下图:当细胞外的某一离子浓度比细胞内的该离子浓度
高时,质膜上的离子通道被激活,通道门打开,离子将顺
着跨质膜的电化学势梯度进入细胞内。
离 子 通 道 运 输 离 子 的 模 式 图
第三章矿质营养
(二)载体运输
载体运输学说认为,质膜上有各种载体蛋白,属于 内在蛋白,它有选择地与质膜一侧的分子或离子结合, 形成载体—物质复合物。通过载体蛋白构象的变化,透 过质膜,把分子或离子释放到质膜的另一侧。
的物理、化学、微生物条件的改善而产生的间接效果。
即:不可缺少性,不可替代性,直接功能性。
第三章矿质营养
根据上述标准,现已确定植物必需的矿质元素 (包括氮)有14种,它们是:
氮(N) 磷(P) 钾(K) 钙(Ca) 镁(Mg) 硫(S) 铁(Fe) 铜(Cu) 锌(Zn) 锰(Mn) 硼(B) 钼(Mo) 氯(CI) 镍(Ni)
植物的矿质营养

2.2 载体运输carrier transport 质膜上的一类内在蛋白— 载体蛋白,可以选择性的与质膜一侧的分子或离子结合, 形成载体—分子(或离子)复合物。再通过载体蛋白构象的 变化, 透过质膜,把分子或离子释放到质膜的另一侧。 可以顺电化学梯度进行(被动运输),也可以逆电化学梯度 进行(主动运输) 。有三种类型: 单向运输载体uniport carrier 同向运输器symporter 反向运输器antiporter
植物体内氨的同化包括谷氨酰胺合成酶、谷氨酸合成酶、 谷氨酸脱氢酶、氨基互换作用等途径。
1.2.1 谷氨酰胺合成酶途径 在谷氨酰胺合成酶glutamine synthetase, GS的作用下,以Mg2+、Mn2+、或Mo2+作为辅 酶因子,使铵与谷氨酸结合,形成谷氨酰胺。
COOH
HC NH2 GS ATP COOH HC NH2 CH2 细胞质 根细胞的 H2O 质体 叶片细胞 的叶绿体
和溶液中的矿质元素类似,这种吸收也要通过一系 列的离子交换过程来完成。 3. 影响根部吸收矿质元素的条件
3.1 温度 在一定范围内,土壤温度升高会使矿质元素的 吸收速率升高。 3.2 通气状况
3.3 溶液浓度 3.4 氢离子浓度
4. 植物体地上部分对矿质元素的吸收—根外营养
植物体地上部分吸收矿物质的过程,称为根外营养。 地上部分吸收矿物质的的器官主要要是叶片,所以也称为 叶片营养foliar nutrition 。营养物质可以通过气孔和角质 层进入叶内,以后者为主。 营养元素进入叶片的数量与叶片的内外因素有关。
为什么会称为生电质子泵?
质子浓度梯度
膜电位梯度 电化学势梯度 质子泵的作用机制
上述质子泵的工作过程,是一种利用能量(来自ATP 水解) 逆着电化学梯度转运H+的过程,因此是一个主动运 输过程。 质子泵活动的结果,产生了跨膜的电化学势梯度, 这种电化学梯度又促进了细胞对矿质元素的吸收,矿质元 素以这种方式进入细胞,也是一种间接利用能量的方式, 因此,我们将质子泵的运输过程成为初级主动运输,后者 称为次级主动运输。
植物的矿质营养

硝酸还原酶催化
来源于呼吸作用
亚硝酸还原成氨---叶绿体或根中的前质体
亚硝酸还原酶(nitrite reductase, NiR)催化
氢供给体是绿叶中的铁氧还蛋白(Fd)
含两个辅基(铁-硫簇 (Fe4S4),特异化血红素)
亚硝酸还原酶
光合作用
(五)离子间的相互作用
竞争和协助作用
1.竞争作用
一种离子存在抑制植物对另一种离子吸收。 易发生在具有相同理化性质(如化合价和离子半径)的离子之间,可能与竞争同种离子载体有关。 NH4+ K+; Mn2+、Ca2+ Mg2+; Cl- NO3-;SO42- SeO42-
放射性试验证实
根系吸收无机离子主要通过木质部向上运输,同时可从木质部活跃地横向运输到韧皮部 矿质元素运输的途径
二、矿质元素在植物体内的分配与再分配
缺素症---先出现于嫩叶。
02
1.参与循环元素:都能再利用
分配与再分配,因离子在植物体内是否参与循环而异。 有的元素进入地上部后仍呈离子状态(钾) ; 有的元素形成不稳定化合物,不断分解,释放出的离子又转移到其它需要的器官中去(氮、磷、镁) 。
3.平衡溶液(balanced solution)
二、根系吸收矿质元素的过程
离子进入导管
质外体和共质体 根部表面 进入根内部
2.离子进入根系内部
01
根系对溶液中矿质元素的吸收过程 原因:根部细胞质膜表层有阴阳离子( H+ 和 HCO3- 呼吸放 C02 和 H20 生成的H2C03 解离出来)。 H+ 和 HCO3- 迅速地分别与周围溶液阳,阴离子进行交换 吸附,盐类离子即被吸附在细胞表面(不需能量,速度快, 几分之一秒 ) 。
植物矿质营养

土壤中离子的吸附和交换
土壤中胶体粘粒和腐殖物质的表面具有电荷,可以吸引离子 和偶极分子,这种结合是可逆的. 粘粒矿物和腐殖质胶体二者都带有净负电荷,因而它们主要 吸引,吸附阳离子.这二者也有一些正电荷的部位,在该 处能累积阴离子.阳离子被保持的牢固程度取决于它的电 荷和水合程度.
土壤中离子的吸附和交换
缺钙症状
钙在植物体内的移动性很小,缺钙时茎和根的生长点以及幼 叶先呈现病症,使其凋萎甚至生长点死亡.由于生长点死 亡,植株呈簇生状. 缺钙植株叶尖或叶缘变黄,枯焦坏死.植株早衰,不结实或 少结实.
黄瓜缺钙
镁元素的生理功能 元素的生理功能
1. 镁是叶绿素的组成成分,故为叶绿素形成及光合作用所必需. 2. Mg 2+是许多酶的活化剂,包括许多转移磷酸基的酶;镁能与ATP形成 MgATP 2+复合物,然后此复合物结合到酶蛋白上,镁作为酶蛋白与 ATP相结合的桥梁促进磷酸基的转移. Mg 2+是己糖激酶,磷酸己糖激酶,丙酮酸激酶的活化剂;Mg 2+也是许 多合成酶如乙酰辅酶A合成酶,谷氨酰半胱氨酸合成酶,谷氨酰合成 酶和琥珀酰辅酶A合成酶的活化剂,Mg 2+还是核糖核酸聚合酶的活化 剂;聚核糖体的合成也必需Mg 2+ .故Mg 2+促进呼吸作用,氮代谢与 蛋白质的合成过程. 3. Mg 2+在光合作用中有特别重要的功能,在光合电子传递过程中,Mg 2+和K+ 作为H+ 的对应离子,在H+ 从叶绿体间质传递到类囊体空间的 同时,Mg 2+ 和K+ 即从类囊体空间转移到叶绿体间质,一方面使H+ 能继续转移,维持跨类囊体膜的H+ 梯度,促进光合磷酸化;另一方 面,Mg 2+转移到叶绿体间质,使RuBP羧化酶和5-磷酸核酮糖激酶等 活化,促进光合碳循环的运转,促进光合作用.
2.植物的矿质营养

12.钼 钼是以钼酸盐( MoO42-、HMoO4-)的形式进入植物体内。钼离子(Mo4+~Mo6+ )是硝酸 还原酶的金属成分,起着电子传递作用。钼又是固氮酶中钼铁蛋白的组成成分,在 固氮过程中起作用。所以,钼的生理功能突出表现在氮代谢方面。钼对花生、大豆 等豆科植物的增产作用显著。缺钼时,老叶叶脉间缺绿,坏死。而在花椰菜缺钼时, 形成鞭尾状叶,叶皱卷甚至死亡,不开花或花早落。 13.氯 氯离子(CI-)在光合作用水裂解过程中起着活化剂的作用,促进氧的释放。根和叶的 细胞分裂需要氯。缺氯时植株叶小,叶尖干枯、黄化,最终坏死;根生长慢,根尖粗。 14.镍 镍在植物体内主要以Ni2+的形式存在。镍是脲酶的金属成分,脲酶的作用是催化尿 素水解成CO2和NH4+。镍也是氢化酶的成分之一,它在生物固氮中产生氢气起作用。 缺镍时,叶尖积累较多的脲,出现坏死现象。
二、植物必需矿质元素的确定
Arnon和Stout ( 1939 )提出植物的必需元素必须符合下列3条标准: ①完成植物整个。生长周期不可缺少的; ②在植物体内的功能是不能被其他元素代替的,植物缺乏该元素时 会植表现专一的症状, 并且只有补充这种元素症状才会消失; ③这种元素对植物体内所起的作用是直接的,而不是通过改变土壤 理化性质、微生物生长条件等原因所产生的间接作用。 上3条标准目前看来是基本正确的,因此普遍为人们所接受。
10.锌 锌离子(Zn2+ )是乙醇脱氢酶、谷氨酸脱氢酶和碳酸酐酶等的组成成分 之一。缺锌植物失去合成色氨酸的能力,而色氨酸是吲哚乙酸的前身, 因此缺锌植物的吲哚乙酸含量低。锌是叶绿素生物合成的必需元素。 锌不足时,植株茎部节间短,莲座状,叶小且变形,叶缺绿。吉林和 云南等省玉米“花白叶病”,华北地区果树“小叶病”等都是缺锌的缘故。 11.铜 铜是某些氧化酶(例如抗坏血酸氧化酶、酪氨酸酶等)的组成成分,可以 影响氧化还原过程。铜又存在于叶绿体的质体蓝素中,后者是光合作 用电子传递体系的一员。缺铜时,叶黑绿,其中有坏死点,先从嫩叶 叶尖起,后沿叶缘扩展到叶基部,叶也会卷皱或畸形。缺铜过甚时, 叶脱落。
植物生长所必须的 矿质营养元素

植物生长所必须的矿质营养元素
植物生长所必须的矿质营养元素是指植物在生长过程中必须吸
收的一些元素,这些元素虽然只占植物体重的一小部分,但是它们的作用却是不可或缺的。
其中,主要包括以下元素:
1. 氮(N):氮是植物体内构成蛋白质和核酸等重要有机物的基础元素,同时也是植物生长中必需的养分之一。
氮充分供应可以促进植物生长,提高产量和品质。
2. 磷(P):磷是植物体内ATP、DNA、RNA等生命活动必需的物质的组成部分,同时也是植物生长中的重要养分。
磷的充分供应可以促进植物发育,增加根系、叶面积,提高植物的耐病性、抗旱能力和产量。
3. 钾(K):钾是植物细胞内的重要离子,可以调节植物体内的水分平衡和代谢过程。
钾的充分供应可以促进植物生长,提高光合作用效率,增加植物的抗旱能力和抗病能力。
4. 镁(Mg):镁是植物叶绿素的组成成分,参与植物体内的光合作用过程。
镁的充分供应可以促进植物生长,增加叶面积和叶绿素含量,提高植物的抗病能力和产量。
5. 硫(S):硫是植物体内许多生命活动必需的物质的组成部分,参与蛋白质合成等代谢过程。
硫的充分供应可以促进植物生长,增加植物的产量和品质。
除了以上五种元素,还有钙、铁、锌、锰、铜等元素也是植物生长中必需的营养元素。
这些矿质营养元素的充分供应对于植物的正常
生长发育和产量品质的提高都有非常重要的作用。
植物的矿质与氮素营养

植物的矿质与氮素营养植物是我们日常生活中不可或缺的一部分,它们为我们提供了许多重要的物质和服务。
植物的生长和发展取决于其对矿质和氮素的吸收和利用。
本文将讨论植物的矿质与氮素营养。
一、植物的矿质营养矿质营养是指植物从土壤中吸收的无机营养元素。
植物需要吸收的矿质元素有很多,包括镁、钙、铁、锌、铜、锰、硒、钼、氯等。
这些矿质元素在植物的生长和发展中起着重要作用。
1. 镁镁是植物体内的重要成分之一,它参与了许多生物化学反应,如光合作用和呼吸作用等。
镁的缺乏会导致叶片中叶绿素含量降低,影响植物的光合作用和生长发育。
2. 钙钙是植物细胞壁和中枢神经系统的组成成分,它对细胞分裂和细胞壁稳定性有着重要的作用。
钙的缺乏会导致植物的胶质变化,影响其正常生长发育。
3. 铁铁是植物体内的重要元素,它存在于许多酶中,参与了氧化还原反应和电子传递过程。
铁的缺乏会导致植物叶片的黄化,严重时可能导致植物死亡。
4. 锌锌是植物生长和发育的必需元素之一,它促进植物的生长发育和增强植物的免疫力。
锌的缺乏会导致植物叶片出现白色黄斑、萎缩等现象。
5. 铜铜是植物体内多种酶的组成成分,它对植物机体有重要的作用。
铜的缺乏会影响植物的代谢和生长发育。
二、植物的氮素营养氮素是植物生长必需的主要成分之一,植物需要从土壤中吸收氨、硝酸盐等氮源物质。
氮素对植物的生长发育有着重要的影响。
1. 生物固氮蚯蚓、田间杂草、青苔等具有固氮作用的微生物,能够把空气中的氮分子转变成可被植物吸收的氨态氮,为实现土地生态平衡起到了重要的作用。
2. 植物对氮素的吸收和利用一般情况下,植物吸收的氮素主要以硝酸盐形式存在。
植物的生长发育需要合适的氮素浓度。
氮素过多或不足都会影响植物的生长和质量。
3. 氮素对植物品质的影响植物体内氮素含量的增加,能够促进植物的生长发育和增加产量,但同时也会导致产量质量的降低。
植物倾向于把氮素转移到叶子和果实中,而不是转移到根系中,导致根系生长不良。
植物的矿质营养

小麦缺Cu叶片失水变白
硼 Boron (B)
1、生理作用:
第二章 植物的矿质营养
第ቤተ መጻሕፍቲ ባይዱ节 第二节 第三节 第四节 第五节 第六节
植物必需的矿质元素 植物细胞对矿质元素的吸收 植物体对矿质元素的吸收 矿物质在植物体内的运输和分布 植物对氮、硫、磷的同化 合理施肥的生理基础
第一节 植物必需的矿质元素
矿质营养(mineral nutrition): 植物对矿物质的吸收,转运和同化,通称矿质营养。
2、缺锰症状:
缺锰时植物不能形成叶绿素,叶脉间失绿褪色,但叶脉仍 保持绿色,此为缺锰与缺铁的主要区别。 新叶脉间缺绿,有坏死小斑点(褐或黄)。
大麦新叶有褐色小斑点
缺锰黄瓜叶片脉间失绿
苹果树缺锰 新叶脉间失 绿褪色, 有坏死小斑点
葡萄叶脉间失绿,果实成熟不一
图 观察草莓 叶片的缺素症 状:缺 K、P、 Fe、Zn、Ca、 Cu或 Mn ,同 时也显示了矿 物质充足的叶 片作为对照
一、植物体内的元素:
水分 10-95%
植物体:
干物质 5-90%
有机物:90%(可燃)
无机物:10%(灰分)
2 植物中灰分的含量:
水生植物1%;中生植物5~15%;盐生植物可高达 45%。
3 矿质元素的种类及数量:已发现70多种
二. 植物的必需元素(Essential elements)
1.标准: 1) 缺乏该元素,植物的生长发育受到影响,不能完成生活史.
第二章植物的矿质营养

3、起电化学作用。如渗透调节、胶体稳定和电荷中和等。
4、参与物质和能量的代谢过程。如是ATP、ADP、FAD、 FMN、GTP、NADH2、NADPH2、HSCoA组分。 (二)各种必需元素的生理作用
1、氮 根系吸收的氮主要是无机态氮:NH4&脂的主要成分:这三者又是原生 质、细胞核和生物膜的重要组成部分。氮也称生命元素。
缺磷:会影响细胞分裂,使分蘖减少,幼芽、幼叶生长停滞, 根、茎纤细,植株矮小,花果脱落,成熟延迟。缺磷时蛋白 质合成下降,糖的运输受阻,从而使营养器官中糖的含量相 对提高,利于花青素的形成,因而茎、叶会呈不正常的紫红 或暗绿色。磷在体内易移动,病症从老叶开始。
磷过多:叶出现小枯斑,为磷酸钙沉淀所致;磷过多还会阻碍 植物对硅的吸收,水稻得病;与锌结合,减少锌的有效性, 而易引起植物缺锌。
第二节 植物细胞对离子的吸收
一、被动吸收
被动吸收:是指细胞不需要 代谢能,而是依化学势或电化 学势梯度吸收分子或离子的现象。
有两种方式:
(一)简单扩散:是指疏水性分子或离子沿着化学势或电化学 势梯度向细胞内转移的过程。 扩散动力:
1)亲脂性物质:为膜两侧的化学势梯度。其扩散速度除与化 学势梯度有关外,还与扩散分子颗粒的大小及脂溶性程度有 关。自然颗粒小、脂溶性大的分子易透过膜。
2、时当磷磷,进吸主入收要根H以P部OH,422P-磷居O大4多-和部,H分当P会O土4转2壤-形变P为式H<有被7时机植,磷物吸化吸收合收H物。2P如土O磷壤4-较脂PH多、〉。核7 苷酸、核酸等。
植物矿质营养知识点总结

植物矿质营养知识点总结植物矿质营养是植物生长发育和生理代谢不可缺少的部分,对于植物的正常生长和健康状态起着非常重要的作用。
矿质元素是构成植物体组织及参与植物体内各种生理代谢的重要成分,对于植物的生长发育、光合作用、细胞分裂和分化以及酶的活性等都具有重要的影响。
下面将从植物对矿质元素的需求、主要的矿质元素及其功能、植物矿质元素缺乏的症状以及植物矿质营养的调理等几个方面进行详细的总结。
一、植物对矿质元素的需求植物对矿质元素的需求是多样的,一般来说植物对矿质元素的需求量是不同的,但是对于每种矿质元素都有其特定的需求。
植物对矿质元素的需求一般可分为两类,一类是大量元素,另一类是微量元素。
大量元素是植物体内含量较多的元素,微量元素是植物体内含量较少的元素。
植物对矿质元素的需求与土壤中各种矿质元素的含量、土壤的pH值、土壤的通透性等都有一定的关系。
在生态环境中,植物对矿质元素的需求是非常复杂的,一般来说,植物对不同矿质元素的需求是不同的,不同的植物对同一种矿质元素的需求也是不同的。
植物对矿质元素的需求主要与以下几个因素有关:植物的种类、植物的生长阶段、土壤中矿质元素的含量、土壤pH值以及土壤的通透性等。
另外,植物对于矿质元素的需求也会受到一些外界因素的影响,如干旱、盐碱、酸碱等环境因素都可能对植物对矿质元素的吸收产生影响,对植物的生长发育产生影响。
二、主要的矿质元素及其功能主要的矿质元素包括:氮、磷、钾、钙、镁、硫等大量元素和铁、锌、锰、铜、钼、镉、锗等微量元素,以下分别从大量元素和微量元素两方面进行介绍。
氮:氮是植物生长发育中极为重要的元素,它是植物体内蛋白质、核酸、叶绿素等重要化合物的组成成分,同时也是植物代谢过程中的重要参与者,对植物的生长发育、抗逆性和产量形成等都具有重要的影响。
氮的缺乏会导致植物生长缓慢、叶片黄化、叶片变小、生殖生长受阻等。
磷:磷是植物体内DNA、RNA、ATP等核酸和蛋白质的组成成分,是植物能量转移和储存的重要物质,对于植物的生长发育、抗病性和产量形成等都具有重要的影响。
第五节 植物的矿质营养

第五节植物的矿质营养一、矿质营养矿质营养是植物正常生长所必需的无机物质,也叫无机元素营养。
植物吸收矿质营养主要靠根系和表皮细胞。
矿质元素的分类:根据植物对矿质元素的需求和相互关系,矿质元素可分为基本元素和微量元素两类: - 基本元素是植物生长必需,且需要吸收较多的元素,如碳、氢、氧、氮、磷、钾、钙、镁和硫。
- 微量元素是植物生长必需,但需要吸收较少的元素,如铁、锰、锌、铜、镍、钼等。
在矿质元素中,氮、磷、钾是植物的三大主要营养元素,也是植物生长发育的限制营养素。
二、矿质元素的吸收和利用1.矿质元素的吸收a.吸附。
植物根际土壤颗粒表面带电,而矿质元素以离子形式存在土壤中,通过静电作用沿着离子浓度梯度向根发生扩散,到达根表面,被吸附在矿质啮合桥和质壁内侧表面。
b.渗透。
植物细胞膜内外具有浓度差,矿质元素在浓度梯度的驱动下通过渗透作用进入细胞内部。
c.激活传输。
激活传输是指矿质元素通过转运蛋白进行主动吸收,需要耗费ATP分子提供动力。
2.矿质元素的利用根据矿质元素的类型,其利用方式也有所不同: - 碳、氢、氧等元素被利用合成有机物质和ATP等细胞物质。
- 氮、磷等元素被合成成糖、脂肪、核酸等化合物。
- 钾、钙、镁等元素被利用形成细胞壁和结构蛋白质等。
三、矿质元素的缺乏症状矿质元素缺乏时,植物的生长和发育会受到影响,一般表现为以下症状:1.氮缺乏症状。
•叶片呈现黄绿色或绿色苍白。
•叶片大小和数量减少。
•生长迟缓,甚至停滞不长。
2.磷缺乏症状。
•叶片出现绿色或深绿色的紫色斑点。
•生长缓慢,植株变矮。
•花官能病变,果实缩小。
3.钾缺乏症状。
•叶缘呈现黄色或紫色。
•叶片上出现“间隙牙齿”似的枯死部位。
•植株弱,易发生干旱和寒冷害。
四、合理施肥保证植物的矿质营养为保证植物的矿质营养,务必合理施肥,包括选择合适的肥料类型、施肥时间和施肥量。
下面是一些常见的施肥方法:1.按照矿质元素需求配制肥料,保证植物充足的矿质元素供应。
植物生理学第二章:矿质营养

运输速度:30~100cm/h。
3.矿物质在植物体内的利用(掌握) 是否可再利用: 1)参与循环的元素:呈离子状态、形成不
稳定化合物,可以转移到其他需要的器 官。 如: N 、K、P等,是可再利用元素。
2)不能参与循环的元素:在细胞中呈难溶 的稳定化合物,不能转移。
马铃薯 (缺镁)
(5)钙(Ca) A.吸收形式: B.存在形式: C.作用 D.供应 a.充足 b.不足:幼叶
马铃薯 (缺钙)
微量元素 (1)铁(Fe) A.吸收形式: B.存在形式: C.作用 D.供应 a.充足 b.不足
华北果树的“黄叶病”
(2)硼(B) A.作用:生殖生长 B.供应 a.充足 b.不足 花药、花粉发育不良 酚类,顶芽坏死
3.生物固氮 空气中的氮气:79% 植物利用的限制:硝酸盐和铵盐
1)化肥生产: 条件:T:400~500℃,P:20MPa(200个大气压) 原料:氮、氢 年产量:2500万吨
2)生物固氮 年产量:9000万吨 定义:某些微生物将空气中的游离氮固定
转化为含氮化合物的过程。 (Biological nitrogen fixation)
1)简单扩散:高浓度至低浓度,跨膜 2)协助扩散:蛋白 参与,不耗能,也 称协助扩散 通道蛋白和载体蛋白
离子通道(ion channel )
质膜上蛋白质构成的圆形孔道; 可由化学方式或电化学方式激活;选择性
已知的离子通道有:K+,Cl-,Ca2+,NO3运输速度:107~108个/sec 密度:1个/15㎛2,
Models of K+ channel
载体 (carrier)与载体运输
植物生长所必须的 矿质营养元素

植物生长所必须的矿质营养元素
植物生长所必须的矿质营养元素是指植物在生长过程中所必须
摄取的一些无机物质。
这些矿质元素在植物生长和发育中扮演着重要的角色,确保了植物的正常生长、繁殖和适应环境的能力。
植物必需的矿质元素主要包括氮、磷、钾、钙、镁、硫、铁、锰、锌、铜、硼、钼、氯等13种元素。
其中,氮、磷、钾是植物生长所需的主要元素,被称为植物的“三大营养元素”。
氮元素是构成蛋白质和核酸的必要元素,可以促进植物生长和增加产量。
磷元素是植物生长和代谢的重要组成部分,对植物的生长和发育、花果质量和数量都有很大的影响。
钾元素可以提高植物的抗病性和逆境适应能力,促进植物的生长和发育。
除了上述三大元素,钙、镁、硫等元素也是植物所需的重要矿质元素。
钙元素可以增强植物细胞壁的强度,提高植物的抗逆性和耐久性。
镁元素是叶绿素的组成成分,是进行光合作用必不可少的元素。
硫元素是构成植物蛋白质的重要组成部分。
除了以上提到的主要矿质元素,铁、锰、锌、铜、硼、钼和氯等微量元素也对植物的生长和发育有着重要作用。
例如铁元素是植物进行呼吸和光合作用的必要元素,锌元素可以促进植物的生长和发育,硼元素则可以增强植物的抗逆性和提高花果的质量。
总之,矿质元素是植物生长和发育所必须的营养元素,其合理的供应对于植物的生长和产量有着重要的影响。
因此,在植物的生长过程中,应根据不同的作物类型和生长阶段,提供适当的矿质营养元素
供应,以保证植物的正常生长和发育。
植物的矿质营养

植物的矿质营养1、植物的矿质营养:是指植物对矿质元素的吸收、运输和利用。
2、矿质元素:一般指除了C、H、O以外,主要由根系从土壤中吸收的元素。
植物必需的矿质元素有13种.其中大量元素7种N、S、P、Ca、Mg、K(Mg是合成叶绿素所必需的一种矿质元素)巧记:丹留人盖美家。
Fe、Mn、B、Zn、Cu、Mo、Cl属于微量元素,巧记:铁门碰醒铜母(驴)。
3、交换吸附:根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。
4、选择吸收:指植物对外界环境中各种离子的吸收所具有的选择性。
它表现为植物吸收的离子与溶液中的离子数量不成比例。
5、合理施肥:根据植物的需肥规律,适时地施肥,适量地施肥。
语句:1、根对矿质元素的吸收①吸收的状态:离子状态②吸收的部位:根尖成熟区表皮细胞。
③、细胞吸收矿质元素离子可以分为两个过程:一是根细胞表面的阴、阳离子与土壤溶液中的离子进行交换吸附;二是离子被主动运输进入根细胞内部,根进行离子的交换需要的HCO-和H+是根细胞呼吸作用产生的CO2与水结合后理解成的,根细胞主动运输吸收离子要消耗能量。
④影响根对矿质元素吸收的因素:a、呼吸作用:为交换吸附提供HCO-和H+,为主动运输供能,因此生产上需要疏松土壤;b、载体的种类是决定是否吸收某种离子,载体的数量是决定吸收某种离子的多少,因此,根对吸收离子有选择性。
氧气和温度(影响酶的活性)都能影响呼吸作用。
2、植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。
①吸收部位:都为成熟区表皮细胞。
②吸收方式:根对水分的吸收---渗透吸水,根对矿质元素的吸收----主动运输。
③、所需条件:根对水分的吸收----半透膜和半透膜两侧的浓度差,根对矿质元素的吸收----能量和载体。
④联系:矿质离子在土壤中溶于水,进入植物体后,随水运到各个器官,植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。
3、矿质元素的运输和利用:①运输:随水分的运输到达植物体的各部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节植物的矿质营养
教学目的
1.植物必需的矿质元素及其种类(B:识记)。
2.植物对矿质元素吸收和利用的特点(B:识记)。
3.合理施肥的基础知识(B:识记)。
教学重点
1.植物必需的矿质元素及其种类。
2.根对矿质元素的吸收过程。
教学难点
根对矿质元素的吸收和对水分的吸收是两个相对独立的过程。
教学用具
小麦等植物体内主要元素含量表的投影片、小麦在不同生长发育时期对K、对P需要量的投影片、试管、玉米幼苗、营养液、实物投影仪
等。
教学方法
教师讲述、启发与学生观察、讨论相结合。
课时安排1课时。