天线阵列辐射方向图的研究
相控阵雷达天线方向图仿真研究
5 结束语
图 2 出现栅瓣的天线方向图
对于相控阵雷达天线方向图的仿真 ,在实现波束扫 描的同时 ,必须消除栅瓣 。通过理论研究和 Matlab 仿 真实验可知 ,天线方向图的栅瓣问题与波长λ、阵元间 距 d 以及波束指向θ0 密切相关 。当波长λ取定以后 , 只 要调整阵元间距 d 使其满足一定的条件 ,天线方向图便 不会出现栅瓣 。
using Matlab [ M ] . New Yo rk : Chap man & Ha H / CRC , 2000 [ 5 ] 梁广德 ,梁百川. 相控阵雷达信号截获与识别的仿真分析 [J ]. 航天电子对抗 ,1999 (3)
F(θ)
=
sin[πλN d ( sinθN sin[πλd ( sinθ-
sinθ0 ) ] sinθ0 ) ]
(4)
由 (4) 式可以看出 :
当
Nπd λ
(
si
nθ-
sinθ0 )
= 0 , ±π, ±2π, …, ±nπ( n
为整数) 时 ,分子为零 ;若分母不为零 ,则有 F(θ) = 0 。 当πλd ( sinθ- sinθ0 ) = 0 , ±π, ±2π, …, ±nπ时 ,式
φ = ψ = λ2πd sinθ0
(3)
式 (3) 表明 ,在θ0 方向 ,各阵元的辐射场之间 , 由于波程 差引起的相位差正好与移相器引入的相位差相抵消 ,结 果各分量同相相加获最大值 。
显然 ,为满足式 (3) 要求只需改变φ值就可改变波 束指向角θ0 ,从而形成波束扫描 。
3 栅瓣问题
将φ与波束指向θ0 之间的关系式 (3) 代入式 (2) 可 以得到
h = gcf ; f name = sp rintf (′N %d - d %f - t heta0 %d. p ng′,
阵列天线方向图的初步研究
通信信号处理实验报告——阵列天线方向图的初步研究 11级通信(研) 刘晓娟一、实验原理:1、智能天线的基本概念:智能天线是一种阵列天线,它通过调节各阵元信号的加权幅度和相位来改变阵列的方向图形状,即自适应或以预制方式控制波束幅度、指向和零点位置,使波束总是指向期望方向,而零点指向干扰方向,实现波束随着用户走,从而提高天线的增益,节省发射功率。
智能天线系统主要由①天线阵列部分;②模/数或数/模转换部分;③波束形成网络部分组成。
本次实验着重讨论天线阵列部分。
2、智能天线的工作原理:智能天线的基本思想是:天线以多个高增益的动态窄波束分别跟踪多个期望信号,来自窄波束以外的信号被抑制。
3、方向图的概念:以入射角为横坐标,对应的智能天线输出增益为纵坐标所作的图称为方向图,智能天线的方向图有主瓣、副瓣等,相比其他天线的方向图,智能天线通常有较窄的主瓣,较灵活的主、副瓣大小、位置关系,和较大的天线增益。
与固定天线相比最大的区别是:不同的全职通常对应不同的方向图,我们可以通过改变权值来选择合适的方向图,即天线模式。
方向图一般分为两类:一类是静态方向图,即不考虑信号的方向,由阵列的输出直接相加得到;另一类是带指向的方向,这类方向图需要考虑信号的指向,通过控制加权相位来实现。
二、实验目的:1、设计一个均匀线阵,给出λ(波长),N (天线个数),d (阵元间距),画出方向图曲线,计算3dB 带宽。
2、通过控制变量法讨论λ,N ,d 对方向图曲线的影响。
3、分析旁瓣相对主瓣衰减的程度(即幅度比)。
三、实验内容:1、公式推导与整理:权矢量12(,,......)T N ωωωω=,本实验旨在讨论静态方向图,所以此处选择ω=(1,1,......1)T 。
信号源矢量(1)()[1,,...]j j N T a e e ββθ---=,2sin dπβθλ=,幅度方向图函数()()HF a θωθ==(1)1sin2sin 2Nj n n N eβββ--==∑=sin(sin /)sin(sin /)n d n d πθλπθλ。
在室外测试场中阵列天线方向图的测试方法
在室外测试场中阵列天线方向图的测试方法郝延刚;李淑华【摘要】On the basis of the commonly used antenna pattern measurement method, is the size of a large array antenna taken into consideration, and designed a set of array antenna pattern testing method in an outdoor test field. According to this method, the array antenna pattern of a particular model of aircraft is firstly tested. Then the radiation pattern of the pitch surface is measured and compared with the theoretical simulation results thus proving the accuracy of the experimental program. Finally, the experimental error is analyzed.%在常用天线方向图测量方法的基础上,考虑大型阵列天线尺寸大的特殊性,并且结合实际测量条件,设计出一套在室外测试场中阵列天线方向图的测试方法.按照此方法,对某型号飞机的阵列天线方向图进行测试.测得其俯仰面辐射方向图后与理论仿真结果对比,论证实验方案的准确性,并对实验误差进行分析.【期刊名称】《科学技术与工程》【年(卷),期】2012(012)029【总页数】4页(P7745-7748)【关键词】阵列天线;方向图;室外测试场【作者】郝延刚;李淑华【作者单位】海军航空工程学院青岛分院,青岛266041;海军航空工程学院青岛分院,青岛266041【正文语种】中文【中图分类】TN820.1阵列天线具有较强的方向性和较高的增益,并且能够实现方向图扫描等优点。
天线工程设计基础课件:阵列天线
性,根据电磁波在空间相互干涉的原理,把具有相同结构、
相同尺寸的某种基本天线按一定规律排列在一起,并通过适
当的激励达到预定的辐射特性,这种多个辐射源的结构称为
阵列天线。根据天线阵列单元的排列形式,阵列天线可以分
为直线阵列、平面阵列和共形阵列等。
阵列天线
直线阵列和平面阵列形式的天线常作为扫描阵列,使其主波
波束最大值方向,则
阵列天线
6. 2. 2 天线阵的分析
1. 均匀线阵的分析
相邻辐射元之间距离相等,所有辐射元的激励幅度相同,
相邻辐射元的激励相位恒定的线阵就是均匀线阵,如图 6.2所示。列天线图 6.2 均匀线阵
阵列天线
1 )均匀线阵方向图
若 n 个辐射元均匀分布在 z 轴上,这时单元的位置坐标
向图函数。当阵列单元相同时, f n (θ , ϕ ) = f ( θ , ϕ ),
对于均匀直线阵有 I n = I 0 ,上式可化为
阵列天线
其中
阵列天线
式(6-62 )为方向图乘积原理,即阵列天线的方向图函
数等于阵列单元方向图函数与阵列因子的乘积。 S (θ , ϕ )
称为阵列因子方向图函数,它和单元数目、间距、激励幅度
单元共轴排列所组成的直线阵,阵列中相邻单元的间距均为
d ,设第 n 个单元的激励电流为 I n ej β n ,通过将每个阵列
单元与一个移相器相连接,使电流相位依次滞后 α ,
阵列天线
将单元 0 的相位作为参考相位,则 βn =nα 。由几何关系可
知,当波束扫描角为 θ 时,各相邻单元因空间波程差所引起
瓣指向空间的任一方向。当考虑到空气动力学以及减小阵列
天线的雷达散射截面等方面的要求时,需要阵列天线与某些
在室外测试场中阵列天线方向图的测试方法
络分析仪能接收记 录被测天线在各个方位角 所接
收 到 的相 对信 号 电平 , 器 动态 范 围不 小 于 5 B 仪 0d 。 在 系统规 定 频 率 范 围 内校 准 检 验 仪 器 和 仪 表 。 主
关键词
阵列天线
方 向图
室外测试场 文献标志码 A
中图法分类号
T 80 1 N 2. ;
阵列天 线具 有 较 强 的方 向性 和 较 高 的 增 益 , 并
状态[ 。
且能够实现方 向图扫描等优点 。随着无线通 信 的
迅 猛发 展 , 阵列 天 线 越来 越 多 地 被 应 用 其 中。 阵列
天线可 以实现单 个 天 线所 无 法 实 现 的复 杂 功 能 , 具 有 更大 的灵 活性 和 更 高 的信 号 容 量 , 能显 著 提 高 系
本 文 以某 型 号 飞 机 的 雷 达 阵 列 天 线 为测 试 目 标, 对其 辐 射特性 和端 口特 性 进行 测 试 。该 天 线 以
件 为 : 1 辅 助 天 线 和被 测 天线 之 问 的距 离 应 满 足 () 最小 测 试距 离。 ( ) 2 气候 条件 和 机 械应 力 等应 符 合
天 线产 品规范 的规定 。( ) 避 免 或设 法 减少 外 界 3应
统 自带 源天线 ( 元 为半 波 振 子 的 1×3行 阵 ) 网 阵 ,
21 0 2年 6月 7日收到, 6月 2 51 3修改 第一作 者简介 : 郝延 刚 ( 97 ) 男 , 1 8 一 , 黑龙江齐 齐 哈尔人 , 硕士研 究 牛, 研究方 向 : 军用 飞行器天线设计 。
度为 5I, 度 为 2i, I宽 T 重量 约 为 30k 。 由于室 内 n 0 g 测试场 受 空 问 大 小 的 限 制 , 且 该 天 线 由于 尺 寸 并
数字阵列天线宽带辐射方向图综合技术
数字阵列天线宽带辐射方向图综合技术陈必然;王烨【摘要】针对采用数字中频的多通道阵列天线的宽带信号辐射能力展开了研究.介绍的数字阵列天线宽带辐射方向图综合技术,其主要创新点是宽带辐射方向图计算方法的理论推导,并对其在频域取平均,用于衡量其副瓣电平.在详细介绍数字阵发射的宽带辐射场计算方法的基础上,通过仿真对多通道数字中频系统的宽带辐射方向图进行计算.本文研究的数字阵列天线,其阵面是工作在8 GHz的矩形网格平面微带天线阵,宽带信号是经线性调频信号调制的二进制相移键控(BPSK)编码信号,不同通道发射不同的基带信号,对宽带发射波束进行了分析,论证了基于数字阵列天线的宽带发射波束形成的有效性.【期刊名称】《舰船电子对抗》【年(卷),期】2019(042)004【总页数】5页(P54-57,80)【关键词】数字阵列天线;宽带方向图;宽带波束综合【作者】陈必然;王烨【作者单位】海军装备部,陕西西安610036;海军装备部,陕西西安610036【正文语种】中文【中图分类】TN910 引言现代电讯技术的发展面临诸多挑战,电子信息设备需要适应日益复杂的电磁环境,才能满足新时代的侦干探通需求。
电子信息设备的发展对天线提出了新的要求,天线需要工作在更宽的频带,具有更为灵活的波束赋形能力。
早在上个世纪60年代,研究人员就开始利用数字处理技术形成波束,并将其应用于声纳和雷达领域[1]。
现代电讯技术要求电子信息设备工作在更宽的频带,拥有更为灵活的波束赋形能力,才能满足新时代的侦干探通需求。
数字阵列天线对发射信号进行多通道数字中频,作为一种新型阵列形式,数字阵列天线在雷达和通信领域有着十分广阔的应用前景。
近年来,欧洲、亚洲等地的学者在发挥其低副瓣[2]等性能优势外,还挖掘其多输入多输出(MIMO)特点,实现快速现场系统校准[3]、发射数字多波束[4]、波束赋形等功能[5]。
本文针对数字阵列天线各单元传输不同信号这一问题,对宽带信号传输进行研究,在第1节理论分析了多通道数字中频系统的宽带辐射方向图的理论计算方法,具体讨论了宽带多通道数字中频信号的评价指标。
天线的方向图
介绍工程上采用的镜像法和反射系数法.
第26页/共48页
元天线的镜像
三种情况的基本振子镜像
垂直基本振子的镜像电流与原电流等幅同相,即I’=I(称为正 像);水平基本振子的镜像电流与原电流等幅反相,即I’=I(称为负像);倾斜基本振子的镜像电流取向相反,镜像电流
的垂直和水平分量分别为原电流对应分量的正像和负像
第27页/共48页
第28页/共48页
对于有限长度的对称振子天线,通常是以垂直和水平两种 方式架设在地面上。采用镜像法时,这两种架设方式的镜 像如下图所示。
对称振子的镜像
对称振子天线上的电流为正弦分布,但是可把天线分割成许多基 本振子,有基本振子的镜像的合成便是整个天线的镜像。镜像电 流满足如下规则: (1) 垂直对称振子,其镜像点电流与原电流等幅同相; (2) 水平对称振子,其镜像点电流与原电流等幅反相。 只要确定了天线上某点对应的镜像点,其镜像电流不难确定。
第3页/共48页
则远区的总场为
E E0 E1 E0 1 me j
可见,二元阵总场方向图由两部分相乘而得,第一部分与 单元天线的方向图函数有关;第二部分称为阵因子,它与
单元间距d、电流幅度比值m、相位差和空间方向角有
关,与单元天线的型式无关。因此得方向图相乘原理:由 相同单元天线组成的天线阵的方向图函数等于单元方向图 函数与阵因子的乘积。
E
2 E0
sin d
cos
阵因子函数只与角有关,与角无关,说明阵因子方向图关于
阵轴旋转对称
第5页/共48页
阵列天线方向图综合算法研究
入有关数据库进行检索,可以 采用影印、缩印 或扫描等复制手段保存和汇编本学位论文。 同 时本人保证, 毕业后结合学位论文研究课题再撰写的文章一律注明 作者单位为西北工业
大学 。 保密论文待解密 后适用 本声 明。
西北工业大学硕士学位论文
摘 要
摘 要
随 着高速计算机技术的 发展, 优化算法因 智能 其鲁棒性强、 适合多目 且 标,
对目 标函数无可微性要求等特点, 在天线设计领域得到了越来越广泛的应用。 本 文主要研究分析了两种智能优化方法- 遗传算法和粒子群算法, 以及这两种算 法在阵列天线方向图综合中的应用。 遗传算法是一种模拟自 然界生物进化规律的迭代算法, 通过选择、 复制、 交 叉和变异等算子进行进化操作, 逐步靠近最优解. 本文对遗传算法的原理和特点
eo tnTe t tn b i d uh cn, itg c sn ad vli . bssuo iotn t g sei r lan, sg uo h e o i s e h l a o e tg e c i r i n l p o m ti . t o d r tiio G ip s t . em ns e u tgTe r a ca crt f s e e Te et c r t an h h y n h aes e c A r n d h l ' u n e e r a pt e pa o le aa a e a ot id e c t m x u m l d a h e i a ry n a pmz t r ue a m m i n s f r n n r i e o u d n r t e d h e i se l cnot ba s p, a ip vd loe ec ot . i l ea otl e h ewt n r e r - d Gnt Agrh de n v d r h m e a i m o ec h a e i l im T i ip vd n i Agr m ao d ds n t cngr l h m r e G ec ot i l u t eg ptr r ofu b s o e t l i s s o i ae e i a e h s e n at n, li rus u a e ofu b aa a e a c hs n nas u tn l aot tr r ngr l ry n w i a e i ao e t b m s p t e i a e n n h h an c r t to t alst a e ti i tt t m t d us its ei w sihb te rg n n c e t e o d cs d h ppr w c e s i o a h h h i e n a s a e v d a e s i
天线辐射方向图及其matlab仿真
随着现代通信技术的迅猛发展,无线通讯越来越广泛,越来越多的应 用于国防建设,经济建设以及人民的生活等领域。在无线通信系统中,需 要将来自发射机的导波能量转变为无线电波,用来辐射或接受无线电波的 装置称为天线。在通信过程中,特别是点对点的通信,要求天线具有相当 强的方向性,即希望天线能将绝大部分的能量集中向某一预定方向辐射。 阵列天线就是近代天线研究的一种方向,其研究催生了包括相控阵天线, 均匀直线列天线,智能天线等在无线通信,雷达,导航领域中广泛应用的 新型天线。而天线阵列辐射场的研究是其中很重要的一部分。 本文首先介绍天线是如何产生电磁波的,并介绍辐射场的几种情况。 接下来介绍单个天线的基本参数包括主瓣宽度,增益系数,极化特性,方 向性等。然后介绍和分析了边射阵,端射阵和均匀线性阵。阵列天线的方 向相乘性原理,随后使用了 MATLAB 仿真软件分别对二项阵,三角阵和 道尔夫切比雪夫阵模型进行了仿真。在综合对比了阵元的数量,间距,排 列方式后得出天线阵列辐射场的特性。 关键词 元天线;阵列天线;MATLAB 仿真;辐射方向图
- -
I
Research on Radiation Field of Antenna Array Abstract
With the rapid development of modern communication technology, wireless communication is more and more widely, more and more applications on the national defense construction, economic construction and people’s life and other fields. In the wireless communication system, it needs guiding wave energy which will come from the transmitter to the radio .The device which is used to radiation or receiving is known as the Antenna of radio waves. Antenna is an essential part of the wireless communications system. It requests the antenna to have the quite strong directive in the communication, especially in the point-to-point communications. It hopes that the antenna is able to radios in the direction with mainly energy. Single symmetrical antenna cannot satisfy this kind of request forever. Therefore, the array antenna is an important method to realizes this request. This paper first introduces the antenna is how to generate electromagnetic wave, and introduces several cases of radiation field. The basic parameters of next introduces the single antenna comprises a main lobe width, gain, polarization, direction. Then, it introduces and analyzes the direction of multiplicative principle and mathematical model of antenna array of antenna array, then using MATLAB simulation software on simulation Binomial array, Triangular array and Dolph-Tschebyscheff array for a sidelobe through comparison and reasoning factors control antenna array performance method of control parameter, finally embarks from the reality, put forward its own on array antenna and improve some of the views of its radiation performance Keywords - element antenna;array antenna;MATLAB;antenna pattern
阵列天线方向图综合新技术研究
阵列天线方向图综合新技术研究阵列天线方向图综合新技术研究引言:天线技术作为通信领域的重要组成部分,对于增强通信系统的性能至关重要。
传统的单天线系统在满足日益增长的通信需求上已经无法满足现代社会对高速、高容量通信的要求。
而阵列天线技术作为一种重要的解决方案,通过利用多个小天线构成的阵列,能够实现灵活的信号处理和波束形成,从而提高通信系统的容量和可靠性。
本文将综合介绍阵列天线方向图的新技术研究,包括波束形成算法、阵列天线的布局和优化、阵列天线的信号处理以及在不同应用场景下的性能研究。
一、波束形成算法波束形成算法是实现阵列天线性能优化的核心技术之一。
目前常用的波束形成算法包括传统的线性加权算法和现代的非线性自适应波束形成算法。
传统的线性加权算法采用简单的均匀加权方式,对所有接收到的信号进行加权求和,其算法简单但效果有限。
而非线性自适应波束形成算法通过自适应地调整天线的相位和幅度权值,能够根据信号的到达角度和干扰环境动态调整,从而提高阵列天线的波束指向特性和抗干扰性能。
在波束形成算法中,最常用的是基于最小均方误差准则的自适应波束形成算法。
该算法通过不断调整天线的权值,使得波束方向上的信号功率最大化,抑制波束以外的干扰功率。
此外,还有一些改进的算法,如基于约束最优化的波束形成算法、基于子空间分离的波束形成算法等,这些算法在特殊场景下能够更好地适应和优化。
二、阵列天线的布局和优化阵列天线的布局和优化是提高阵列天线性能的重要手段。
在阵列天线的布局中,影响性能最大的是天线之间的距离和方向的选择。
一般情况下,天线之间的距离越小,波束方向图的主瓣宽度越窄,抗干扰性能越好。
而天线之间的方向选择则决定了波束的指向性能。
在实际部署中,常见的布局方式有线性阵列、圆形阵列、矩形阵列等多种形式,不同的布局方式对应不同的应用需求,需根据具体情况综合考虑。
在阵列天线的优化中,常用的是基于遗传算法、粒子群算法等优化算法。
这些算法通过随机搜索和迭代优化的方式,对阵列天线的布局进行优化,进而提高天线的指向性和经济性。
阵列天线方向图函数实验
阵列天线方向图函数实验一、 实验目的1. 设计一个均匀线阵,给定d N d ,,,λθ画出方向图)(θF 函数图;2. 改变参数后,画出方向图)(θF 函数图,观察方向图)(θF 的变化并加以分析;3. 分析方向图)(θF 主瓣的衰减情况以及主瓣对第一旁瓣的衰减情况,确定dB3衰减对应的θ;二、 实验原理阵列输出的绝对值与来波方向之间的关系称为天线的方向图。
方向图一般有两类:一类是阵列输出的直接相加(不考虑信号及其来向),即静态方向图;另一类是带指向的方向图(考虑信号指向),当然信号的指向是通过控制加权的相位来实现的。
对于某一确定的M 元空间阵列,在忽略噪声的条件下,第k 个阵元的复振幅为),2,1(0M k e g x k j k Λ==-ωτ (2.1)式中:0g 为来波的复振幅,k τ为第k 个阵元与参考点之间的延迟。
设第k 个阵元的权值为k w ,那么所有阵元加权的输出得到的阵列的输出为),2,1(010M k e g w Y k j Mk k Λ==-=∑ωτ (2.2)对上式取绝对值并归一化后可得到空间阵列的方向图{}00max )(Y Y F =θ (2.3)如果),2,1(1M k w k Λ==式(2.3)即为静态方向图)(θF 。
下面考虑均匀线阵方向图。
假设均匀线阵的间距为d ,且以最左边的阵元为参考点(最左边的阵元位于原点),另假设信号入射方位角为θ,其中方位角表示与线阵法线方向的夹角,与参考点的波程差为θθτsin )1(1)sin (11d k cx ck -== (2.4)则阵列的输出为βθλπωτ)1(10sin )1(210100--=--=-=∑∑∑===k j Mk k d k jMk k j Mk k e g w eg w eg w Y k(2.5)式中:λθπβ/sin 2d =,λ为入射信号的波长。
当式(2.5)中),2,1(1M k w k Λ==时,式(2.5)可以进一步简化为)2/sin()2/sin(2)(00βββM M e Mg Y k M j == (2.6)可得均匀线阵的静态方向图,即)2/sin()2/sin()(0ββθM M F =(2.7)当式(2.5)中),2,1(,/sin 2,)1(M k d e w d d k j k d Λ===-λθπββ时,式(2.6)可简化为]2/)sin[(]2/)(sin[2)()1(00d d M j M M e Mg Y d ββββββ--=-= (2.7)于是可得到指向为d θ的阵列方向图,即]2/)sin[(]2/)(sin[)(d d M M F ββββθ--=(2.8)三、 实验过程1. 指向0=d θ静态方向图函数的实验1.1均匀线阵阵元个数N 对方向图函数)(θF 的影响sita=-pi/2:0.01:pi/2; lamda=0.03; d=lamda/2; n1=10; sita_d=0beta=2*pi*d*sin(sita)/lamda; beta_d=2*pi*d*sin(sita_d)/lamda; z11=(n1/2)*(beta-beta_d); z21=(1/2)*(beta-beta_d); f1=sin(z11)./(n1*sin(z21)); F1=abs(f1); figure(1);plot(sita,F1,'b'); hold on ; n2=20;beta=2*pi*d*sin(sita)/lamda;z12=(n2/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n2*sin(z22));F2=abs(f2);plot(sita,F2,'r');hold on;n3=30;beta=2*pi*d*sin(sita)/lamda;z13=(n3/2)*beta;z23=(1/2)*beta;f3=sin(z13)./(n3*sin(z23));F3=abs(f3);plot(sita,F3,'k')hold off;grid on;xlabel('theta/radian');ylabel('amplitude');title('¾ùÔÈÏßÕóÕóÔª¸öÊý¶Ô·½Ïòͼº¯Êý µÄÓ°Ïì'); legend('n1=10','n2=20','n3=30');分析:随着阵元数的增加,波束宽度变窄,分辨力提高。
低副瓣模组化阵列天线的方向图综合研究开题报告
低副瓣模组化阵列天线的方向图综合研究开题报告一、研究背景及意义随着无线通信技术的不断发展和普及,无线通信系统对天线性能的要求越来越高。
在天线性能方面,方向图是评价天线性能的一个重要指标。
常规的天线设计都是基于单独某一频段或带宽。
但是实际应用中,通信需求却是多频段、宽带、复杂环境下的。
因此,设计一种能够在多频段内提高天线方向图性能的天线解决方案成为了一个重要的研究方向。
在众多天线中,阵列天线是应用最广泛的一种,其采用阵列阻抗调配、相控阵等技术实现指定方向增益最大化,成为工业界和学术界的研究热点之一。
近年来,随着对天线设计的需求不断提高,低副瓣模组化阵列天线设计也逐渐成为研究热点。
低副瓣模组化阵列天线可以有效降低天线副瓣水平,提高天线指向性,减少桥接等无线网络应用中的多路径干扰,提高通信质量。
因此,对低副瓣模组化阵列天线的方向图进行综合研究,对于指导未来天线设计和无线通信应用具有重要的意义。
二、研究目的及内容本文的研究目的是针对低副瓣模组化阵列天线,综合研究其方向图,旨在探究提高天线指向性和降低副瓣水平的关键技术,并评价其性能表现。
本文的具体研究内容包括以下几个方面:1. 低副瓣模组化阵列天线的基本原理及设计。
2. 低副瓣模组化阵列天线的方向图设计与优化方法。
3. 低副瓣模组化阵列天线在多频段下的方向图性能表现评价。
4. 低副瓣模组化阵列天线在多路径干扰条件下的性能分析。
三、研究方法本文将采用以下方法进行研究:1. 理论探究。
通过查阅文献和国内外相关资料,探讨低副瓣模组化阵列天线的基本原理、方向图和设计方法。
2. 数值仿真。
采用天线仿真软件对低副瓣模组化阵列天线进行建模、仿真和优化,得出其方向图性能曲线和优化结果。
3. 实验验证。
基于仿真结果,设计低副瓣模组化阵列天线的样品,进行实验并评估其性能表现。
四、论文结构安排本文拟按以下顺序进行分析和阐述:第一章绪论介绍研究背景、意义、目的、内容、方法以及论文的结构安排等。
阵列天线方向图及其MATLAB仿真
阵列天线方向图及其MATLAB仿真一.实验目的1.了解阵列天线的波束形成原理写出方向图函数2.运用MATLAB仿真阵列天线的方向图曲线3.变换各参量观察曲线变化并分析参量间的关系二.实验原理1.阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。
阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
^2.方向图原理:对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。
假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。
一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元阵列天线天线阵的方向图。
这就是方向图相乘原理。
一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。
这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。
三.源程序及相应的仿真图1.方向图随n变化的源程序clear;sita=-pi/2::pi/2;lamda=;]d=lamda/4;n1=20;beta=2*pi*d*sin(sita)/lamda;z11=(n1/2)*beta;z21=(1/2)*beta;f1=sin(z11)./(n1*sin(z21));F1=abs(f1);figure(1);plot(sita,F1,'b');hold on;n2=25;:beta=2*pi*d*sin(sita)/lamda;z12=(n2/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n2*sin(z22));F2=abs(f2);plot(sita,F2,'r');hold on;n3=30;beta=2*pi*d*sin(sita)/lamda;z13=(n3/2)*beta;z23=(1/2)*beta;>f3=sin(z13)./(n3*sin(z23));F3=abs(f3);plot(sita,F3,'k')hold off;grid on;xlabel('theta/radian');ylabel('amplitude');title('方向图与阵列个数的关系'); legend('n=20','n=25','n=30');·结果分析:随着阵列个数n的增加,方向图衰减越快,效果越好;2.方向图随lamda变化的源程序clear;sita=-pi/2::pi/2;n=20;d=;lamda1=;beta=2*pi*d*sin(sita)/lamda1;z11=(n/2)*beta;z21=(1/2)*beta;f1=sin(z11)./(n*sin(z21));~F1=abs(f1);%·½ÏòͼÇúÏßfigure(1);lamda2=;beta=2*pi*d*sin(sita)/lamda2;z12=(n/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n*sin(z22));F2=abs(f2);lamda3=;beta=2*pi*d*sin(sita)/lamda3;z13=(n/2)*beta;,z23=(1/2)*beta;f3=sin(z13)./(n*sin(z23));F3=abs(f3)plot(sita,F1,'b',sita,F2,'r',sita,F3,'k');grid on;xlabel('theta/radian');ylabel('amplitude');title('方向图与波长的关系');legend('lamda=','lamda=','lamda=');四.,随着波长lamda的增大,方向图衰减越慢,收敛性越五.结果分析:不是很好;3.方向图随d变化的源程序clear;sita=-pi/2::pi/2;n=20;lamda=;d1=;beta=2*pi*d1*sin(sita)/lamda;z11=(n/2)*beta;z21=(1/2)*beta;【f1=sin(z11)./(n*sin(z21));F1=abs(f1);%·½ÏòͼÇúÏßfigure(1);plot(sita,F1,'b');hold on;d2=;beta=2*pi*d2*sin(sita)/lamda;z12=(n/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n*sin(z22));F2=abs(f2);-plot(sita,F2,'r');hold on;d3=;beta=2*pi*d3*sin(sita)/lamda;z13=(n/2)*beta;z23=(1/2)*beta;f3=sin(z13)./(n*sin(z23));F3=abs(f3)plot(sita,F3,'k')hold off;grid on;xlabel('theta/radian');ylabel('amplitude');title('·½ÏòͼÓëÌìÏßÕóÁмä¸ôdµÄ¹Øϵ'); legend('d1=','d=','d=');结果分析;随着阵元之间间隔的增加,方向图衰减越快,主次瓣的差距越大,次瓣衰减越快,效果越好。
天线阵列设计
二、Klopfenstein渐变
z2 k ( ) z 4 I1 ( z ) ( ) 2 k 0 k !( k 1)!
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
④ 基因变异:按一定概率在染色体中随机的选择一点或多点进行变异。
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A1
A2
A3
A4
A5
A6
B7
B8
B9
B10
Page17
一、赋型原理
二、赋型设计
三、阵列设计
Page18
网络设计
一、初始条件问题:端口激励
与前式对比,令y=A, x=l, 得到
( ) 0e j l
2 2 z / L 1 I ( A (1 y )) 0 1 1 ln Z ( z ) ln Z 0 Z L A2 dy 0 2 cosh A A (1 y 2 )
cos 2l 2 A2 cosh A
13单元
—
102、110
Page13
赋型设计
三、使用软件调试实际的方向图
理想中的方向图
实际做出来的方向图
软件作用:将所有下倾角、所有频点的方向图能同时查看并优化
Page14
赋型设计
四、方向图优化方法:遗传算法
开始 染色体初始化
适应度检测 N 配对
Y
繁殖
基因突变
一种基于HFSS结合遗传算法进行阵列天线方向图优化的研究
一种基于HFSS结合遗传算法进行阵列天线方向图优化的研究周鹏;秦三团【摘要】提出一种新的对阵列天线方向图进行优化的方法,即借助Ansoft HFSS软件进行单元天线阵仿真,提取出各单元单独馈电的电流数据或远场数据,利用遗传算法对提取出的电流数据实施优化,得出满足方向图要求的单元电流值和相位值。
结果表明,基于HFSS建模的灵活性,该方法可方便进行任意特性天线阵列的方向图综合,优化时对提取出的数据只需进行简单的远场外推或叠加,因而具有极快的计算速度。
区别于传统的单独用遗传算法进行优化的方法,该方法将工程软件Ansoft HFSS和遗传算法相结合,有效地提高了天线阵综合时的计算精度和目标函数的计算效率,进而有效提高了方向图的优化效率。
%A new method to optimize the array antenna directional pattern is proposed,in which the cell antenna array is simulated with Ansoft HFSS software to extract the current data or far⁃field data of each exclusive feed cell,and then the genetic algorithm(GA)is used to optimize the extracted current data to obtain the cell current value and phase value satisfying the re⁃quirement of directional pattern. The method can conveniently synthesize the antenna array directional pattern with arbitrary charac⁃teristics due to the flexible HFSS modeling,and only a simple far⁃field extrapolation or superposition for the extracted data is needed while optimizing,so it has fast calculation speed. Different from the traditional optimization method using GAonly,the method combining engineering software Ansoft HFSS with GAcan effectively improve the computational accuracy of the antenna arraysynthesis,computational efficiency of the objective function,and the optimization efficiency of the directional pattern.【期刊名称】《现代电子技术》【年(卷),期】2016(039)009【总页数】3页(P75-77)【关键词】单元电流值;电流相位值;方向图;遗传算法;天线阵列【作者】周鹏;秦三团【作者单位】西安邮电大学理学院,陕西西安 710061;西安邮电大学电子工程学院,陕西西安 710061【正文语种】中文【中图分类】TN820.1+2-34天线阵方向图[1]综合(优化)对天线阵应用尤为重要,根据实际问题的需要,常常采用三种综合手段:单元相对位置、单元馈电幅度、单元馈电相位同时改变;单元相对位置不变,只改变各单元幅度和相位;单元间距和幅度均不变,只改变单元相位。
天线方向图
天线的方向图可以反映出天线的辐射特性,一般情况下天 线的方向图表示天线辐射电磁波的功率或场强在空间各个 方向的分布图形。而相位、极化方向图只在特殊应用中使 用。对不同的用途,要求天线有不同的方向图。
例如,广播电视发射天线,移动通讯基站天线等,要求 在水平面内为全向方向图,而在垂直面内有一定的方向 性以提高天线增益,见图(a);对微波中继通讯、远程雷 达、射电天文、卫星接收等用途的天线,要求为笔形波 束方向图,见图(b);对搜索雷达、警戒雷达天线则要求 天线方向图为扇形波束,见图(c)等。
zˆAz
通过球坐标系和直角坐标系之间的转换,有
Ar A
Az Az
cos sin
A 0
2020/7/22
由 E j A j• 0 A 0 ,H 1 0 A可得元天线的电磁场各分量为
dH
j
4Idrzsin1
1
jr
ejr
dE
j 4Idrzsin1
1
jr
1
( jr)2
2020/7/22
2020/7/22
几种典型应用的方向图
这一章介绍几种简单的直线天线和简单阵列天线的方向图, 以及地面对天线方向图的影响。简单天线涉及元天线、单线 行波天线、对称振子天线等。简单阵列天线涉及由同类型天 线组成的二元阵、三元阵和多元阵,对简单阵列将介绍方向 图相乘原理。
线天线的分析基础是元天线。一个有限尺寸的线天线可看作 是无穷多个元天线的辐射场在空间某点的叠加。因此这里首 先讨论元天线。
相位常数: 2,/λ为自由空间媒质中的波长; 2020/7/22
0 0/0 为媒质中波阻抗,在自由空间中12;0
θ为天线轴与矢量 rˆ之间的夹角;
14元阵列天线方向图及其MATLAB仿真
阵列天线方向图及其MATLAB 仿真1设计目的1.了解阵列天线的波束形成原理写出方向图函数2.运用MATLAB 仿真阵列天线的方向图曲线3.变换各参量观察曲线变化并分析参量间的关系2设计原理阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。
阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
在本次设计中,讨论的是均匀直线阵天线。
均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。
均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。
二元阵辐射场:式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场:令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数:式中:ζφθψ+=cos sin kd均匀直线阵最大值发生在0=ψ 处。
由此可以得出])[,(212121ζθθθϕθj jkr jkr m e r e r e F E E E E --+=+=12cos ),(21jkrm e F r E E -=ψϕθθζφθψ+=cos sin kd ∑-=+-=1)cos sin (),(N i kd ji jkrme erF E E ζϕθθϕθ2πθ=)2/sin()2/sin(1)(ψψψN N A =kdm ζϕ-=cos这里有两种情况最为重要。
1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。
2.端射振,计最大辐射方向在阵轴方向上,此时0=mϕ或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。
3设计过程本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。
基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
一、基本概念 (1)
1.1方向图基本概念 (1)
1.2主瓣宽度 (2)
1.2.1主瓣宽度基本概念及特性 (4)
1.3旁瓣抑制 (4)
一、基本概念
1.1方向图基本概念
天线的辐射电磁场在固定距离上随角坐标分布的图形,称为方向图。
用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。
天线方向图是空间立体图形,但是通常应用的是两个互相垂直的主平面內的方向图,称为平面方向图。
在线性天线中,由于地面影响较大,都采用垂直面和水平面作为主平面。
在面型天线中,则采用E平面和H平面作为两个主平面。
归一化方向图取最大值为一。
在方向图中,包含所需最大辐射方向的辐射波瓣叫天线主波瓣,也称天线波束。
主瓣之外的波瓣叫副瓣或旁瓣或边瓣,与主瓣相反方向上的旁瓣叫后瓣,见图1:全向天线水平波瓣和垂直波瓣图,其天线外形为圆柱型;图2:定向天线水平波瓣和垂直波瓣图,其天线外形为板状。
图1 全向天线波瓣示意图
图2 定向天线波瓣示意图
1.2主瓣宽度
为了方便对各种天线的方向图特性进行比较,就需要规定一些特性参数。
主要包括:零功率波瓣宽度、半功率点波瓣宽度、旁瓣电平、前后比、方向系数等。
1.零功率波瓣宽度,指主瓣两侧场强值为0的两个方向之间的夹角,用2表示。
许多天线方向图的主瓣是关于最大辐射方向对称的,因此,只要确定零功率主瓣宽度的一半,再取其2倍即可求得零功率主瓣宽度,即2=2。
2. 半功率点波瓣宽度,指方向图主瓣两侧两个半功率点(即场强下降到最大值下降到0.707(或分贝值从最大值下降3dB处对应的两点)之间的夹角,又称为3dB波束宽度或主瓣宽度,记为。
对方向
图对称天线,半功率主瓣宽度=2。
一般
情况下,天线的E面和H面方向图主瓣宽度不同,分别记为、。
如不特殊说明,通常主瓣宽度是指半功率主瓣。
3. 副瓣电平,天线往往不止一个副瓣,而是有若干个。
仅靠主瓣的副瓣叫第一副瓣,依次为第二,第三、……副瓣,这些副瓣的峰值可能是不同的。
为估计副瓣的强弱,通常用副电平表示,其定义是任一副瓣的最大值与主瓣的最大值之比称为该副瓣的副瓣电平,其中最大值称为天线的最大副瓣电平0。
通常,第一副瓣电平即为最大副瓣电平。
副瓣电平通常用分贝表示,如第i个副瓣电平可表示为
SL=20lg dB
式中为第i个副瓣的场强最大值,为主瓣的最大值。
这样,对于各个副瓣均可求得其副瓣电平值。
在工程中,通常第一副瓣电平最大,记为SLL。
4.前后比后半最大模值与主瓣最大模值之比称为前后比,即
=20lg dB。
5.方向系数在离天线某一距离处,天线在最大辐射方向上的辐射功率流密度与相同辐射功率的理想无方向性天线在同一距离处的辐射功率流密度之比。
1.2.1主瓣宽度基本概念及特性
主瓣宽度即半功率点波瓣宽度。
天线功率辐射击是否集中,可以用主瓣宽度这一参量来表示。
主瓣宽度越小,方向图越尖锐,表示天线辐射越集中。
参见图3 a , 在主瓣最大辐射方向两侧,辐射强度降低3 dB(功率密度降低一半)的两点间的夹角定义为波瓣宽度(又称波束宽度或主瓣宽度或半功率角)。
波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能力越强。
如果反天线在各方向辐射击的强度用从原点出发的矢量长短来表示,则连接全部矢量端点所形成的包络就是天线的方向图。
它显示出天线的在不同方向辐射的相对大小,这种方向图称为立体方向图。
矢径的方向代表辐射的方向,矢径的长短代表辐射击的强度。
a 图3 b
还有一种波瓣宽度,即10dB 波瓣宽度,顾名思义它是方向图中辐射强度降低10dB (功率密度降至十分之一)的两个点间的夹角,见图3 b。
一般用分贝来表示:101g副瓣最大值功率/主瓣最大值功率。
1.3旁瓣抑制
在天线系统中, 降低旁瓣电平具有实际意义, 然而天线阵的主瓣宽度和旁瓣电平是既相互依赖又相互对立的一对矛盾。
天线阵方向图的主瓣宽度小, 则旁瓣电平就高;反之, 主瓣宽度大, 则旁瓣电平就低。
均匀直线阵的主瓣很窄, 但旁瓣数目多、电平高; 二项式直线阵的主瓣很宽, 旁瓣就消失了。
对发射天线来说, 天线方向图的旁瓣是朝不希望的区域发射, 从而分散了天线的辐射能量; 而对接收天线来说,从不希望的区域接收, 就要降低接收信噪比, 因此它是有害的。
但旁瓣又起到了压缩主瓣宽度的作用, 从这点来说, 旁瓣似乎又是有益的。
实际上, 只要旁瓣电平低于给定的电平, 旁瓣是允许存在的。
能在主瓣宽度和旁瓣电平间进行最优折中的是道尔夫切比雪夫分布阵。
这种天线阵在满足给定旁瓣电平的条件下, 主瓣宽度最窄。
道尔夫切比雪夫分布阵具有等旁瓣的特点, 其数学表达式是切比雪夫多项式。
道尔夫切比雪夫分布边射阵是最优边射阵, 它所产生的方向图是最优方向图。
信号的覆盖主要靠天线的主瓣和主瓣下面的旁瓣来保证,而主瓣上面的旁瓣不仅浪费了天线辐射的能量,分散了功率,而且对接收天线来说还引入了噪声,并且会对相邻小区特别是相邻小区的高层建筑形成干扰,所以天线上面的旁瓣应该尽量抑制,尤其是较大的第一副瓣,同时应加强对主瓣下面零点的填充。
天线零点填充值的计算公式如下:
天线零点填充值 = 垂直第一下零点幅值/最大辐射方向幅值)% = 20log垂直第一下零点幅值/最大辐射方向幅值)dB
主瓣上面的第一旁瓣电平应小于-18dB;主瓣下面的第一零点电平应大于-20dB,如果能达到-12dB是非常好的选择。
近几年提出的旁瓣抑制方法主要有两类: 一类是基于凸优化理论, 如二阶锥规划、半定规划等。
由于凸优化问题可以利用内点法快
速求得全局最优解, 因此这类算法有收敛速度快,效率高等优点。
但传统算法在凸优化问题建模过程中引入了近似, 影响了波束形成器的最优性,且不能对主瓣宽度、信噪比增益等进行灵活控制;另一类旁瓣抑制方法是基于人工智能算法, 如遗传算法等。
这类算法建模过程简单, 但是有容易陷入局部最优解, 收敛速度慢等缺点。
旁瓣抑制往往是以损失信噪比增益和展宽主瓣宽度为代价的。
因此在抑制旁瓣的同时必须保证信噪比增益下降程度和主瓣展宽程度都在用户要求的范围内。