阵列天线方向图的MATLAB实现

合集下载

天线辐射方向图及其matlab仿真

天线辐射方向图及其matlab仿真

Keywords element antenna;array antenna;MATLAB;antenna pattern
--
II
目录
摘要 ...................................................................................................................... I Abstract .............................................................................................................. II
第 1 章 绪论........................................................................................................1
1.1 课题背景...................................................................................................1
3.3.6 有效长度..........................................................................................17
3.4 本章小结.................................................................................................17
本文首先介绍天线是如何产生电磁波的,并介绍辐射场的几种情况。 接下来介绍单个天线的基本参数包括主瓣宽度,增益系数,极化特性,方 向性等。然后介绍和分析了边射阵,端射阵和均匀线性阵。阵列天线的方 向相乘性原理,随后使用了 MATLAB 仿真软件分别对二项阵,三角阵和 道尔夫切比雪夫阵模型进行了仿真。在综合对比了阵元的数量,间距,排 列方式后得出天线阵列辐射场的特性。

用matlab 仿真不同天线阵列个天线的相关系数

用matlab 仿真不同天线阵列个天线的相关系数

2.3.1 阵列几何图天线阵可以是各种排列,下图所示分别为圆阵(UCA)、线阵(ULA)、矩形阵(URA)排列方式与空间来波方向关系图,为简化整列分析,假设阵元间不考虑耦合,L 为天线数目,天线间距相等且均为d ,为入射在阵列上的水平波达角,为垂直波达角。

图2- 1 阵列排列方式与空间来波方向的关系1) 圆阵排列方式的天线响应矢量为:011cos()cos()cos()cos()(,)[,,...,,...,]l L j j j j TU C A a eeeeξϕψξϕψξϕψξϕψθϕ-----= 公式2- 1其中2/,0,1,...,1l l L l L ψπ==-为第l 天线阵元的方位角,sin(),w w k r k ξθ=为波数2) 线阵排列方式的天线响应矢量为:cos sin (1)cos sin (,)[1,,...,]w w jk d jk d L TU LA a ee ϕθϕθθϕ-= 公式2- 23) 矩形阵列方式的天线响应矢量为:(1)()[(1)](1)[(1)(1)](,)(()())[1,,...,,,,...,...,,...,]Tjv j p vju j u v uURA N pj u p v j N uj N u p v Ta vec a u a v e e e eeee θϕ-++---+-== 公式2- 3,N P 分别为x ,y 方向的天线数目,这里设x y d d =, (1)()[1,,...,]juj N uTN a u e e-=;cos sin w x u k d ϕθ=;(1)()[1,,...,]jv j p v Tp a v e e-=;sin sin w y v k d ϕθ=对于3种排列方式,任意2根天线m 和n 之间的相关衰落系数经数值积分为公式2- 400(,)(,)(,)sin()m n E E p d d ϕϕθθθϕθϕθϕθθϕρ+∆+∆*=公式2- 5其中E 为天线归一化场强方向性函数与天线响应矢量的乘积,(,)p θϕ为入射信号功率角谱概率密度函数,ϕ∆,θ∆分别为水平、垂直角度扩展,由公式2- 6可得各天线阵列收发两端空间衰落相关矩阵。

基于MATLAB的智能天线波束方向图仿真

基于MATLAB的智能天线波束方向图仿真
— 56 —
基于 MA TL AB 的智能天线波束方向图仿真
图 2 智能天线二维原理图
在距离信号源足够远的空间里 ,可以将到达
的电磁波视为平面波[9 ,10 ] 。对于均匀直线阵 ,由
于调制在载波上的基带信号码元宽度与波束的乘
积远大于天线阵列的尺寸 ,因此到达各个天线阵
元上的信号幅度可以视为不变 ,而到达它们的载
N 个信号在 m 个阵元上的输出为 :
N- 1
∑ um =
umk
k=1
N- 1
∑ = sk ( t) ex p ( - βj m dco sΦk )
(4)
k=1
则阵列的输出可以表示为 :
M
∑ y ( t) = w m u m m =1
MN
∑∑ =
w ms k ( t) ex p ( - βj m dco sΦk )
[ 4 ] Seungwon Choi , Donghee shim. A novel adaptive beamforming algo rit hm for a smart antenna system in a CDMA mobile co mmunication environment [J ] . IEEE Transactions on Vehicular Technology ,2000 , 49 (5) :1793 - 1806.
(2)
其中 ,λ和 d 分别是入射波的波长和阵元间距 ,β=
2λл为相位传播因子 ,则阵元 m 上产生的信号是 :
umk = sk ( t) exp ( - j △φmk )
= sk ( t) exp ( - βj m dco sΦk )
(3)
为了使天线阵的输出满足需要 , 在每个阵元

基于Matlab的一种六元天线阵设计与实现

基于Matlab的一种六元天线阵设计与实现

研究生课程论文课程名称天线与电波传播授课学期2012 学年至2013 学年第二学期学院电子工程学院专业电子科学与技术学号**********姓名张瑞冬任课教师李自立交稿日期2013.07.10成绩阅读教师签名日期广西师范大学研究生学院制基于Matlab的一种六元天线阵设计与实现摘要:为了研究阵列天线中的线阵和平面阵在相同天线单元的基础上有何优劣,本文分别构造了两个Matlab模型,在同样是六元天线阵的条件下,用相同的参数分别对其进行模拟仿真,然后再对仿真结果进行对比研究,比较二者的差异。

关键字:Matlab仿真天线阵线阵平面阵1. 前言——天线阵的简介天线阵是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。

就发射天线来说,简单的辐射源比如点源,对称振子源是常见的构成阵列天线的辐射源。

它们按照直线或者更复杂的形式,根据天线馈电电流,间距,电长度等不同参数来构成阵列,以获取最好的辐射方向性。

天线阵的阵元不一定相同,但在大多数情况下,采用相同形式的辐射单元。

辐射单元可以是任何形式的天线,例如,对称振子、缝隙、微带天线、螺旋天线等。

天线阵可排成多种几何形状,如线阵、平面阵、共面阵等,线阵是最基本的形式。

2. 阵列模型简介2.1 线阵若天线阵中各个单元天线的类型和取向均相同,且以相等的间隔d 排列在一条直线上。

且各单元天线的电流振幅均为I,相位依次滞后同一数值琢,那么,这种天线阵称为均匀直线式天线阵,如图2-1 所示:图2-1 均匀直线阵由N个辐射元,在一直线上排列。

设P点很远,r d>>,可将各天线元在P点的电场看作方向相同,1,,Nr r与r平行,则:1011Nn nnE E E E E--==+++=∑(2.1.1)再设,线元排列相同,方向性函数相同(()()ϕθϕθ,,0ff n=),各阵元的辐射场比例常数相同,则:()∑-=-±=1,N n njkr n j n n r e f eI K E nnϕθφ()()nnj kd j N n n jkr e I r e kf ϕϕθϕθ±-=-∑=sin sin 1000,()ϕθ,0f r ke jkr -= (2.1.2)(式中,ϕθsin sin 0n n d r r -=)其中:()()()∑-=±⨯=1sin sin 0,,N n j kd j n n eI f f φϕθϕθϕθ为直线阵方向性函数。

matlab.方向图

matlab.方向图
用Matlab画阵天线 二维、三维方向图
概述
天线的远区场分布是一组复杂的函数,分析不同天线的辐射场可从 中得到该天线的 各种重要性能参数。方向性函数F(θ,Φ)是表 征辐射场在不同方向辐射特性的重要关系式,对它的分析和认识如 果仅仅停留在方向性函数以及公式中各参数的讨论上,很难理解天 线辐射场的空间分布以及定向天线集中辐射的概念。表征天线辐射 场空间分布的方向性函数通过二维、三维图形显示,可直观描述、 形象化展示及揭示各参量之间的内在关系,借助matlab的绘图功能 可以加深对天线辐射场空间分布理论的理解和认识,并可得到更有 效更直观的分析结果。我分别用matlab画了六元端和十四元端的方 向图,因为他们的最大辐2*pi); %生成一个等差数列 b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); subplot(221); polar(a,f.*sin(b)); %极坐标 title('14元端射式H面,d=波长/2,相位=滞后'); y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); subplot(223); surf(x1,y1,z1);特征匹配算法 axis equal %纵、横坐标采用等长刻度 title('14元端射式三维图'); a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)+1)*(6/2)*pi)./(sin((cos(a).*sin(b)+1)*pi/2)*6); subplot(222); polar(a,f.*sin(b)); title('6元端射式H面,d=波长/2,相位=超前'); y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); subplot(224); surf(x1,y1,z1); axis equal title('6元端射式三维图');

天线线列阵方向图

天线线列阵方向图

阵列方向图与MATLAB 仿真1、线阵的方向图2()22cos(cos )R φψπφ=+-MATLAB 程序如下〔2元〕:clear;a=0:0.1:2*pi;y=sqrt(2+2*cos(pi-pi*cos(a)));polar(a,y); 图形如下:若阵元间距为半波长的M 个阵元的输出用方向向量权重11(,,)M j j M g eg e φφ⋅⋅⋅加以组合的话,阵列的方向图为 [(1)cos()]1()m Mj m m m R g e ψπφφ--==∑MATLAB 程序如下〔10个阵元〕:clear;f=3e10;lamda=(3e8)/f;beta=2.*pi/lamda;n=10;t=0:0.01:2*pi;d=lamda/4;W=beta.*d.*cos(t);z1=((n/2).*W)-n/2*beta* d;z2=((1/2).*W)-1/2*beta* d;F1=sin(z1)./(n.*sin(z2));iK1=abs(F1) ;polar(t,K1);方向图如下:2、圆阵方向图程序如下:clc;clear all;close all;M = 16; % 行阵元数k = 0.8090; % k = r/lambdaDOA_theta = 90; % 方位角DOA_fi = 0; % 俯仰角% 形成方位角为theta,俯仰角位fi的波束的权值m = [0 : M-1];w = exp(-j*2*pi*k*cos(2*pi*m'/M-DOA_theta*pi/180)*cos(DOA_fi*pi/180));% w = exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)+sin(2*pi*m'/M)*si n(DOA_fi*pi/180))); % 竖直放置% w = chebwin(M, 20) .* w; % 行加切比雪夫权% 绘制水平面放置的均匀圆阵的方向图theta = linspace(0,180,360);fi = linspace(0,90,180);for i_theta = 1 : length(theta)for i_fi = 1 : length(fi)a = exp(-j*2*pi*k*cos(2*pi*m'/M-theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180));%a=exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)+sin(2*pi*m'/ M)*sin(fi(i_fi)*pi/180))); % 竖直放置Y(i_theta,i_fi) = w'*a;endendY= abs(Y); Y = Y/max(max(Y));Y = 20*log10(Y);% Y = (Y+20) .* ((Y+20)>0) - 20; % 切图Z = Y + 20;Z = Z .* (Z > 0);Y = Z - 20;figure; mesh(fi, theta, Y); view([66, 33]);title('水平放置时的均匀圆阵方向图');% title('竖面放置时的均匀圆阵方向图'); % 竖直放置axis([0 90 0 180 -20 0]);xlabel('俯仰角/(\circ)'); ylabel('方位角/(\circ)'); zlabel('P/dB');figure; contour(fi, theta, Y);方向图如下:3、平面阵方向图:clc;clear all;close all;Row_N = 16; % 行阵元数Col_N = 16; % 列阵元数k = 0.5; % k = d/lambdaDOA_theta = 90; % 方位角DOA_fi = 0; % 俯仰角% 形成方位角为theta,俯仰角位fi的波束的权值Row_n = [0 : Row_N-1]; Col_n = [0 : Col_N-1];W_Row = exp(-j*2*pi*k*Row_n'*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)); W_Col = exp(-j*2*pi*k*Col_n'*sin(DOA_theta*pi/180)*cos(DOA_fi*pi/180)); % W_Col = exp(-j*2*pi*k*Col_n'*sin(DOA_fi*pi/180)); % 竖直放置W_Row = chebwin(Row_N, 20) .* W_Row; % 行加切比雪夫权W_Col = chebwin(Col_N, 30) .* W_Col; % 列加切比雪夫权W = kron(W_Row, W_Col); % 合成的权值N*N x 1% 绘制水平面放置的平面阵的方向图theta = linspace(0,180,180);fi = linspace(0,90,90);for i_theta = 1 : length(theta)for i_fi = 1 : length(fi)row_temp = exp(-j*2*pi*k*Row_n'*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); % 行导向矢量N x 1col_temp = exp(-j*2*pi*k*Col_n'*sin(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); % 列导向矢量N x 1% col_temp = exp(-j*2*pi*k*Col_n'*sin(fi(i_fi)*pi/180)); % 竖直放置Y(i_theta,i_fi) = W'*kron(row_temp, col_temp); % 合成的导向矢量N*N x 1 endendY= abs(Y); Y = Y/max(max(Y));Y = 20*log10(Y);Y = (Y+60) .* ((Y+60)>0) - 60; % 切图% Z = Y + 60;% Z = Z .* (Z > 0);% Y = Z - 60;figure; mesh(fi, theta, Y); view([66, 33]);title('水平面放置时的面阵方向图');axis([0 90 0 180 -60 0]);xlabel('俯仰角/(\circ)'); ylabel('方位角(\circ)'); zlabel('P/dB');figure; contour(fi, theta, Y);方向图如下:4、CAPON方法波束形成MATLAB程序如下〔阵元16,信号源3,快拍数1024〕:clear alli=sqrt(-1);j=i;M=16;%均匀线阵列数目P=3;%信号源数目f0=10;f1=50;f2=100;%信号频率nn=1024;%快拍数angle1=-15;angle2=15;angle3=30;%the signal angleth=[angle1;angle2;angle3]';SN1=10;SN2=10;SN3=10;%信噪比sn=[SN1;SN2;SN3];degrad=pi/180;tt=0:.001:1024;x0=exp(-j*2*pi*f0*tt);%3个信号x0、x1、x2x1=exp(-j*2*pi*f1*tt); %x2=exp(-j*2*pi*f2*tt); %t=1:nn;S=[x0(t);x1(t);x2(t)];nr=randn(M,nn);ni=randn(M,nn);u=nr+j*ni;%复高斯白噪声Ps=S*S'./nn;%信号能量ps=diag(Ps);refp=2*10.^(sn/10);tmp=sqrt(refp./ps);S2=diag(tmp)*S;%加入噪声tmp=-j*pi*sin(th*degrad);tmp2=[0:M-1]';a2=tmp2*tmp;A=exp(a2);X=A*S2+.1*u;%接收到的信号Rxx=X*X'./nn;%相关矩阵invRxx=inv(Rxx);%搜寻信号th2=[-90:90]';tmp=-j*pi*sin(th2'*degrad);tmp2=[0:M-1]';a2=tmp2*tmp;A2=exp(a2);den=A2'*invRxx*A2;doa=1./den;semilogy(th2,doa,'r');title('spectrum'); xlabel('angle'); ylabel('spectrum'); axis([-90 90 1e1 1e5]); grid;。

matlab仿真天线辐射图

matlab仿真天线辐射图

微波技术与天线作业电工1001,lvypf(12)1、二元阵天线辐射图matlab实现1)matlab程序:theta = 0 : .01*pi : 2*pi; %确定θ的范围phi = 0 : .01*pi : 2*pi; %确定φ的范围f = input('Input f(Ghz)='); %输入频率fc = 3*10^8; %常量clambda = c / (f*10^9); %求波长λk = (2*pi) / lambda; %求系数kd = input('Input d(m)='); %输入距离dzeta = input('Input ζ='); %输入方向系数ζE_theta=abs(cos((pi/2)*cos(theta))/sin(theta))*abs(cos((k*d*sin(theta)+zeta)/2));%二元阵的E面方向图函数H_phi=abs(cos((k*d*cos(phi)+zeta)/2)); %二元阵的H面方向图函数subplot(2,2,1);polar(theta,E_theta);title('F_E_θ')subplot(2,2,2);polar(phi,H_phi);title('F_H_φ');subplot(2,2,3);plot(theta,E_theta);title('F_E_θ');gridxlim([0,2*pi])subplot(2,2,4);plot(phi,H_phi);gridxlim([0,2*pi])title('F_H_φ');2)测试数据生成的图形:a)f=2.4Ghz,d=lambda/2,ζ=0图1,f=2.4Ghz,d=lambda/2,ζ=0b)f=2.4Ghz,d=lambda/2,ζ=pi图2,f=2.4Ghz,d=lambda/2,ζ=pic)f=2.4Ghz,d=lambda/4,ζ=-pi/2图3,f=2.4Ghz,d=lambda/4,ζ=-pi/22、均匀直线阵matlab实现1)matlab程序:phi = 0 : .01*pi : 2*pi; %确定φ的范围f = input('Input f(Ghz)='); %输入频率fc = 3*10^8; %常量clambda = c / (f*10^9); %求波长λk = (2*pi) / lambda; %求系数kd = input('Input d(m)='); %输入距离dzeta = input('Input ζ='); %输入方向系数ζN = input('Input N=');psai = k*d*cos(phi)+zeta;A_psai = abs((sin(N.*psai./2)./sin(psai./2)))./N;polar(theta,A_psai);title('A_ψ')2)测试数据生成的图形:A.边射阵(ζ=0)a)f=2.4Ghz,d=lambda/2,ζ=0,N=3b)f=2.4Ghz,d=lambda/2,ζ=0,N=4d)f=2.4Ghz,d=lambda/2,ζ=0,N=6f)f=2.4Ghz,d=lambda/2,ζ=0,N=8B.端射阵(ζ=0)a)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=3b)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=4c)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=5d)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=6e)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=7f)f=2.4Ghz,d=lambda/2,ζ=-k*d,N=8。

基于Matlab的阵列天线方向图仿真

基于Matlab的阵列天线方向图仿真

赋形的性能受阵列天线[4]的类型及相关参数的影响, 可通过阵列天线的方向图进行直观展现,因此,对阵 列天线的方向图进行仿真研究具有重要的现实意义。
Matlab 能够将数值分析、矩阵计算、科学数据可 视化以及系统建模和仿真等诸多强大的功能都集成在 一个易于使用的视窗环境中,是计算机仿真实验中非 常实用的一种工具。使用 Matlab 对不同类型的天线阵 列的方向图进行仿真研究,首先建立 3 种类型的天线 阵——直线阵、圆阵及平面阵的数学模型并推导各自 的阵因子表达式,之后通过仿真,对比分析阵元数、 波长、阵元间距等参数对不同类型的阵列天线方向图 的影响。
收稿日期: 2019-12-10 基金项目: 重庆市教育教学改革重大项目(171014);重庆邮电大
学教育教学改革019-06);重庆邮电大学 大学生科研训练计划项目(A2018-56) 作者简介: 张承畅(1975—),男,湖北利川,博士,副教授、高 级实验师,研究方向为软件无线电、实验教学改革。 E-mail: zhangcc@
影响,仿真结果表明:直线阵、平面阵的性能与阵元数、阵元间距呈正相关,与波长呈负相关;圆阵的性能
与阵元数呈正相关,而与圆阵半径和波长的关系并不是线性的。
关键词:天线阵列;方向图;Matlab
中图分类号:TN710-45
文献标识码:A
文章编号:1002-4956(2020)08-0062-06
Directional diagram of array antenna based on Matlab
Abstract: The mathematical models of linear arrays antenna, circular arrays and planar arrays are constructed, and the corresponding array factor expressions are derived. The simulation research on three kinds of array antenna directional diagrams are carried out with Matlab. Through a comparative study of the influence of the number of elements, wavelength, spacing and other parameters on the different types of array antenna directional diagrams, the simulation results show that the performance of linear array and plane array is positively correlated with the number of array elements and the spacing of array elements, and negatively correlated with the wavelength. The performance of circular array is positively correlated with the number of array elements, but not linearly correlated with the radius and wavelength of circular array. Key words: antenna array; directional diagram; Matlab

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计——用MATLAB仿真天线方向图吴正琳天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。

在无线电设备中用来发射或接收电磁波的部件。

无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。

此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。

一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。

同一天线作为发射或接收的基本特性参数是相同的。

这就是天线的互易定理。

天线的基本单元就是单元天线。

1、单元天线对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图主要是说明一下以下几点:1、在Matlab中的极坐标画图的方法:polar(theta,rho,LineSpec);theta:极坐标坐标系0-2*pirho:满足极坐标的方程LineSpec:画出线的颜色2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。

也就是说这时的方向图只剩下一半。

3、半波振子天线方向图归一化方程:Matlab程序:clear alllam=1000;%波长k=2*pi./lam;L=lam/4;%天线臂长theta=0:pi/100:2*pi;f1=1./(1-cos(k*L));f2=(cos(k*L*cos(theta))-cos(k*L))./sin(theta);rho=f1*f2;polar(theta,abs(rho),'b');%极坐标系画图2、线性阵列天线2.1方向图乘积定理阵中第i 个天线单元在远区产生的电场强度为:2(,)ij i i i i ie E K If r πλθϕ-=式中,i K 为第i 个天线单元辐射场强的比例常数,i r 为第i 个天线单元至观察点的距离,(,)i f θϕ为第i 个天线单元的方向图函数,i I 为第i 个天线单元的激励电流,可以表示成为:Bji i i I a e φ-∆=式中,i a 为幅度加权系数,B φ∆为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。

MATLAB在天线方向图中的应用与研究

MATLAB在天线方向图中的应用与研究

MATLAB在天线方向图中的应用与研究王曼珠1,张民1,崔红跃2(1.北京电子科技学院 通信工程系,北京100070;2.中国民用航空大学,天津300300)ª摘 要:以天线方向图函数为例,分析了对称阵子天线、阵列天线方向图函数F(H,U)随各参量变化的规律以及二维图形的特点,并讨论了直线天线阵(单向端射阵)的最大辐射方向和主瓣宽度随各参量变化的二维、三维图形特点。

借助M AT LAB的绘图功能,对各种天线的方向图函数的二维、三维图形进行研究,可以观察到天线辐射场在不同方向的辐射能量分布,直观清楚地表现出辐射方向图的特点。

关键词:天线;M AT LAB;辐射方向图中图分类号:TN820.1+2;TP391.77 文献标识码:A文章编号:1008-0686(2004)04-0024-04The Application and Study of Antenna Radiation Pattern Based on MATLABWANG Man-zhu1,ZHANG Zhe-min1,C UI Hong-yue2(1.Dep t.of Communication Eng ineer ing B eij ing E le ctronic S cience&T echnology I nstitute,B eij ing100070,China;2.Civ il A viation Unive rsity of China,T ianj ing300300,China)Abstract:This paper takes the antenna radiation pattern as an exam ple,and analy zes the rules of the function F(H,U)varg ing w ith the par am eters for the dipole and antenna ar rays r adiation pattern,as w ell as the characteristic of the tw o-dimensio nal fig ure.In addition,w e discuss the characteristics of the two and thr ee-dimensional fig ure when the max imum radiation and the width o f m ajo r lobe vary s w ith the param eters in the end-fire array.It introduces the w ay of plo tting co mplicated antenna directional r adiation pattern of two and three-dim ensional figure w ith the help of plo tting functions of MAT LAB,the radiating energy distribution of the antenna radiation field in different directions can be observed from r adiation pattern of the antenna,and the characteristic of the radiation pattern can be sho w n clearly.Keywords:antenna;M AT LA B;radiation pattern 天线的远区场分布是一组复杂的函数,分析不同天线的辐射场可从中得到该天线的各种重要性能参数。

阵列天线方向图的MATLAB实现

阵列天线方向图的MATLAB实现

阵列天线方向图的MATLAB 实现课程名称:MATLAB程序设计与应用任课教师:周金柱班级:04091202姓名:黄文平学号:04091158成绩:阵列天线方向图的MATLAB 实现摘要:天线的方向性是指电磁场辐射在空间的分布规律,文章以阵列天线的方向性因子F(θ,φ)为主要研究对象来分析均匀和非均匀直线阵天线的方向性。

讨论了阵列天线方向图中主射方向和主瓣宽度随各参数变化的特点,借助M ATLAB绘制出天线方向性因子的二维和三维方向图,展示天线辐射场在空间的分布规律,表现辐射方向图的特点。

关键词:阵列天线;;方向图;MATLAB前言:天线是发射和接收电磁波的重要的无线电设备,没有天线也就没有无线电通信。

不同用途的天线要求其有不同的方向性,阵列天线以其较强的方向性和较高的增益在工程实际中被广泛应用。

因此,对阵列天线方向性分析在天线理论研究中占有重要地位。

阵列天线方向性主要由方向性因子F(θ,φ)表征,但F(θ,φ)在远区场是一组复杂的函数,如果对它的认识和分析仅停留在公式中各参数的讨论上,很难理解阵列天线辐射场的空间分布规律[ 1 ]。

MATLAB以其卓越的数值计算能力和强大的绘图功能,近年来被广泛应用在天线的分析和设计中。

借助MATLAB可以绘制出阵列天线的二维和三维方向图,直观地从方向图中看出主射方向和主瓣宽度随各参数的变化情况,加深对阵列天线辐射场分布规律的理解。

1 均匀直线阵方向图分析若天线阵中各个单元天线的类型和取向均相同,且以相等的间隔d 排列在一条直线上。

且各单元天线的电流振幅均为I,相位依次滞后同一数值琢,那么,这种天线阵称为均匀直线式天线阵,如图1 所示[ 2 ]:均匀直线阵归一化阵因子为[ 3 ]:Fn(θ,φ)是一个周期函数,所以除§= 0 时是阵因子的主瓣最大值外,§= ±2 mπ(m=1,2,...)都是主瓣最大值,这些重复的主瓣称为栅瓣,在实际应用中,通常希望出现一个主瓣,为避免出现栅瓣,必须把g限制在- 2π<§<2π范围内[ 4 ],其中k=λ/2π,即波数,n 表示阵元数目。

改进遗传算法的天线阵列方向图优化及Matlab仿真

改进遗传算法的天线阵列方向图优化及Matlab仿真

改进遗传算法的天线阵列方向图优化及Matlab仿真作者:赵萍来源:《信息技术时代·中旬刊》2019年第02期摘要:本文提出了一种应用于阵列天线方向图优化的改进遗传算法。

该算法借鉴生物学中S型种群增长曲线模型赋予标准遗传算法中染色体被选中概率、交叉概率、遗传概率,关于进化世代数的动态取值。

用改进后的遗传算法对八单元阵列天线方向图进行了优化,并将优化结果与优前化、标准遗传算法优化结果进行了对比分析。

结果显示改进后的遗传算法能够得到更低的第一副瓣电平,优化结果更好。

文中同时给出部分matlab程序,方便读者学习。

关键词:种群增长曲线;改进遗传算法;方向图优化;matlab程序Array Antenna Pattern optimized by improved Genetic Algorithm and Matlab SimulationPing Zhao(College of Information Science and Technology,Donghua University,Shanghai 201620,China)Abstract:A improved genetic algorithm is presented for optimization of array antennapattern .In the improved genetic algorithm,being selected probability,crossover probability and inherited probability of chromosome is conferred dynamic values about evolutionary generations,leaning from the model of S-type population growth curve in biology.And the eight-cell array antenna pattern is optimized by the improved genetic pared to the un-optimized antenna pattern and the results optimized by standard genetic algorithm,optimized results show that the improved genetic algorithm can obtain a lower first side-lobe level and a better optimized results.The paper also provides some parts of the matlab procedures to allow readers to learn.Key words:population growth curve;improved genetic algorithm;optimized antenna pattern;Low side-lobe level; matlab procedures引言:在搜索雷達、通讯技术等众多领域中往往需要特殊形状的天线波束(如余割平方波束等),即天线的波束赋形。

matlab仿真天线阵代码

matlab仿真天线阵代码

matlab仿真天线阵代码天线阵代码tail750575.html一、clcclear allf=3e9;N1=4;N2=8;N3=12;a=pi/2; %馈电相位差i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长d=lambda/2;beta=2.*pi/lambda;W=-2*pi:0.001:2*pi;y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子y1=abs(y1);r1=max(y1);y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子y2=abs(y2);r2=max(y2);y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子y3=abs(y3);r3=max(y3);%归一化阵因子绘图程序,figure(1)subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=4,d=1/2波长,a=π/2')subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=8,d=1/2波长,a=π/2')subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图t=0:0.01:2*pi;W=a+(beta.*d.*cos(t));z1=(N1/2).*(W);z2=(1/2).*(W);W1=sin(z1)./(N1.*sin(z2)); %非归一化的阵因子K1K1=abs(W1);%---------------------- W=a+(beta.*d.*cos(t));z3=(N2/2).*(W);z4=(1/2).*(W);W2=sin(z3)./(N2.*sin(z4)); %非归一化的阵因子K2 K2=abs(W2);%------------------------- W=a+(beta.*d.*cos(t));z5=(N3/2).*(W);z6=(1/2).*(W);W3=sin(z5)./(N3.*sin(z6)); %非归一化的阵因子K3 K3=abs(W3);--------------------绘图函数 %figure(2)subplot(131);polar(t,K1);xlabel('f=3GHz,N=4,d=1/2波长,a=π/2');subplot(132);polar(t,K2);xlabel('f=3GHz,N=8,d=1/2波长,a=π/2');,a=π/2'); subplot(133);polar(t,K3);xlabel('f=3GHz,N=12,d=1/2波长%---------------------- %只有阵列单元方向角a改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A=a1+(beta.*d1.*cos(t)); x1=(N4/2).*(A);x2=(1/2).*(A);A1=sin(x1)./(N4.*sin(x2)); %非归一化的阵因子K4 K4=abs(A1);%--------------------------- B=a2+(beta.*d1.*cos(t));y_1=(N4/2).*(B);y_2=(1/2).*(B);B1=sin(y_1)./(N4.*sin(y_2)); %非归一化的阵因子K5 K5=abs(B1);%---------------------------- C=a3+(beta.*d1.*cos(t));v1=(N4/2).*(C);v2=(1/2).*(C);C1=sin(v1)./(N4.*sin(v2)); %非归一化的阵因子K6 K6=abs(C1);%--------------------------绘图函数figure(3)subplot(131);polar(t,K4);xlabel('f=3GHz,N=10,d=1/4波长,a=0');subplot(132);polar(t,K5);xlabel('f=3GHz,N=10,d=1/4波长,a=π/2');subplot(133);polar(t,K6);xlabel('f=3GHz,N=10,d=1/4波长,a=π/2+π/10');%----------------------------------------------------------------------%只有阵列单元间隔d改变的天线方向图N5=20;d2=lambda/4;d3=lambda/2;d4=0.7*lambda;a4=pi/2;D=a4+(beta.*d2.*cos(t));p1=(N5/2).*(D);p2=(1/2).*(D);D1=sin(p1)./(N5.*sin(p2)); %非归一化的阵因子K7K7=abs(D1);%------------------------------ E=a4+(beta.*d3.*cos(t));q1=(N5/2).*(E);q2=(1/2).*(E);E1=sin(q1)./(N5.*sin(q2)); %非归一化的阵因子K8K8=abs(E1);%------------------------------- F=a4+(beta.*d4.*cos(t));r_1=(N5/2).*(F);r_2=(1/2).*(F);F1=sin(r_1)./(N5.*sin(r_2)); %非归一化的阵因子K9K9=abs(F1);%-----------------------绘图函数figure(4)subplot(131);polar(t,K7);xlabel('f=3GHz,N=20,d=1/4波长,a=π/2'); subplot(132);polar(t,K8);xlabel('f=3GHz,N=20,d=1/2波长,a=π/2'); subplot(133);polar(t,K9);xlabel('f=3GHz,N=20,d=0.7波长,a=π/2');%--------------------------------------------------------------------------%---------------------------------------3D-天线方向图n_tehta = 130; %-------------------- 采样视角点的仰角n_phi = 130; %--------------------采样点的方向角[tehta,phi]=meshgrid(eps:pi./(n_tehta-1):pi,... %meshgrid函数为矩形区域的设定范围是epf<tehta<π 0<phi<2π0:2*pi./(n_phi-1):2*pi) ;t3=tehta;%-------------只有参数N改变的天线方向3D图M=a+(beta.*d.*cos(t3)); %----N1=4;N2=8;N3=12;z_1=(N1/2).*(M);z_2=(1/2).*(M);M1=sin(z_1)./(N1.*sin(z_2)); %非归一化的阵因子K1K_1=abs(M1);radio_1 =K_1;X1=radio_1.*sin(tehta).*cos(phi);Y1=radio_1.*sin(tehta).*sin(phi);Z1=radio_1.*cos(tehta); %-----------------------------------M=a+(beta.*d.*cos(t3));z_3=(N2/2).*(M);z_4=(1/2).*(M);M2=sin(z_3)./(N2.*sin(z_4)); %非归一化的阵因子K2 K_2=abs(M2);radio_2 =K_2;X2=radio_2.*sin(tehta).*cos(phi);Y2=radio_2.*sin(tehta).*sin(phi);Z2=radio_2.*cos(tehta); ------------------------------------- %M=a+(beta.*d.*cos(t3));z_5=(N3/2).*(M);z_6=(1/2).*(M);M3=sin(z_5)./(N3.*sin(z_6)); %非归一化的阵因子K3 K_3=abs(M3);radio_3 =K_3;X3=radio_3.*sin(tehta).*cos(phi);Y3=radio_3.*sin(tehta).*sin(phi);Z3=radio_3.*cos(tehta); %------------------------------------3D绘图函数 figure(5)surf(X1,Y1,Z1); %三维绘图函数surf,采用伪彩色表示曲面的高度 camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=4,d=1/2波长,a=π/2'); figure(6)surf(X2,Y2,Z2);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=8,d=1/2波长,a=π/2'); fi gure(7)surf(X3,Y3,Z3)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=12,d=1/2波长,a=π/2');%----------------------------------------------%--------------------只有阵列单元方向角a改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A_3d=a1+(beta.*d1.*cos(t3));x_1=(N4/2).*(A_3d);x_2=(1/2).*(A_3d);A_1=sin(x_1)./(N4.*sin(x_2)); %非归一化的阵因子K4K_4=abs(A_1);radio_4 =K_4;X4=radio_4.*sin(tehta).*cos(phi); Y4=radio_4.*sin(tehta).*sin(phi); Z4=radio_4.*cos(tehta);%----------------------------------- B_3d=a2+(beta.*d1.*cos(t3));y_1_3d=(N4/2).*(B_3d);y_2_3d=(1/2).*(B_3d);B_1=sin(y_1_3d)./(N4.*sin(y_2_3d)); %非归一化的阵因子K5 K_5=abs(B_1);radio_5 =K_5;X5=radio_5.*sin(tehta).*cos(phi); Y5=radio_5.*sin(tehta).*sin(phi);Z5=radio_5.*cos(tehta);%------------------------------------ C_3d=a3+(beta.*d1.*cos(t3));v_1=(N4/2).*(C_3d);v_2=(1/2).*(C_3d);C_1=sin(v_1)./(N4.*sin(v_2)); %非归一化的阵因子K6K_6=abs(C_1);radio_6 =K_6;X6=radio_6.*sin(tehta).*cos(phi); Y6=radio_6.*sin(tehta).*sin(phi);Z6=radio_6.*cos(tehta);%----------------------------------- figure(8)surf(X4,Y4,Z4); %三维绘图函数surf,采用伪彩色表示曲面的高度 camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=0');figure(9)surf(X5,Y5,Z5);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=π/2');figure(10)surf(X6,Y6,Z6)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=π/2+π/10');%----------------------------------------------------------------只有阵列单元间隔d改变的天线方向3D图 % N5=20;d2=lambda/4;d3=lambda/2;d4=0.7*lambda;a4=pi/2;D_3d=a4+(beta.*d2.*cos(t3)); p_1=(N5/2).*(D_3d);p_2=(1/2).*(D_3d);D_1=sin(p_1)./(N5.*sin(p_2)); %非归一化的阵因子K7K_7=abs(D_1);radio_7 =K_7;X7=radio_7.*sin(tehta).*cos(phi); Y7=radio_7.*sin(tehta).*sin(phi);Z7=radio_7.*cos(tehta);%--------------------------------------- E_3d=a4+(beta.*d3.*cos(t3)); q_1=(N5/2).*(E_3d);q_2=(1/2).*(E_3d);E_1=sin(q_1)./(N5.*sin(q_2)); %非归一化的阵因子K8K_8=abs(E_1);radio_8 =K_8;X8=radio_8.*sin(tehta).*cos(phi); Y8=radio_8.*sin(tehta).*sin(phi);Z8=radio_8.*cos(tehta);%------------------------------------------F_3d=a4+(beta.*d4.*cos(t3)); r_1_3d=(N5/2).*(F_3d);r_2_3d=(1/2).*(F_3d);F_1=sin(r_1_3d)./(N5.*sin(r_2_3d)); %非归一化的阵因子K9 K_9=abs(F_1);radio_9 =K_9;X9=radio_9.*sin(tehta).*cos(phi);Y9=radio_9.*sin(tehta).*sin(phi);Z9=radio_9.*cos(tehta); %-----------------------------------figure(11)surf(X7,Y7,Z7); %三维绘图函数surf,采用伪彩色表示曲面的高度camlight rightlightcolorbaraxis imagerotate3D on,a=π/2'); title('f=3GHz,N=20,d=1/4波长figure(12)surf(X8,Y8,Z8); camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=1/2波长,a=π/2'); figure(13)surf(X9,Y9,Z9)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=0.7波长,a=π/2');二、%-----------------均匀直线阵列天线的应用之一:边射阵 clc clear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2.*pi/lambda;N=15;t=0:0.01:2*pi;d1=lambda/4; %没有栅瓣效应的边射阵,即间隔d<波长 W1=beta.*d1.*cos(t); %定义kdcos(方向角) z1=(N/2).*W1;z2=(1/2).*W1;F1=sin(z1)./(N.*sin(z2)); K1=abs(F1);d2=lambda*1.5; %有栅瓣现象的边射阵,即间隔d>波长 W2=beta.*d2.*cos(t); %定义kdcos(方向角) z3=(N/2).*W2;z4=(1/2).*W2;F2=sin(z3)./(N.*sin(z4)); K2=abs(F2);figure(1)subplot(121);polar(t,K1);title('边射阵 f=30GHz,N=15,d=1/4波长');subplot(122);polar(t,K2);title('边射阵(有栅瓣) f=30GHz,N=15,d=1.5倍波长');三、%-----------------均匀直线阵列天线的应用之二:普通端射阵 clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2.*pi/lambda;N=15;t=0:0.01:2*pi;d1=lambda/4; %没有栅瓣效应的普通端射阵,即间隔d<1/2波长W1=beta.*d1.*cos(t); %定义kdcos(方向角)z1=((N/2).*W1)+N/2*beta*d1; z2=((1/2).*W1)+1/2*beta*d1;F1=sin(z1)./(N.*sin(z2)); K1=abs(F1);d2=lambda*0.7; %有栅瓣现象的普通端射阵,即间隔d>1/2波长W2=beta.*d2.*cos(t); %定义kdcos(方向角)z3=((N/2).*W2)+N/2*beta*d2; z4=((1/2).*W2)+1/2*beta*d2;F2=sin(z3)./(N.*sin(z4)); K2=abs(F2);figure(2)subplot(121);polar(t,K1);title('普通端射阵 f=30GHz,N=15,d=1/4波长');subplot(122);polar(t,K2);title('普通端射阵(有栅瓣)f=30GHz,N=15,d=0.7倍波长');四%-----------------均匀直线阵列天线的应用之三:强方向性端射阵 clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2.*pi/lambda;N=15;t=0:0.01:2*pi;d1=lambda/4; %没有栅瓣效应的强方向性端射阵,即间隔d<(1/2波长)*(1-1/N)W1=beta.*d1.*cos(t); %定义kdcos(方向角)z1=((N/2).*W1)+N/2*(beta*d1+pi/N); z2=((1/2).*W1)+1/2*(beta*d1+pi/N); F1=sin(pi/2/N).*sin(z1)./(sin(z2)); K1=abs(F1);d2=lambda*0.5; %有栅瓣现象的强方向性端射阵,即间隔d>1/2波长*(1-1/N) 方向角) W2=beta.*d2.*cos(t); %定义kdcos(z3=((N/2).*W2)+N/2*(beta*d2+pi/N); z4=((1/2).*W2)+1/2*(beta*d2+pi/N); F2=sin(pi/2/N).*sin(z3)./(sin(z4)); K2=abs(F2);figure(3)subplot(121);polar(t,K1);title('强方向性端射阵 f=30GHz,N=15,d=1/4波长');subplot(122);polar(t,K2);title('强方向性端射阵(有栅瓣)f=30GHz,N=15,d=0.5倍波长');。

阵列天线方向图的MATLAB实现

阵列天线方向图的MATLAB实现

阵列天线方向图的MATLAB实现
陈天禄;郭燕红
【期刊名称】《西藏大学学报(自然科学版)》
【年(卷),期】2010(025)001
【摘要】天线的方向性是指电磁场辐射在空间的分布规律,文章以阵列天线的方向性因子F(θ,φ)为主要研究对象来分析均匀和非均匀直线阵天线的方向性.讨论了阵列天线方向图中主射方向和主瓣宽度随各参数变化的特点,借助MATLAB绘制出天线方向性因子的二维和三维方向图,展示天线辐射场在空间的分布规律,表现辐射方向图的特点.
【总页数】5页(P103-107)
【作者】陈天禄;郭燕红
【作者单位】西藏大学理学院,西藏拉萨,850000;西藏大学理学院,西藏拉
萨,850000
【正文语种】中文
【中图分类】TN82
【相关文献】
1.基于C++ Builder和Matlab实现天线方向图可视化软件的设计 [J], 王勋志;王玲丽
2.阵列天线方向图的MATLAB实现 [J], 陈天禄;郭燕红
3.基于Matlab的阵列天线方向图仿真 [J], 张承畅;余洒;罗元;徐余;陈银锋
4.基于WCA的阵列天线方向图综合算法研究及实现 [J], 仇亮;王云秀;郑霞;樊琴;
段寅龙;贾瑞林
5.基于WCA的阵列天线方向图综合算法研究及实现 [J], 仇亮;王云秀;郑霞;樊琴;段寅龙;贾瑞林
因版权原因,仅展示原文概要,查看原文内容请购买。

阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB仿真一.实验目的1.了解阵列天线的波束形成原理写出方向图函数2.运用MATLAB仿真阵列天线的方向图曲线3.变换各参量观察曲线变化并分析参量间的关系二.实验原理1.阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。

阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。

^2.方向图原理:对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。

假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。

一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元阵列天线天线阵的方向图。

这就是方向图相乘原理。

一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。

这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。

三.源程序及相应的仿真图1.方向图随n变化的源程序clear;sita=-pi/2::pi/2;lamda=;]d=lamda/4;n1=20;beta=2*pi*d*sin(sita)/lamda;z11=(n1/2)*beta;z21=(1/2)*beta;f1=sin(z11)./(n1*sin(z21));F1=abs(f1);figure(1);plot(sita,F1,'b');hold on;n2=25;:beta=2*pi*d*sin(sita)/lamda;z12=(n2/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n2*sin(z22));F2=abs(f2);plot(sita,F2,'r');hold on;n3=30;beta=2*pi*d*sin(sita)/lamda;z13=(n3/2)*beta;z23=(1/2)*beta;>f3=sin(z13)./(n3*sin(z23));F3=abs(f3);plot(sita,F3,'k')hold off;grid on;xlabel('theta/radian');ylabel('amplitude');title('方向图与阵列个数的关系'); legend('n=20','n=25','n=30');·结果分析:随着阵列个数n的增加,方向图衰减越快,效果越好;2.方向图随lamda变化的源程序clear;sita=-pi/2::pi/2;n=20;d=;lamda1=;beta=2*pi*d*sin(sita)/lamda1;z11=(n/2)*beta;z21=(1/2)*beta;f1=sin(z11)./(n*sin(z21));~F1=abs(f1);%·½ÏòͼÇúÏßfigure(1);lamda2=;beta=2*pi*d*sin(sita)/lamda2;z12=(n/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n*sin(z22));F2=abs(f2);lamda3=;beta=2*pi*d*sin(sita)/lamda3;z13=(n/2)*beta;,z23=(1/2)*beta;f3=sin(z13)./(n*sin(z23));F3=abs(f3)plot(sita,F1,'b',sita,F2,'r',sita,F3,'k');grid on;xlabel('theta/radian');ylabel('amplitude');title('方向图与波长的关系');legend('lamda=','lamda=','lamda=');四.,随着波长lamda的增大,方向图衰减越慢,收敛性越五.结果分析:不是很好;3.方向图随d变化的源程序clear;sita=-pi/2::pi/2;n=20;lamda=;d1=;beta=2*pi*d1*sin(sita)/lamda;z11=(n/2)*beta;z21=(1/2)*beta;【f1=sin(z11)./(n*sin(z21));F1=abs(f1);%·½ÏòͼÇúÏßfigure(1);plot(sita,F1,'b');hold on;d2=;beta=2*pi*d2*sin(sita)/lamda;z12=(n/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n*sin(z22));F2=abs(f2);-plot(sita,F2,'r');hold on;d3=;beta=2*pi*d3*sin(sita)/lamda;z13=(n/2)*beta;z23=(1/2)*beta;f3=sin(z13)./(n*sin(z23));F3=abs(f3)plot(sita,F3,'k')hold off;grid on;xlabel('theta/radian');ylabel('amplitude');title('·½ÏòͼÓëÌìÏßÕóÁмä¸ôdµÄ¹Øϵ'); legend('d1=','d=','d=');结果分析;随着阵元之间间隔的增加,方向图衰减越快,主次瓣的差距越大,次瓣衰减越快,效果越好。

MATLAB仿真天线阵代码

MATLAB仿真天线阵代码

天线阵代码一、clcclear allf=3e9;N1=4;N2=8;N3=12;a=pi/2; %馈电相位差i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长d=lambda/2;beta=2、*pi/lambda;W=-2*pi:0、001:2*pi;y1=sin((N1、*W、/2))、/(N1、*(sin(W、/2))); %归一化阵因子y1=abs(y1);r1=max(y1);y2=sin((N2、*W、/2))、/(N2、*(sin(W、/2))); %归一化阵因子y2=abs(y2);r2=max(y2);y3=sin((N3、*W、/2))、/(N3、*(sin(W、/2))); %归一化阵因子y3=abs(y3);r3=max(y3);%归一化阵因子绘图程序,figure(1)subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=4,d=1/2波长,a=π/2')subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=8,d=1/2波长,a=π/2')subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=12,d=1/2波长,a=π/2')%---------------------%只有参数N改变的天线方向图t=0:0、01:2*pi;W=a+(beta、*d、*cos(t));z1=(N1/2)、*(W);z2=(1/2)、*(W);W1=sin(z1)、/(N1、*sin(z2)); %非归一化的阵因子K1K1=abs(W1);%----------------------W=a+(beta、*d、*cos(t));z3=(N2/2)、*(W);z4=(1/2)、*(W);W2=sin(z3)、/(N2、*sin(z4)); %非归一化的阵因子K2K2=abs(W2);%-------------------------W=a+(beta、*d、*cos(t));z5=(N3/2)、*(W);z6=(1/2)、*(W);W3=sin(z5)、/(N3、*sin(z6)); %非归一化的阵因子K3K3=abs(W3);%--------------------绘图函数figure(2)subplot(131);polar(t,K1);xlabel('f=3GHz,N=4,d=1/2波长,a=π/2'); subplot(132);polar(t,K2);xlabel('f=3GHz,N=8,d=1/2波长,a=π/2'); subplot(133);polar(t,K3);xlabel('f=3GHz,N=12,d=1/2波长,a=π/2');%----------------------%只有阵列单元方向角a改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A=a1+(beta、*d1、*cos(t));x1=(N4/2)、*(A);x2=(1/2)、*(A);A1=sin(x1)、/(N4、*sin(x2)); %非归一化的阵因子K4K4=abs(A1);%---------------------------B=a2+(beta、*d1、*cos(t));y_1=(N4/2)、*(B);y_2=(1/2)、*(B);B1=sin(y_1)、/(N4、*sin(y_2)); %非归一化的阵因子K5K5=abs(B1);%----------------------------C=a3+(beta、*d1、*cos(t));v1=(N4/2)、*(C);v2=(1/2)、*(C);C1=sin(v1)、/(N4、*sin(v2)); %非归一化的阵因子K6K6=abs(C1);%--------------------------绘图函数figure(3)subplot(131);polar(t,K4);xlabel('f=3GHz,N=10,d=1/4波长,a=0'); subplot(132);polar(t,K5);xlabel('f=3GHz,N=10,d=1/4波长,a=π/2'); subplot(133);polar(t,K6);xlabel('f=3GHz,N=10,d=1/4波长,a=π/2+π/10');%----------------------------------------------------------------------%只有阵列单元间隔d改变的天线方向图N5=20;d2=lambda/4;d3=lambda/2;d4=0、7*lambda;a4=pi/2;D=a4+(beta、*d2、*cos(t));p1=(N5/2)、*(D);p2=(1/2)、*(D);D1=sin(p1)、/(N5、*sin(p2)); %非归一化的阵因子K7K7=abs(D1);%------------------------------E=a4+(beta、*d3、*cos(t));q1=(N5/2)、*(E);q2=(1/2)、*(E);E1=sin(q1)、/(N5、*sin(q2)); %非归一化的阵因子K8K8=abs(E1);%-------------------------------F=a4+(beta、*d4、*cos(t));r_1=(N5/2)、*(F);r_2=(1/2)、*(F);F1=sin(r_1)、/(N5、*sin(r_2)); %非归一化的阵因子K9K9=abs(F1);%-----------------------绘图函数figure(4)subplot(131);polar(t,K7);xlabel('f=3GHz,N=20,d=1/4波长,a=π/2'); subplot(132);polar(t,K8);xlabel('f=3GHz,N=20,d=1/2波长,a=π/2'); subplot(133);polar(t,K9);xlabel('f=3GHz,N=20,d=0、7波长,a=π/2');%--------------------------------------------------------------------------%---------------------------------------3D-天线方向图n_tehta = 130; %-------------------- 采样视角点的仰角n_phi = 130; %--------------------采样点的方向角[tehta,phi]=meshgrid(eps:pi、/(n_tehta-1):pi,、、、 %meshgrid函数为矩形区域的设定范围就是epf<tehta<π 0<phi<2π0:2*pi、/(n_phi-1):2*pi) ;t3=tehta;%-------------只有参数N改变的天线方向3D图M=a+(beta、*d、*cos(t3)); %----N1=4;N2=8;N3=12;z_1=(N1/2)、*(M);z_2=(1/2)、*(M);M1=sin(z_1)、/(N1、*sin(z_2)); %非归一化的阵因子K1K_1=abs(M1);radio_1 =K_1;X1=radio_1、*sin(tehta)、*cos(phi);Y1=radio_1、*sin(tehta)、*sin(phi);Z1=radio_1、*cos(tehta);%-----------------------------------M=a+(beta、*d、*cos(t3));z_3=(N2/2)、*(M);z_4=(1/2)、*(M);M2=sin(z_3)、/(N2、*sin(z_4)); %非归一化的阵因子K2K_2=abs(M2);radio_2 =K_2;X2=radio_2、*sin(tehta)、*cos(phi);Y2=radio_2、*sin(tehta)、*sin(phi);Z2=radio_2、*cos(tehta);%-------------------------------------M=a+(beta、*d、*cos(t3));z_5=(N3/2)、*(M);z_6=(1/2)、*(M);M3=sin(z_5)、/(N3、*sin(z_6)); %非归一化的阵因子K3K_3=abs(M3);radio_3 =K_3;X3=radio_3、*sin(tehta)、*cos(phi);Y3=radio_3、*sin(tehta)、*sin(phi);Z3=radio_3、*cos(tehta);%------------------------------------3D绘图函数figure(5)surf(X1,Y1,Z1); %三维绘图函数surf,采用伪彩色表示曲面的高度camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=4,d=1/2波长,a=π/2');figure(6)surf(X2,Y2,Z2);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=8,d=1/2波长,a=π/2');figure(7)surf(X3,Y3,Z3)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=12,d=1/2波长,a=π/2');%----------------------------------------------%--------------------只有阵列单元方向角a改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A_3d=a1+(beta、*d1、*cos(t3));x_1=(N4/2)、*(A_3d);x_2=(1/2)、*(A_3d);A_1=sin(x_1)、/(N4、*sin(x_2)); %非归一化的阵因子K4K_4=abs(A_1);radio_4 =K_4;X4=radio_4、*sin(tehta)、*cos(phi);Y4=radio_4、*sin(tehta)、*sin(phi);Z4=radio_4、*cos(tehta);%-----------------------------------B_3d=a2+(beta、*d1、*cos(t3));y_1_3d=(N4/2)、*(B_3d);y_2_3d=(1/2)、*(B_3d);B_1=sin(y_1_3d)、/(N4、*sin(y_2_3d)); %非归一化的阵因子K5 K_5=abs(B_1);radio_5 =K_5;X5=radio_5、*sin(tehta)、*cos(phi);Y5=radio_5、*sin(tehta)、*sin(phi);Z5=radio_5、*cos(tehta);%------------------------------------C_3d=a3+(beta、*d1、*cos(t3));v_1=(N4/2)、*(C_3d);v_2=(1/2)、*(C_3d);C_1=sin(v_1)、/(N4、*sin(v_2)); %非归一化的阵因子K6K_6=abs(C_1);radio_6 =K_6;X6=radio_6、*sin(tehta)、*cos(phi);Y6=radio_6、*sin(tehta)、*sin(phi);Z6=radio_6、*cos(tehta);%-----------------------------------figure(8)surf(X4,Y4,Z4); %三维绘图函数surf,采用伪彩色表示曲面的高度camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=0');figure(9)surf(X5,Y5,Z5);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=π/2');figure(10)surf(X6,Y6,Z6)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=π/2+π/10');%---------------------------------------------%-------------------只有阵列单元间隔d改变的天线方向3D图N5=20;d2=lambda/4;d3=lambda/2;d4=0、7*lambda;a4=pi/2;D_3d=a4+(beta、*d2、*cos(t3));p_1=(N5/2)、*(D_3d);p_2=(1/2)、*(D_3d);D_1=sin(p_1)、/(N5、*sin(p_2)); %非归一化的阵因子K7K_7=abs(D_1);radio_7 =K_7;X7=radio_7、*sin(tehta)、*cos(phi);Y7=radio_7、*sin(tehta)、*sin(phi);Z7=radio_7、*cos(tehta);%---------------------------------------E_3d=a4+(beta、*d3、*cos(t3));q_1=(N5/2)、*(E_3d);q_2=(1/2)、*(E_3d);E_1=sin(q_1)、/(N5、*sin(q_2)); %非归一化的阵因子K8K_8=abs(E_1);radio_8 =K_8;X8=radio_8、*sin(tehta)、*cos(phi);Y8=radio_8、*sin(tehta)、*sin(phi);Z8=radio_8、*cos(tehta);%------------------------------------------F_3d=a4+(beta、*d4、*cos(t3));r_1_3d=(N5/2)、*(F_3d);r_2_3d=(1/2)、*(F_3d);F_1=sin(r_1_3d)、/(N5、*sin(r_2_3d)); %非归一化的阵因子K9 K_9=abs(F_1);radio_9 =K_9;X9=radio_9、*sin(tehta)、*cos(phi);Y9=radio_9、*sin(tehta)、*sin(phi);Z9=radio_9、*cos(tehta);%-----------------------------------figure(11)surf(X7,Y7,Z7); %三维绘图函数surf,采用伪彩色表示曲面的高度camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=1/4波长,a=π/2');figure(12)surf(X8,Y8,Z8);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=1/2波长,a=π/2');figure(13)surf(X9,Y9,Z9)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=0、7波长,a=π/2');二、%-----------------均匀直线阵列天线的应用之一:边射阵clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2、*pi/lambda;N=15;t=0:0、01:2*pi;d1=lambda/4; %没有栅瓣效应的边射阵,即间隔d<波长W1=beta、*d1、*cos(t); %定义kdcos(方向角)z1=(N/2)、*W1;z2=(1/2)、*W1;F1=sin(z1)、/(N、*sin(z2));K1=abs(F1);d2=lambda*1、5; %有栅瓣现象的边射阵,即间隔d>波长W2=beta、*d2、*cos(t); %定义kdcos(方向角)z3=(N/2)、*W2;z4=(1/2)、*W2;F2=sin(z3)、/(N、*sin(z4));K2=abs(F2);figure(1)subplot(121);polar(t,K1);title('边射阵 f=30GHz,N=15,d=1/4波长'); subplot(122);polar(t,K2);title('边射阵(有栅瓣) f=30GHz,N=15,d=1、5倍波长');三、%-----------------均匀直线阵列天线的应用之二:普通端射阵clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2、*pi/lambda;N=15;t=0:0、01:2*pi;d1=lambda/4; %没有栅瓣效应的普通端射阵,即间隔d<1/2波长W1=beta、*d1、*cos(t); %定义kdcos(方向角)z1=((N/2)、*W1)+N/2*beta*d1;z2=((1/2)、*W1)+1/2*beta*d1;F1=sin(z1)、/(N、*sin(z2));K1=abs(F1);d2=lambda*0、7; %有栅瓣现象的普通端射阵,即间隔d>1/2波长W2=beta、*d2、*cos(t); %定义kdcos(方向角)z3=((N/2)、*W2)+N/2*beta*d2;z4=((1/2)、*W2)+1/2*beta*d2;F2=sin(z3)、/(N、*sin(z4));K2=abs(F2);figure(2)subplot(121);polar(t,K1);title('普通端射阵 f=30GHz,N=15,d=1/4波长'); subplot(122);polar(t,K2);title('普通端射阵(有栅瓣) f=30GHz,N=15,d=0、7倍波长');四%-----------------均匀直线阵列天线的应用之三:强方向性端射阵clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2、*pi/lambda;N=15;t=0:0、01:2*pi;d1=lambda/4; %没有栅瓣效应的强方向性端射阵,即间隔d<(1/2波长)*(1-1/N)W1=beta、*d1、*cos(t); %定义kdcos(方向角)z1=((N/2)、*W1)+N/2*(beta*d1+pi/N);z2=((1/2)、*W1)+1/2*(beta*d1+pi/N);F1=sin(pi/2/N)、*sin(z1)、/(sin(z2));K1=abs(F1);d2=lambda*0、5; %有栅瓣现象的强方向性端射阵,即间隔d>1/2波长*(1-1/N) W2=beta、*d2、*cos(t); %定义kdcos(方向角)z3=((N/2)、*W2)+N/2*(beta*d2+pi/N);z4=((1/2)、*W2)+1/2*(beta*d2+pi/N);F2=sin(pi/2/N)、*sin(z3)、/(sin(z4));K2=abs(F2);figure(3)subplot(121);polar(t,K1);title('强方向性端射阵 f=30GHz,N=15,d=1/4波长');subplot(122);polar(t,K2);title('强方向性端射阵(有栅瓣)f=30GHz,N=15,d=0、5倍波长');。

14元阵列天线方向图及其MATLAB仿真

14元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真1设计目的1.了解阵列天线的波束形成原理写出方向图函数2.运用MATLAB 仿真阵列天线的方向图曲线3.变换各参量观察曲线变化并分析参量间的关系2设计原理阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。

阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。

在本次设计中,讨论的是均匀直线阵天线。

均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。

均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。

二元阵辐射场:式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场:令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数:式中:ζφθψ+=cos sin kd均匀直线阵最大值发生在0=ψ 处。

由此可以得出])[,(212121ζθθθϕθj jkr jkr m e r e r e F E E E E --+=+=12cos ),(21jkrm e F r E E -=ψϕθθζφθψ+=cos sin kd ∑-=+-=1)cos sin (),(N i kd ji jkrme erF E E ζϕθθϕθ2πθ=)2/sin()2/sin(1)(ψψψN N A =kdm ζϕ-=cos这里有两种情况最为重要。

1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。

2.端射振,计最大辐射方向在阵轴方向上,此时0=mϕ或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。

3设计过程本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。

基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阵列天线方向图的MATLAB 实现课程名称:MATLAB程序设计与应用任课教师:周金柱
班级:04091202
姓名:黄文平
学号:04091158
成绩:
阵列天线方向图的MATLAB 实现
摘要:天线的方向性是指电磁场辐射在空间的分布规律,文章以阵列天线的方向性因子F(θ,φ)为主要研究对象来分析均匀和非均匀直线阵天线的方向性。

讨论了阵列天线方向图中主射方向和主瓣宽度随各参数变化的特点,借助M ATLAB绘制出天线方向性因子的二维和三维方向图,展示天线辐射场在空间的分布规律,表现辐射方向图的特点。

关键词:阵列天线;;方向图;MATLAB
前言:
天线是发射和接收电磁波的重要的无线电设备,没有天线也就没有无线电通信。

不同用途的天线要求其有不同的方向性,阵列天线以其较强的方向性和较高的增益在工程实际中被广泛应用。

因此,对阵列天线方向性分析在天线理论研究中占有重要地位。

阵列天线方向性主要由方向性因子F(θ,φ)表征,但F(θ,φ)在远区场是一组复杂的函数,如果对它的认识和分析仅停留在公式中各参数的讨论上,很难理解阵列天线辐射场的空间分布规律[ 1 ]。

MATLAB以其卓越的数值计算能力和强大的绘图功能,近年来被广泛应用在天线的分析和设计中。

借助MATLAB可以绘制出阵列天线的二维和三维方向图,直观地从方向图中看出主射方向和主瓣宽度随各参数的变化情况,加深对阵列天线辐射场分布规律的理解。

1 均匀直线阵方向图分析
若天线阵中各个单元天线的类型和取向均相同,且以相等的间隔d 排列在一条直线上。

且各单元天线的电流振幅均为I,相位依次滞后同一数值琢,那么,这种天线阵称为均匀直线式天线阵,如图1 所示[ 2 ]:
均匀直线阵归一化阵因子为[ 3 ]:
Fn(θ,φ)是一个周期函数,所以除§= 0 时是阵因子的主瓣最大值外,§= ±2 mπ
(m=1,2,...)都是主瓣最大值,这些重复的主瓣称为栅瓣,在实际应用中,通常希望出现一个主瓣,为避免出现栅瓣,必须把g限制在- 2π<§<2π范围内[ 4 ],其中k=λ/2π,即波数,n 表示阵元数目。

1 . 1边射式直线阵
当均匀直线阵各天线元上的电流都同相时,即a= 0 时,天线阵最大辐射方向为垂直于天线阵的轴线方向,即θ= ±π/2方向,这种天线阵称为边射式直线阵,其归一化阵因子为:
边射阵不出现栅瓣的条件是d<λ。

1. 2普通端射式直线阵
天线阵的最大辐射方向指向阵直线的方向,即θ= 0的方向,这样的直线阵叫做端射式直线阵,普通端射式天线阵的归一化阵因子为:
普通端射阵方向图不产生栅瓣的条件为d<λ/2(1-1/2n)。

1 . 3强方向式端射阵
为了提高普通端射阵的方向性,可以通过控制单元间的电流相位差来实现。

即在普通端射阵的基础上将相邻单元间的初相差加上π/n 的相位延迟,这种均匀直线阵称为强方向性端射阵,强方向式端射阵的归一化因子为:
强方向端射阵方向图不产生栅瓣的条件为d<λ(1-1/n)/2。

1 . 4相位扫描直线阵
改变均匀直线阵相邻电流相位差a将引起方向图最大辐射方向相应地变化。

连续改变单元天线之间的电流相位差,即可连续地改变天线的主射方向,这样无需转动天线,即可实现在一定范围内的方向性扫描,这种天线阵称为相控阵天线,相位扫描直线阵的归一化阵因子为:
相位扫描直线阵不出现栅瓣的条件是d/λ< 1/(1 + cosθm),θm表示最大辐射方向。

根据公式(1)~(5),利用MATLAB程序,可以绘制出均匀直线阵方向图,如图2所示,( a) 、(b) 是八元边射式直线阵无栅瓣和有栅瓣的E 面方向图,图2 中(c)、( d)是八元普通端射阵无栅瓣和有栅瓣的E 面方向图,方向图中应该避免出现栅瓣。

图2中(e)、(c)、(g)
是十元边射阵、普通端射阵和强方向端射阵的E 面方向图,通过图2 中的( a)与(e)、(c) 与( f)的比较可以看出均匀直线阵的主瓣宽度随阵元数目增加而变窄,改变阵元数目就可以得到任意窄的主瓣。

比较图2( f)与(g)可以看出强方向端射阵比普通端射阵主瓣要窄的多,但其副瓣电平也比较大。

图2(h)是主射方向为π/3的相控直线阵E 面方向图。

图2 中(i)、( j)、( k)、(l) 是(e)、(f)、(g)、(h)的三维立体方向图。

2等间距振幅不均匀分布直线阵方向图分析
均匀直线阵可以通过增加阵元数目来降低主瓣宽度以提高方向性,但副瓣电平却不能通过这种方式来降低,我们可以通过改变阵元上电流振幅分布来降低副瓣电平。

我们假设直线阵是由n个电流元组成的。

我们把n 分成偶数和奇数两种情况来讨论:当n 为偶数时,即n= 2 N(N为正整数),如图3 中( a) 所示,各元间距为d,所有阵元电流相位相同,阵元电流振幅Ik分布不均匀,其阵因子为:
当n 为奇数时,即n= 2 N+ 1(N为正整数),如图3 中(b) 所示,各阵元间距仍为d,电流相位相同,阵元电流振幅Ik分布不均匀,其阵因子为:
表 1列出了十二元直线阵阵元电流振幅分布的不同情况,根据公式(6)、(7),利用MATLAB程序,可以绘制出非均匀直线阵不同振幅分布的E 面方向图,如图4所示。

由图4可以看出,不同的振幅分布将产生主瓣宽度与副瓣电平都不同的方向图,图4(a)中振幅由中心向两边递加,其方向图副瓣最大;图4(b)为均匀直线阵,其主瓣最窄,但副瓣也比较大;图4(c)、(d)随着中心向两边递减幅度增大,副瓣越来越小,但主瓣越来越宽;当振幅呈二项系数分布时,由图4 (e)可知,副瓣完全消失,但主瓣也变得最宽,而且电流振幅自阵中心向两边递减的梯度太大,给馈电带来很大的困难。

图4中(f)是对(d)的放大。

从上述分析可知,使直线阵中各单元电流的振幅自阵中向两边递减,就可以降低副瓣电平以至完全消除副瓣,这样我们就可以通过调整电流振幅分布来设计出所需要的天线方向图。

结论
MATLAB辅助分析天线辐射方向图,它可以将复杂的函数以二维、三维图形直观的展示出来,极大地方便了我们对阵列天线辐射场空间分布的理解。

本文不足之处是缺少对天线方向图的定量分析,但还是体现出了MATLAB在天线分析和综合领域的可观前景。

附录:普通端射阵天线的MATLAB程序,对应图2(f)附录
附录
(Matlab程序代码)
clear;
f=3e10;
lamda=(3e8)/f;
beta=2.*pi/lamda;
n=10;
t=0:0.01:2*pi;
d=lamda/4;
W=beta.*d.*cos(t);
z1=((n/2).*W)-n/2*beta* d;
z2=((1/2).*W)-1/2*beta* d;
F1=sin(z1)./(n.*sin(z2));i
K1=abs(F1) ;
polar(t,K1);
参考文献
[ 1 ]王曼珠.MATLAB在天线方向图中的应用与研究[J].电气电子教学学报,2004(4). [ 2 ]杨儒贵.电磁场与电磁波(第二版)[ M ].北京:高等教育出版社,2007.
[ 3 ]朱崇灿.天线[ M ].武汉:武汉大学出版社,1996.
[ 4 ]卢万铮.天线理论与技术[ M ].西安:西安电子科技大学出版社,2004.。

相关文档
最新文档