模具热处理工艺流程【详情】
h13模具钢热处理

H13模具钢的热处理主要包括以下步骤:
预热处理:H13钢在制造过程中已经经过了退火处理,因此通常不需要再进行退火。
但如果需要进行改锻或者破坏了原来的组织和性能,增加了锻造应力,就需要重新进行退火处理。
等温球化退火工艺为:860~890℃加热保温2h,降温到740~760℃等温4h,炉冷到500℃左右出炉。
淬火处理:H13钢的淬火加热应进行两次预热(600~650℃,800~850℃),以减少加热过程产生热应力。
淬火温度通常为790℃左右,预热时间为5~15分钟,保温时间根据模具尺寸而定。
淬火介质可以选择油、水或者盐浴等,淬火后应立即回火,以减少开裂的风险。
回火处理:H13钢的回火温度一般在540~620℃范围内,回火时间根据模具的厚度和所需硬度而定。
通常,回火后的空冷时间为1~2小时,冷却后进行硬度检测和组织观察。
如果需要进行二次硬化峰处理,需要在500℃左右进行回火。
总的来说,H13模具钢的热处理需要根据具体的工艺要求和模具的使用条件来确定。
在实际操作中,需要注意安全和环保问题,遵守相关规定和标准。
模具材料热处理工艺和技术要求

淬火的方法
(一)物理冶金法
1.火焰淬火
2.高周波淬火
3.电子束淬火 4.雷射淬火
(二)化学冶金法
1.渗碳处理
2.渗碳氮化处理
3.渗氮碳化(软氮化)处理
4.渗氮(氮化)处理
5.离子渗氮处理
6.渗硫、渗硼处理
7.金属渗透处理(如渗铝、铬、钒等)
(三)被覆法
1.硬质金属(如铬)
2.被覆熔焊
3.金属(陶瓷)熔射
由于钢材品种繁多,为了便于生产、保管、选用与研究,必须对钢材加以分类。按钢材的用途、化学成
分、质量的不同,可将钢分为许多类:
钢材的种类
一、 按用途分类
按钢材的用途可分为结构钢、工具钢、特殊性能钢三大类。
结构钢:1、用作各种机器零件的钢。它包括渗碳钢、调质钢、弹簧钢及滚动轴承钢。
2、用作工程结构的钢。它包括碳素钢中的甲、乙、特类钢及普通低合金钢。
主要成分外,还含有少量的锰、硅、硫、磷等杂质。碳钢具有一定的机械性能,又有良好的工艺性能,
且价格低廉。因此,碳钢获得了广泛的应用。但随着现代工业与科学技术的迅速发展,碳钢的性能已不
能完全满足需要,于是人们研制了各种合金钢。合金钢是在碳钢基础上,有目的地加入某些元素(称为
合金元素)而得到的多元合金。与碳钢比,合金钢的性能有显着的提高,故应用日益广泛。
等的残余应力。如果这些应力不予消除,将会引起钢件在一定时间以后目的:提高机件强度及耐磨性。但淬火后引起内应力,使钢变脆,所以淬火后必须回火。 流程: 预热(500-550C)+(750—800C) 奥氏体化温度(1000—1050C) 保温 急冷 二.淬火时,最常用的冷却介质是盐水,水和油。盐水淬火的工件,容易得到高的硬度和光洁的表面, 不容易产生淬不硬的软点,但却易使工件变形严重,甚至发生开裂。而用油作淬火介质只适用于过冷奥 氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火。
压铸模具热处理工艺流程

压铸模具热处理工艺流程压铸模具热处理工艺流程是指对压铸模具进行加热处理,以改善其组织结构和性能,并提高其使用寿命和耐磨性。
热处理工艺流程主要包括退火、正火和淬火等步骤。
首先是退火工艺。
退火是为了消除模具加工过程中的应力,使模具表面平整,提高模具的硬度和韧性。
退火工艺有两种方式,分别是工艺退火和全退火。
工艺退火是将模具加热至一定温度,保持一定时间,然后冷却。
全退火是将模具加热至临界温度,保持一段时间,然后缓慢冷却至室温。
接下来是正火工艺。
正火是指将退火后的模具再次加热至一定温度,并持续一段时间,然后快速冷却。
正火可以提高模具的硬度和耐磨性,使其能够承受较大的压力。
正火的温度和保持时间根据具体模具的材料和要求进行确定。
最后是淬火工艺。
淬火是指将模具加热至高温,然后迅速冷却,使模具的组织结构发生相变,从而提高模具的硬度和强度。
淬火温度和冷却速度根据具体模具的材料和要求进行确定。
常用的淬火介质有水、油和盐浴等。
在进行热处理工艺流程时,还需要注意以下几个方面。
首先是控制加热温度和保持时间,保证模具能够达到所需的组织结构和性能要求。
其次是选择合适的冷却介质和冷却速度,以保证模具的硬度和强度。
同时,还需要进行适当的淬火后处理,如回火、沉淀硬化等,以消除淬火应力和提高模具的韧性和强度。
总之,压铸模具热处理工艺流程是一个复杂而关键的工艺过程,它直接影响到模具的使用寿命和耐磨性。
通过合理选择退火、正火和淬火等工艺步骤,控制加热温度和保持时间,以及进行适当的淬火后处理,可以有效提高模具的性能,减少模具的变形和磨损,从而提高模具的使用寿命。
模具热处理方法有哪些【详情】

模具热处理方法有哪些【详情】模具热处理方法有哪些?根据行业的要求,热处理工艺主要分为整体热处理、表面热处理、化学热处理三大工艺类型。
而在模具制造中经常采用的是:退火、淬火、回火、调质等整体热处理工艺,以及渗碳、渗氮、碳氮共渗等化学热处理工艺。
热处理工艺按工件在加工过程中要求或所处工序位置不同又可分为预备热处理和最终热处理两类。
预备热处理的目的在于消除先前加工所造成的某些缺陷,如晶粒粗大、带状组织等;或降低硬度适应以后机加工的需要;或为调整组织状态、消除内应力为最终热处理做好组织准备。
预备热处理一般指退火、正火和调质,主要对象是锻件、铸件和粗加工工件。
最终热处理能使钢件满足在使用条件下的性能要求,如淬火、回火、化学或表面热处理。
有时,钢材退火或正火能满足使用性能要求,这时正火和退火也是最终热处理。
一、退火及其目的、应用和分类将钢件加热到临界温度以上20——30。
C,保温一定时间后随炉温或在石灰、石英砂中缓慢冷却下来,以得到接近平衡状态组织的一种热处理方法,称为退火。
1、退火的目的1、降低硬度,改善削性能2、削除偏析,均匀成分,改善铸造、轧制、锻造和焊接过程中的组织缺陷,消除残留应力。
3、细化晶粒,改善性能,并为最终热处理准备良好的金相组织。
4、恢复塑性、韧性,便于冷变形加工。
5、消除内应力,稳定尺寸,减少淬火变形和裂纹。
2、退火的应用,退火工艺主要腹膜于铸锻件和冷压件加工后,利用堆焊和焊接方法来强化或修补凹模后,都必须进行退火来消除应力。
3、退火的分类退火可以细分为完全退火、等温退火、球化退火、均匀化退火等多种。
1、完全退火。
完全退火是将亚共析钢(碳的质量分数<0.77%)加热到A3以上,保温足够的时间,使组织完全转变成奥氏体冷却。
完全退火的目的是使钢件软化,以便于以后的机械切削加工或塑性变形加工;使钢的晶粒细化、消除内应力以及为淬火准备适宜的组织。
为了达到上述目的,完全退火的加热温度通常规定为高于A3以上20——30。
模具淬火工艺及冷却五大方法

模具淬火工艺及冷却五大方法模具淬火工艺及冷却五大方法1.模具钢单液淬火法将模具钢或零件加热到奥氏体化后淬入水、油或其他冷却介质中,经过一定时间冷却(冷却到低于珠光体型转变温度区域或马氏体转变温度区域)取出模具钢空冷。
由于模具钢冷却过程在单一冷却介质中完成的,称单液淬火法。
2.模具钢双液淬火法顾名思义,模具钢淬火冷却过程是在两种冷却介质(最常用的是水和油)中配合完成的。
使冷却过程较为理想,既在珠光体转变区域快速冷却,在马氏体转变区域缓慢冷却。
具体做法是,将加热到奥氏体化温度的模具钢或零件,先淬入高温区快冷的第一种介质中(通常是水或盐水溶液),以抑制过冷奥氏体的`珠光体转变,当冷却到100℃左右时,迅速取出转入低温区缓冷的第二种介质中(通常为油)。
由于马氏体转变在较缓和的冷却条件下进行,可有效地缓解或防止变形和开裂,俗称水淬油冷。
此法需要较高的操作技巧,有时可理解为三种介质,即先水,后油,最终是空气。
3.模具钢喷射淬火法大型复杂特别是厚薄差大的工件和模具钢,为使冷却均匀,避免过大的淬火应力,控制好冷却过程不同阶段、不同部位的冷速的方法。
该方法有喷液(水或水溶液)、喷雾(压缩空气和水经雾化喷射到零件不同部位)、气淬等多种方式,其优点是:可控制不同介质或不同流量、压力来控制和调节各温度区域的冷速;或改变不同喷嘴数量和位置;可使冷却均匀。
目前,在模具热处理中最流行的是真空高压气淬。
4.模具钢分级淬火法将加热到奥氏体化温度的模具钢或工件,淬入温度在马氏体转变温度附近的冷却介质(常用的为盐浴)中,停留一段时间,使工件表面和中心温度逐渐趋于一致后取出空冷,以较低的冷却速度完成马氏体转变。
此法能显著减少变形,并且提高模具钢的韧度,是模具零件常用的淬火方法之一。
模具钢分级淬火的温度选择有两种。
一种是取被处理工件钢种的马氏转变开始温度(Ms点)以上10~30℃;另一种是选取Ms点以下80~100℃。
分级的停留时间也要掌握好,过短,则温度不够均匀,未能达到分级淬火的目的;过长,则可能发生非马氏体相变而降低硬度。
模具回火工艺

模具回火工艺
模具回火工艺是一种常见的热处理技术。
该工艺通常用于改善模具的机械性能,提高其耐磨性和抗腐蚀性,从而延长模具使用寿命。
模具回火工艺一般包括四个基本步骤:加热、保温、冷却和清洗。
加热是模具回火工艺的第一步。
通常使用电阻炉、气体炉或盐浴炉等设备将模具加热到所需温度。
在加热过程中,要控制温度的升降速度和加热时间,以确保模具的均匀加热。
保温是模具回火工艺的第二步。
在保温阶段,模具需要在高温环境下停留一段时间,以达到所需的回火效果。
保温时间的长短取决于模具的材料和尺寸以及所需的机械性能。
冷却是模具回火工艺的第三步。
在冷却阶段,模具需要被缓慢地降温,以避免过快的冷却导致模具变形或发生裂纹。
冷却可以通过空气冷却或水淬火等方式实现。
清洗是模具回火工艺的最后一步。
在清洗过程中,必须将模具从回火工艺中的残留物中清洗干净,以确保模具表面光洁无瑕。
通过模具回火工艺,可以大大提高模具的使用寿命和工作效率。
因此,模具回火工艺在模具制造和维护方面有着广泛的应用。
- 1 -。
h13模具钢热处理工艺

h13模具钢热处理工艺H13模具钢热处理工艺引言:H13模具钢是一种广泛应用于模具制造领域的工具钢。
热处理是模具制造过程中至关重要的一环,它能够显著提高H13模具钢的硬度、强度和耐磨性,从而提升模具的使用寿命和性能。
本文将介绍H13模具钢的热处理工艺,包括淬火、回火和表面处理等关键步骤。
一、淬火工艺淬火是H13模具钢热处理的关键步骤之一,它通过快速冷却来使钢材达到高硬度和高强度。
一般来说,H13模具钢的淬火工艺包括加热、保温、冷却三个阶段。
1. 加热阶段:将H13模具钢加热至适宜的温度,一般为980℃-1050℃。
加热温度的选择应根据具体的模具形状和要求来确定。
2. 保温阶段:将加热至适宜温度的H13模具钢保温一段时间,以保证钢材内部温度均匀。
3. 冷却阶段:在保温结束后,将H13模具钢迅速冷却至室温。
常用的冷却介质有水、油和气体。
选择合适的冷却介质可以控制H13模具钢的硬度和韧性。
二、回火工艺回火是淬火后的必要步骤,它能够消除淬火时产生的内部应力,并调整H13模具钢的硬度和韧性。
回火一般包括加热、保温和冷却三个阶段。
1. 加热阶段:将淬火后的H13模具钢加热至适宜的温度,一般为500℃-600℃。
加热温度的选择应根据具体的模具要求来确定。
2. 保温阶段:将加热至适宜温度的H13模具钢保温一段时间,以保证钢材内部温度均匀。
3. 冷却阶段:在保温结束后,将H13模具钢冷却至室温。
冷却速度一般较慢,以避免产生新的内部应力。
三、表面处理工艺H13模具钢的表面处理能够进一步提高模具的耐磨性和抗腐蚀性。
常用的表面处理方法有氮化、镀层和渗碳等。
1. 氮化:通过在H13模具钢表面注氮,形成氮化层来提高硬度和耐磨性。
氮化处理一般在高温下进行,可提高表面硬度至1200-1500HV。
2. 镀层:常用的镀层方法有电镀、热浸镀和喷涂等。
镀层能够增加模具的抗腐蚀性和耐磨性,延长模具使用寿命。
3. 渗碳:通过在H13模具钢表面渗入碳元素,形成碳化层来提高硬度和耐磨性。
热作模具钢的热处理工艺流程

热作模具钢的热处理工艺流程
一、前处理
在进行热处理之前,首先需要对热作模具钢进行清洗和预处理。
这包括去除表面的油污、锈迹和其他杂质,以确保热处理的均匀性和模具的寿命。
二、加热
将预处理后的模具放入加热炉中,加热至所需温度。
加热过程中,需要注意控制加热速度和温度,以避免模具出现裂纹或变形。
三、保温
在加热后,将模具在炉中保温一段时间,以确保模具充分吸收热量。
保温时间的长短取决于模具的材质和厚度,以及所需的热处理效果。
四、淬火
在保温结束后,将模具迅速冷却至室温,完成淬火过程。
淬火是热处理的关键步骤,可以改变模具的硬度和耐磨性。
根据模具的材质和用途,可以选择不同的淬火方式,如油淬、水淬等。
五、回火
淬火后,将模具再次加热至一定温度,并进行回火处理。
回火可以消除淬火过程中产生的内应力,提高模具的韧性和耐久性。
回火温度和时间的选择取决于模具的材质和用途。
六、冷却
回火结束后,将模具自然冷却至室温。
在冷却过程中,需要注意控制冷却速度,以避免模具出现裂纹或变形。
七、后处理
冷却后,对模具进行后处理,包括打磨、抛光等,以去除表面的氧化皮和其他杂质,提高模具的表面质量和精度。
以上是热作模具钢的热处理工艺流程。
通过合理的热处理工艺,可以提高模具的硬度和耐磨性,增强模具的韧性和耐久性,从而延长模具的使用寿命和提高生产效率。
热作模具钢热处理

热作模具钢热处理
热作模具钢的热处理主要包括预热处理、球化退火、淬火和回火等步骤。
1. 预热处理:为了使工件在加热过程中均匀地膨胀和收缩,减少开裂,通常需要将工件预热至700~800℃。
2. 球化退火:通过将工件加热至略高于钢的AC1点,使其完全奥氏体化,然后以缓慢冷却速度(通常是随炉冷却)冷却,可使其组织转变成均匀的球状珠光体,以消除加工应力、提高模具韧性及抗蚀性,适用于以减小零件变形及改善切削加工性能为主要目的退火工艺。
3. 淬火:目的是为了使热作模具钢的钢的显微组织转变为马氏体,并得到高硬度的马氏体组织。
淬火温度通常选择在钢的AC3或略高于AC3的某一温度。
然后将模具缓慢冷却至200℃左右出炉,可使模具表面上的残余奥氏体转变为马氏体,从而提高其硬度及耐磨性。
4. 回火:回火是将淬火后的模具加热到低于AC1的温度,以消除或减少淬火引起的内应力,并使钢的组织趋于稳定。
根据需要,可以选择不同的回火温度和时间。
以上信息仅供参考,如需了解更多信息,建议查阅专业书籍或咨询专业人士。
实际生产中模具材料的热处理过程

实际生产中模具材料的热处理过程前面对有关热处理基础内容作了介绍,下面将具体针对各钢种热处理的实际过程进行说明。
JIS主要钢种及特殊模具钢的热处理条件已在第4章作了介绍,不过只是限于标准的淬火和回火温度及淬火冷却方式而已。
在实际的加热和冷却方式上,不同钢种群会有所不同。
一、碳素工具钢碳素工具钢的淬火曲线如图5-17所示。
就模具的加热过程来看,装炉后升温时会在表层和心部之间产生温度差,如果以此状态加热到奥氏体化温度,则会出现心部到温较晚和表面保温时间过长的问题。
为此,在低于转变点温度,比如碳素工具钢约在650℃,采取保温可缩小奥氏体化时的内外保温时间差。
这一过程被称为预热。
心部温度达到奥氏体化温度后的保温时间,就碳素钢而言,10min即可。
通常在实际操作中,一般在预先掌握不同大小的模具和装炉量时的炉温以及模具表面和心部温度的前提下,对炉温达到设定温度后的时间进行管理。
淬火方式为水冷或油冷。
由于珠光体转变曲线的“鼻尖”偏向连续冷却转变图中时间短的一侧,因此为了不碰到这一转变“鼻尖”,SK系钢采用水冷,SKS 系钢采用油冷。
油冷时通常用加热到80℃左右的淬火油。
此外,为了防止淬火开裂,应在稍高于马氏体转变温度取出空冷。
取出冷却后,待模具表面温度降到50~60℃后立即放到回火炉中回火。
这是因为如果在淬火马氏体状态下放置于室温的话,容易发生淬火开裂。
图5-17 碳素工具钢的淬火曲线碳素工具钢的回火曲线如图5-18所示。
回火温度是150~200℃,通常在180℃进行两次。
模具心部温度达到炉温后,保温1h即可。
回火时也同样需要预先掌握不同尺寸模具和装炉量的内部升温滞后程度,要在计入此部分的前提下来管理回火加热后的保温时间。
图5-18 碳素工具钢的回火曲线二、低合金工具钢图5-19所示为JISSKS系等低合金工具钢的淬火曲线,基本上与碳素工具钢相同。
预热通常在650℃进行,内外温差消失后保温5min即可。
随后注意要尽量快速加热到各钢种相应的淬火温度(奥氏体化温度)来极力减少氧化和脱碳。
塑料模具零件的热处理工艺

塑料模具零件的热处理工艺选用不同品种钢材作塑料模具,其化学成分和力学性能各不相同,因此制造工艺路线不同;同样,不同类型塑料模具钢采用的热处理工艺也是不同的。
本节主要介绍塑料模具的制造工艺路线和热处理工艺的特点。
一、塑料模具的制造工艺路线1.低碳钢及低碳合金钢制模具例如,20,20Cr,20CrMnTi等钢的工艺路线为:下料→锻造模坯→退火→机械粗加工→冷挤压成形→再结晶退火→机械精加工→渗碳→淬火、回火→研磨抛光→装配。
2.高合金渗碳钢制模具例如12CrNi3A,12CrNi4A钢的工艺路线为:下料→锻造模坯→正火并高温回火→机械粗加工→高温回火→精加工→渗碳→淬火、回火→研磨抛光→装配。
3.调质钢制模具例如,45,40Cr等钢的工艺路线为:下料→锻造模坯→退火→机械粗加工→调质→机械精加工→修整、抛光→装配。
4.碳素工具钢及合金工具钢制模具例如T7A~T10A,CrWMn,9SiCr等钢的工艺路线为:下料→锻成模坯→球化退火→机械粗加工→去应力退火→机械半精加工→机械精加工→淬火、回火→研磨抛光→装配。
5.预硬钢制模具例如5NiSiCa,3Cr2Mo(P20)等钢。
对于直接使用棒料加工的,因供货状态已进行了预硬化处理,可直接加工成形后抛光、装配。
对于要改锻成坯料后再加工成形的,其工艺路线为:下料→改锻→球化退火→刨或铣六面→预硬处理(34~42HRC)→机械粗加工→去应力退火→机械精加工→抛光→装配。
二、塑料模具的热处理特点(一)渗碳钢塑料模的热处理特点1.对于有高硬度、高耐磨性和高韧性要求的塑料模具,要选用渗碳钢来制造,并把渗碳、淬火和低温回火作为最终热处理。
2.对渗碳层的要求,一般渗碳层的厚度为0.8~1.5mm,当压制含硬质填料的塑料时模具渗碳层厚度要求为1.3~1.5mm,压制软性塑料时渗碳层厚度为0.8~1.2mm。
渗碳层的含碳量为0.7%~1.0%为佳。
若采用碳、氮共渗,则耐磨性、耐腐蚀性、抗氧化、防粘性就更好。
冷作模具钢的零件加工热处理工艺流程

冷作模具钢的零件加工热处理工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!冷作模具钢的零件加工热处理工艺流程在金属加工领域中扮演着至关重要的角色。
8566模具钢热处理工艺

8566模具钢热处理工艺模具钢是指用于制造模具的钢种,其中8566模具钢是一种常见的模具钢种。
热处理是模具制造过程中不可或缺的一环,它直接影响模具的硬度、耐磨性、抗拉强度等性能。
本文将介绍8566模具钢热处理的工艺流程和注意事项。
一、工艺流程1.淬火淬火是将加热至适当温度的8566模具钢迅速浸入水中或油中,使其迅速冷却,以改善其硬度和耐磨性。
淬火温度一般为840-880℃,淬火介质根据要求可选择水或油。
淬火后的8566模具钢应迅速进行回火处理。
2.回火回火是将淬火后的8566模具钢加热至一定温度,然后冷却至室温,以消除淬火时产生的应力,提高其塑性和韧性。
回火温度一般为200-400℃,回火时间根据要求可选择1-2小时。
回火后的8566模具钢应进行表面处理。
3.表面处理表面处理是将回火后的8566模具钢进行打磨、抛光等处理,以提高其表面光洁度和使用寿命。
表面处理应根据模具的使用要求进行选择。
二、注意事项1.合理控制加热温度8566模具钢加热温度过高易造成晶粒长大,影响其力学性能。
加热温度过低又会导致淬火后的硬度不足。
因此,在热处理过程中应合理控制加热温度,以达到最佳的力学性能。
2.淬火介质的选择水的淬火速度快,能使8566模具钢的硬度和耐磨性得到提高,但易产生内应力,导致变形和裂纹。
油的淬火速度慢,能使8566模具钢的硬度和耐磨性得到提高,并且能减少内应力,但淬火效果不如水快。
因此,在选择淬火介质时应根据具体情况进行选择。
3.回火温度和时间的选择回火温度和时间的选择直接影响8566模具钢的塑性和韧性。
过高的回火温度会导致硬度下降,而过低的回火温度又会使应力得不到完全消除。
因此,在选择回火温度和时间时应根据具体情况进行选择。
4.表面处理的选择表面处理直接影响8566模具钢的使用寿命和表面光洁度。
不同的表面处理方法适用于不同的模具。
例如,电火花加工适用于高精度模具,而冷却水淬火适用于大型模具。
因此,在选择表面处理方法时应根据具体情况进行选择。
p20模具钢热处理工艺

p20模具钢热处理工艺P20模具钢热处理工艺一、引言模具是工业生产中不可或缺的重要工具,而模具钢的热处理工艺对于模具的性能和寿命有着重要的影响。
P20模具钢是一种常用的模具钢材料,其具有优良的切削性能、硬度和耐磨性。
本文将探讨P20模具钢的热处理工艺,以期提高模具的使用寿命和性能。
二、工艺流程P20模具钢的热处理工艺主要包括退火、淬火和回火三个步骤。
以下将详细介绍每个步骤的具体工艺参数和操作方法。
1. 退火退火是为了消除材料内部的应力和组织缺陷,提高材料的韧性和可加工性。
P20模具钢的退火温度一般为780℃-820℃,保温时间为2-4小时。
退火后,需要将材料冷却至室温。
2. 淬火淬火是为了提高材料的硬度和耐磨性。
P20模具钢的淬火温度一般为850℃-880℃,保温时间为30分钟-1小时。
在保温结束后,将材料迅速冷却至室温,可以选择水淬、油淬或空气冷却等方式。
3. 回火回火是为了降低材料的脆性,提高材料的韧性和强度。
P20模具钢的回火温度一般为200℃-400℃,保温时间为2-4小时。
回火结束后,将材料冷却至室温。
三、工艺参数的选择与控制在进行P20模具钢的热处理工艺时,需要根据具体的模具形状和尺寸,选择合适的工艺参数。
以下是一些常用的参数选择与控制方法。
1. 温度控制在进行退火、淬火和回火过程中,温度的选择和控制非常重要。
过高的温度可能导致材料过度软化或烧损,而过低的温度则可能导致材料硬度不达标。
因此,需要根据材料的特性和要求,合理选择和控制温度。
2. 保温时间控制保温时间的选择和控制也是影响热处理效果的重要因素。
保温时间过短可能导致材料未完全转变组织,保温时间过长则可能导致材料的性能下降。
因此,需要根据实际情况,合理选择和控制保温时间。
3. 冷却方式选择淬火的冷却方式对于材料的硬度和组织结构有着重要的影响。
快速冷却可以使材料达到较高的硬度,但可能会导致材料出现裂纹和变形。
因此,需要根据具体要求和条件,选择合适的冷却方式。
模具热处理工艺

模具热处理工艺模具热处理是指将模具制造过程中的金属材料经过一定的加热、保温、冷却等工艺处理,以改善其组织性能和机械性能,以达到更高的使用寿命和更好的加工效果的目的。
模具热处理工艺是模具制造中非常重要的一个环节,对模具的质量、寿命和稳定性等方面均有着直接的影响。
本文将详细介绍模具热处理工艺。
模具热处理工艺主要分为常规热处理和表面处理两类。
1、常规热处理常规热处理是指对模具材料进行正火、淬火、回火等热处理工艺,使模具材料获得更优良的机械性能和耐磨性能,提高模具的使用寿命和稳定性。
常规热处理的工艺往往需要经过加热、保温、冷却等几个步骤,每一步的工序都需要严格控制温度、时间、冷却速度等参数,以达到理想的热处理效果。
2、表面处理表面处理是指对模具表面进行特殊处理,以提高其表面性能,如耐磨性、防腐性、硬度等等。
表面处理工艺有电镀、镀膜、喷涂、氮化等多种形式,每一种形式都有各自的工艺流程和特点,可以根据实际需要进行选择。
常规热处理主要包括正火、淬火和回火三个步骤。
1、正火正火主要是对模具材料进行加热,使其达到一定的温度,然后进行保温,使其结晶粗化、晶粒均匀化,以获得更高的硬度和强度。
正火的温度、时间、冷却速度等因素对热处理效果有着决定性的影响,需要进行严格的控制。
2、淬火淬火是将正火后的模具材料快速冷却,以使其组织结构发生相变,从而获得更高的硬度和强度。
淬火的冷却速度很快,一般采用水、油、盐水等淬火介质,以达到理想的淬火效果。
淬火后的模具材料仍然存在一定的脆性,需要进行回火处理。
3、回火回火主要是对淬火后的模具材料进行加热,温度一般在200-600度之间,然后进行保温,使其组织结构重新变得稳定,降低其硬度和强度,提高其韧性和抗冲击性,以减少其脆性,从而达到更好的使用效果。
表面处理工艺主要包括电镀、镀膜、喷涂、氮化等多种形式。
1、电镀电镀主要是通过电解沉积的方法,在模具表面形成一层金属膜,以提高模具表面的硬度、耐磨性和防腐性能。
压铸模具热处理工艺流程

压铸模具热处理工艺流程
《压铸模具热处理工艺流程》
压铸模具是用于铝合金、镁合金等金属材料的压铸加工的重要工具,其品质和寿命对产品质量和生产效率有着重要影响。
为了提高压铸模具的硬度、耐磨性和使用寿命,热处理是必不可少的工艺环节。
压铸模具的热处理工艺流程一般包括以下几个步骤:
1. 预热处理
在进行正式的热处理之前,需要对压铸模具进行预热处理。
预热处理的目的是消除模具内部的应力,使其在后续的热处理过程中不会产生变形或开裂。
预热温度一般为200-300摄氏度,
时间为2-4小时。
2. 淬火处理
淬火处理是提高模具硬度和耐磨性的关键步骤。
在淬火处理过程中,将经过预热处理的模具加热到适当温度,然后迅速冷却,以使金属组织得到改造和晶体结构紧密。
通常采用水淬、油淬或空气淬等方式。
3. 回火处理
淬火后的模具硬度非常高,为了保证其具有合适的韧性和强度,需要进行回火处理。
回火处理的温度一般控制在150-300摄氏
度之间,时间根据模具材料和要求而定,主要目的是使模具具有合适的硬度和韧性。
4. 表面处理
为了进一步提高模具的耐磨性和使用寿命,可以进行表面处理。
包括渗碳、氮化、镀层等方式,以增加模具的表面硬度和耐磨性。
以上就是压铸模具热处理工艺流程的简要介绍。
通过科学规范地进行热处理,可以有效提高压铸模具的性能和使用寿命,保证产品质量和生产效率。
h13模具热处理

h13模具热处理
H13是一种热作模具钢,通常用于制造高温工作环境下的塑料注塑模、压铸模、挤压模等。
热处理对于提高H13模具钢的硬度、耐磨性和热稳定性非常重要。
以下是一般情况下对H13模具钢进行的常见热处理步骤:
* 预热:在进行任何热处理之前,通常会对H13钢进行预热。
目的是均匀升温整个工件,以避免热应力和形状变化。
预热温度通常在500°C到700°C之间。
* 加热:将H13钢加热到合适的温度,一般在980°C到1050°C之间。
这一步是为了使钢达到适当的结晶结构。
* 保温:在达到所需温度后,保持一段时间,以确保钢材内部均匀加热,使相应的相变发生。
保温时间通常与工件的尺寸和形状有关。
* 淬火:在保温之后,迅速将H13钢冷却到室温。
这一步是为了实现硬度和耐磨性的提高。
通常采用油冷、气冷或盐浴淬火等方式。
* 回火:为了减轻淬火带来的脆性,提高韧性,H13模具钢会进行回火处理。
回火的温度和时间取决于所需的最终性能。
通常在500°C到600°C范围内进行回火。
* 表面处理(可选):为了进一步提高H13模具钢的耐磨性,可以考虑进行表面处理,比如氮化、渗碳等。
这些热处理步骤的具体参数会受到制造商建议、具体应用和模具设计的影响。
在实际操作中,建议根据具体要求进行调整,并在合适的条件下进行试验,以确保获得期望的模具性能。
1。
模具加工方法与热处理

1.模具加工方法:平面加工:龙门刨床刨刀牛头刨床刨刀对模具坯料进行六面加工龙门铣床断面铣刀车削加工:车床车刀数控车床车刀各种模具零件的回转面和平面立式车床车刀钻孔加工:钻床钻头、铰刀横臂钻床钻头、铰刀铣床: 钻头、铰刀数控铣床钻头、铰刀加工模具的各种孔加工中心钻头、铰刀深孔钻:深孔钻头镗孔加工:加工中心镗刀卧室镗床镗刀镗削模具中的各种孔铣床镗刀坐标镗床镗刀铣削加工:铣床立铣刀、断面铣刀数控铣床立铣刀、球头铣刀铣削各种模具平面和曲面加工中心立铣刀、球头铣刀仿形加工球头铣刀雕刻机小直径立铣刀磨削加工:平面磨床砂轮成型磨床砂轮数控磨床砂轮磨削模具精密孔光学曲线磨床砂轮坐标磨床砂轮内外圆磨床砂轮万能磨床砂轮电加工:型腔电加工电极电蚀切削难以加工的线切割加工线电极部位精密轮廓加工电解加工电极型腔和平面加工切削加工:抛光加工抛光机砂轮、锉刀、砂纸、油石和抛光剂。
去除铣削痕迹,对模具零件进行抛光非切削加工:挤压加工压力机挤压凸模难以切削加工的型腔铸造加工铍铜压力铸造精密铸造铸造设备、石膏模型铸造设备铸造注塑模型腔电铸加工电铸设备电铸母型精密注塑模型腔表面装饰纹加工蚀刻装置蚀刻纹样板在注塑模型腔表面2模具零件的热处理工序1退火:将钢件加热到临界温度以上‘保温一定时间后随炉温或在土灰、石英砂中缓慢冷却的操作过程。
目的:消除模具的铸、锻件或冷压件的内应力,改善组织,降低硬度,提高塑性,以利于切削加工。
分类:扩散退火、完全退火、球化退火等。
扩散退火目的:适用于合金钢锭,消除合金钢锭中的成分不均匀性,故又称为均匀化退火。
完全退火目的:主要用于含碳量在0.77%以下的亚共析钢,降低硬度,细化晶粒,消除冷热加工应力。
球化退火目的:主要用于含碳量≥0.77%的钢,使碳化铁成球状,降低硬度,改善切削性能,为淬火做准备。
不完全退火目的:主要用于含碳量高于0.77%的高碳钢,降低硬度,消除内应力。
等温退火目的:改善金相组织,降低硬度,改善切削加工性能。
金属模具热处理加工工艺的制作技术

本技术提出了一种金属模具热处理加工工艺,包括以下工艺步骤,选取模具毛坯,自然风干;将模具放入淬火炉中,分别进行三次加热,加热温度从低到高增长,加热后再分别进行保温处理;再将模具放入氮化炉中进行中温气体碳氮共渗,在空气中冷却;再继续将模具放入回火炉中回火;回火后继续重复回火;最后抛光即可;本技术的一种金属模具热处理加工工艺,具有很好的稳定性和耐磨性,能抗断裂和抗变形,提高了模具钢的强度和硬度,可以有效的提高模具钢的使用寿命;采取中温渗碳的方式,减少模具钢变形量,满足市场上对合金工具钢的需求。
技术要求1.一种金属模具热处理加工工艺,其特征在于:包括以下工艺步骤,S1,选取模具毛坯,将模具毛坯锻成形后、机加工前,进行清洗,自然风干;S2,将模具放入淬火炉中,进行第一次加热,第一次加热到300-500℃,保温15-20分钟,再进行第二次加热,第二次加热到500-1000℃,保温20-25分钟,最后进行第三次加热,第三次加热到1000-1600℃,保温20-30分钟;S3,将步骤S2淬火处理得到的模具,放入氮化炉中进行中温气体碳氮共渗,温度为500-600℃,时间为5-10h,再在空气中冷却至50-80℃;S4,将步骤S3得到的模具,放入回火炉中回火,加热温度为450-650℃,保温2-3h,再自然冷却;S5,重复步骤S4的操作继续回火;S6,将步骤S5得到的模具经抛光机抛光后即得加工成品。
2.根据权利要求1所述的一种金属模具热处理加工工艺,其特征在于,所述模具采用Cr12MoV模具钢或3Cr2W8V模具钢。
3.根据权利要求1所述的一种金属模具热处理加工工艺,其特征在于,所述步骤S3气体碳氮共渗中,按碳原子和氮原子物质量的比例为3:2。
技术说明书一种金属模具热处理加工工艺技术领域本技术涉及一种模具热处理加工技术领域,特别涉及一种金属模具热处理加工工艺。
背景技术近年来,随着我国制造业的飞速发展,模具产业和模具钢生产企业都取得了进步和发展,因此,模具行业对模具的性能提出了更高的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模具热处理工艺流程
模具热处理是指材料在固态下,通过加热、保温和冷却的手段,以获得预期组织和性能的一种金属热加工工艺。
模具热处理工艺技术对于模具制造来说,最大的用处是进一步提高模具的精度,比如防止加热氧化和不脱碳、真空脱气或除气,消除氢脆,从而提高材料(零件)的塑性、韧性和疲劳强度;真空加热缓慢、零件内外温差较小等因素,决定了真空热处理工艺造成的零件变形小等。
模具热处理工艺的方式有:
(1)软化退火:其目的主要在于分解碳化物,将其硬度降低,而提高加工性能,对于球状石磨铸铁而言,其目的在于获得具有甚高的肥力铁组织。
(2)正常化处理:主要用于改进或是使完全是波来铁组织的铸品而获得均匀分布的机械性质。
(3)淬火:主要为了获得更高的硬度或磨耗强度,同时的到甚高的表面耐磨特性。
(4)表面硬化处理:主要为获得表面硬化层,同时得到甚高的表面耐磨特性。
(5)析出硬化处理:主要是为获得高强度而伸长率并不因而发生激烈的改变。
模具材料及热处理硬度:
⑴拉延模:板料厚度t≤1.2mm,凸、凹模及压边圈采用Mo-Cr合金铸铁(GM246或
GM241),表面火焰处理,其硬度不低于HRC50。
板料厚度1.2mm<t≤1.5mm,凸、凹模及压边圈采用H235表面火焰处理,其硬度不低于HRC55。
板料厚度1.5mm<t≤2.3mm,压边圈与凹模镶Cr12MoV,镶块整体热处理硬度为HRC58-62,凸模采用H235表面火焰处理硬度不低于HRC55。
板料厚度t>2.3mm,凸、凹模及压边圈镶Cr12MoV,镶块整体
热处理硬度为HRC58-62。
切边模:板料厚度t≤1.2mm,切边刀块刃口采用铸造或锻造的空冷钢7CrSiMnMoV(ICD5),刃口火焰处理硬度为HRC50-55;板料厚度1.2mm<t≤1.4mm,切边刀块刃口采用锻造空冷钢7CrSiMnMoV(ICD5),刃口火焰处理硬度为HRC55;板料厚度t>1.4mm,切边刃口采用Cr12MoV,整体热处理,其硬度不低于HRC58。
翻边、整形模:板料厚度t≤1.2mm,翻边、整形凸模采用Mo-Cr铸铁(GM246或GM241)、铸态空冷钢、锻态空冷钢(局部镶块);翻边、整形凹模镶块采用铸态空冷钢(IC5D)、
Cr12MoV,表面火焰处理,表面硬度HRC50-55;板料厚度1.2mm<t≤1.4mm,翻边、整形凸模采用锻态空冷钢(局部镶块)、铸态空冷钢,翻边、整形凹模采用锻态空冷钢、Cr12MoV,表面火焰处理,表面硬度HRC55以上;板料厚度t>1.4mm,翻边、整形凸、凹模均采用Cr12MoV镶块,镶块整体热处理硬度为HRC55-58。
包边模:下模工作部分采用Mo-Cr铸铁(GM246),火焰热处量硬度为HRC50-55,翻边镶块(拍刀)采用铸态空冷钢、锻态空冷钢火焰热处理硬度为HRC55以上,翻边压死部分(压边刀)采用整体Mo-Cr铸铁(GM246)或铸态空冷钢(ICD5)热处理硬度为HRC50-55。
模具热处理要求:
热处理后零件不允许有裂纹(100毫米内不允许有3个裂缝)和脱碳区,并清除氧化皮、脏物和油污。
模具热处理的具体操作:
淬火(热处理)示意图:
注:火焰与冷却水管应同步进行,工件上看到红亮时,应缓慢移动割炬,冷却水也缓慢跟进,水过后相应的工件部位呈现出翻白状态为最佳状态,若不同步,冷却水慢,由于加热温度太高,加热层会产生过烧现象,凸R角便会起泡有气蚀孔;冷却水过快,会使加热温度过低,水过后凸R 角呈现黑斑现象造成R角热处理硬度不够。
1. 拉延模:模具底座泡在水池中进行凸R角的热处理;用水冷却.首先热处理一小段用硬度仪检测,达标了以这段为参照处理佘下的凸R角.(经验:微微翻白为好,烧得过红,R角会裂,烧得过黑,证明火烧得不足,硬度不够;用锉刀检验切削量少有滑硬感)。
2.切边冲孔、翻边整型面模:模具底座泡在水池中进行刃口和整型工作面的热处理,钢件用风冷或自然冷却、铸件用水冷却,凸模和刀块要隔块分开进行,先进行刀块两端面热处理50MM,然后把折下的刀块装上进行热处理余下未处理的刀口,这样可以减少刀块端面和底
面的变形量。
(刀口的热处理时刀口微微翻白为好,烧得过红刀口会裂;烧得黑黑的证明烧得不足,硬度也不够)
3.有水池作条件才能把模座泡在水中进行热处理工作。
内容来源网络,由深圳机械展收集整理!
更多金属表面处理厂家技术展示,就在深圳机械展!。