最新鲁教版-初一数学上册知识点【-总结归纳】
(完整word版)鲁教版 初一数学上册知识点【 总结归纳】
初一数学(上)应知应会的知识点代数初步知识1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式; (6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2 ;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2 ,非正数是:-a 2 .有理数1.有理数:(1)凡能写成)0p q ,p (p q 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a=. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
七年级上册教材梳理 鲁教版
第二章 有理数2.1 正数与负数正数:像+1/2,10,1.3,3535这样大于0的数(“+”通常省略不写)叫做正数。
负数:像-1,-32.4,-0.4%这样在正数前加上“—”的数叫做负数,负数小于0。
0既不是正数也不是负数,0是最小的自然数。
整数:正整数,负整数,零统称为整数。
分数:正分数,负分数统称为分数。
2.2有理数与无理数我们把能够写成分数形式m/n (m ,n 是整数,n 不等于0)的数叫做有理数。
无限不循环小数叫做无理数。
有限小数和循环小数都可以化为分数,都是有理数。
有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 (按有理数的性质)② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (按有理数的定义) 2.3数轴及其三要素☆1.在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
2.数轴是规定了原点、正方向和单位长度的直线。
(三要素) eg 如图,表示数轴正确的是(AD )A ┖┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸→ 0 1 2 3 4B ┖┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸ -0.5 0 0.5 1 1.5C ┖┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸→ -450 -300 -150 0 150D ┖┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸┴┴┴┴┸→-4 -2 0 1 23.数轴的性质:在数轴上表示的两个数,右边的数总比左边的大; 正数都大于零,负数都小于零,正数大于负数。
4.数轴的画法:(1)画一条水平直线。
(2)在这条直线上任取一点作为原点,在这条直线上取一点表示0,我们把这个点称为原点。
(3)通常规定从原点向右为正方向,用箭头表示出来,向左为负方向。
(4)根据需要选择适当的长度为单位长度,在直线上,从原点向右每隔一个单位长度取一点,依次表示1,2,3.等等,从原点向左每隔一个单位长度取一点,依次表示-1,-2,-3等。
(完整版)初一数学知识点
鲁教版初一数学上、下册知识点烟台鲁东大学商学院08级经济学1班 李建鹏第二章 有理数及其运算考点一:有理数的分类有理数的另一种分类想一想:零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数判断正误①不带“-”号的数都是正数 ( )②如果a 是正数,那么-a 一定是负数 ( )③不存在既不是正数,也不是负数的数 ( )④0℃表示没有温度 ( ) 考点二:数轴有理数整数分数正整数负整数0 负分数正分数自然数 正有理数 零负有理数正整数 正分数 负整数负分数有理数 含正有限小数和无限循环小数 含负有限小数和无限循环小数1、填空①规定了唯一的,和(三要素)的直线叫做数轴。
②比-3大的负整数是_______;已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是____,最小的正整数是____。
最大的非正数是__。
④与原点的距离为三个单位的点有____个,他们分别表示的有理数是________。
2、选择题①下列数轴画法正确的是( )②在数轴上,原点及原点左边所表示的数是()A整数B负数C非负数D非正数③下列语句中正确的是()A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来考点三:相反数相反数:只有符号不同的两个数互为相反数,0的相反数是0。
在数轴上位于原点两侧且离原点距离相等。
1、填空①-2的相反数是;它的倒数是;它的绝对值是。
②|-3|的相反数是;它的倒数是;它的绝对值是。
③相反数是它本身的数是;倒数是它本身的数是;绝对值是它本身的数是。
2、选择①的若a和b是互为相反数,则a+b=()A 、–2aB 、2bC 、0D 、任意有理数②下列说法正确的是( )A 、–1/4的相反数是0.25B 、4的相反数是-0.25C 、0.25的倒数是-0.25D 、0.25的相反数的倒数是-0.25③用-a 表示的数一定是( )A 、负数B 、正数C 、正数或负数D 、都不对④一个数的相反数是最小的正整数,那么这个数是( )A 、–1B 、1C 、±1D 、03、判断①互为相反的两个数在数轴上位于原点两旁( )②在一个数前面添上“-”号,它就成了一个负数( )③ 只要符号不同,这两个数就是相反数( )4、计算:已知和 的值互为相反数,求x 的值。
鲁教版五四制初一上册数学知识点
山东版六年级上第一章丰富的图形世界§1.1.1生活中的立体图形多角度观察、认识立体图形。
§1.1.2图形是由点(point)、线(line)、面(plane)、构成的。
点动成线,线动成面,面动成体。
§1.2.1展开与折叠1、在棱柱中,任何相邻两个面的交线都叫做棱(edge),相邻两个侧面的交线叫做侧棱。
2、人们通常根据棱柱底面图形的边数,将棱柱分为三、四、五......棱柱。
长方体和立方体都是四棱柱。
3、认识棱柱的顶点、棱、面。
§1.2.21、将立方体沿某些棱剪开,认识其平面图形。
2、了解正多边形:边长相等,角也相等的多边形。
§1.3截一个几何体1、用一个平面去截一个几何体,截出的图形叫截面。
2、认识不同的截面。
§1.4从不同方向看1、从不同方向,不同角度观察立体图形、物体画出不同的视图。
2、主视图:把从正面看到的图叫做主视图;俯视图:从上面看到的图叫俯视图;左视图:从左面看到的图叫左视图。
3、俯视图通常画在主视图的下面,左视图通常画在主视图的左面。
§1.4.2画几何体的主视图、俯视图、左视图。
§1.5生活中的平面图形1、三角形、四边形、五边形、六边形等都是多边形(polygon),它们都是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形。
2、圆上A、B两点之间的部分叫做弧(arc),由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形(sector).第二章有理数及其运算§2.1 有理数引入负数1、比赛得分与扣分。
带“—”号的得分比0分低。
生活中的负数,温度、收支、盈亏等等。
2、像5、1.2、1/2......这样的数叫做正数(positive number),它们都比0大。
在正数前面加“—”号的数叫做负数(negative number),如-10,-3,-1......3、零既不是正数,也不是负数。
鲁教版七年级数学知识点总结
鲁教版七年级数学知识点总结七年级上册数学复习资料有理数有理数的分类1.如果按定义分,有理数可以分为整数(正整数;负整数;0)和分数(正分数,负分数)。
如果按正、负分,有理数可以分为正有理数(正整数;正分数)、0、负有理数(负整数;负分数)。
2.所有的有理数都可以用分数表示,π不是有理数。
数轴1.数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。
相反数1.只有符号不同的两个数叫做互为相反数。
(0的相反数是0)绝对值1.数轴上一点a到原点的距离表示a的绝对值。
2.绝对值的性质:非负性。
3.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
有理数的大小1.正数大于0,负数小于0,正数大于负数。
2.两个负数,绝对值大的反而小。
有理数的加法1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。
一个数同0相加,仍得这个数。
3.在有理数的加法中,加法交换率:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
有理数的减法减去一个数,等于加这个数的相反数。
有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘后得0。
倒数:乘积是1的两个数互为倒数。
乘法交换律:乘法交换律两个数相乘,交换因数的位置,积不变。
乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
有理数的除法除以某个不为0数等于乘与这个数的倒数两数相除同号为正,异号为负,并把绝对值相除0除以任何一个不等于0的数,都等于0。
有理数的混合运算1.运算顺序:先算乘方,再算乘除,最后算加减。
如果是同级运算,则按从左到右的运算顺序计算。
如果有括号,先算小括号,再算中括号,最后算大括号。
(完整)鲁教版七年级数学上册复习知识点总结,推荐文档
鲁教版初二上数学知识点梳理第一章 三角形⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所 组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形 ABC 用符号表示为△ABC ,三角形 ABC 的边 AB 可用边 AB 所对的角 C 的小写字母 c 表示,AC 可用b 表示,BC 可用 a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2) 三角形是一个封闭的图形;(3) △ABC 是三角形 ABC 的符号标记,单独的△没有意义._ _⒉ 三角形的分类:(1) 按边分类: (2) 按角分类:三角形等腰三角形不等边三角形直角三象形底边和腰不相等的等腰三角形等边三角形三角形斜三角形锐角三角形钝角三角形⒊ 三角形的主要线段的定义:(1) 三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的 BC 上的中线.1 2. BD=DC=BC.2注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形. (2) 三角形的角平分线ABDCA三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线.2 12.∠1=∠2= 1 ∠BAC.2注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;B D C③三角形三条角平分线交于三角形内部一点;④用量角器画三角形的角平分线.(3)三角形的高A从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:1.AD 是△ABC 的BC 上的高线.2.AD⊥BC 于D.B D C3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.如图 5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.图5 图6 图74.三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.5.三角形的角与角之间的关系:(1)三角形三个内角的和等于 180 ;(三角形的内角和定理)(2)直角三角形的两个锐角互余.6.三角形的稳定性:图8三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.注意:(1)三角形具有稳定性;(2)四边形没有稳定性.7.三角形全等:全等形:能够完全重合的图形叫做全等形.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应顶点、对应边、对应角:把两个全等的三角形重合到一起.重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.全等三角形的性质:全等三角形的对应边相等、对应角相等.⎪ ⎪ ⎩三角形全等的判定方法:1. 三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”).2. 两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).3. 两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).4.两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).⎧⎧对应角相等⎪ 性质⎨⎪ ⎩对应边相等全等形全→ ⎪⎧ 边 边 边 SSS ⎪ ⇒ 等三角形应用⎨ 边 角 边 SAS ⎪判定 ASA⎨角边角 ⎪⎪ 角 角 边 AAS ⎪⎪ ⎩⎩ 斜边、直角边 HL 角平分线⎧作图⎨性质与判定定理 三角形全等的应用:测距离要善于灵活选择适当的方法判定两个三角形全等。
七年级数学期末复习知识点(上)鲁教版
初一数学期末复习知识点(上)鲁教版【本讲教育信息】一. 教学内容:初一数学期末复习(上)二. 学习重难点:重点:平方差、完全平方公式、平行线的判定和性质难点:平方差、完全平方公式、平行线的判定和性质变式训练。
三. 知识要点讲解:第七章整式知识结构1、单项式——数与字母的积组成的代数式叫做单项式。
注意:单独的一个数或一个字母也是单项式,如:2.5、x、π等2、多项式——几个单项式的和叫做多项式说明:多项式的项数是指——单项式相加的个数3、整式:单项式和多项式统称整式4、整式的加减运算:整式的加减运算的实质就是——合并同类项,如遇到括号,先去括号再合并同类项5、幂的运算法则:①同底数的幂相乘,底数不变,指数相加。
即:nmnm aaa+=⋅(m、n为正整数)②幂的乘方,底数不变,指数相乘。
即:nmnm aa⋅=)((m、n为正整数)③积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
即:nn n b a )b a (⋅=⋅ (n 为正整数)④同底数的幂相除,底数不变,指数相减。
n -m n m a a a =÷(m>n ,m 、n 为正整数)6、零指数幂与负整数指数幂: ①零指数幂:任何一个不等于零的数的零次幂都等于1,即: a 0=1 (a ≠0)思考:为什么零指数幂中的底数不等于零呢? ②负整数指数幂:一个不等于零的数的-m 次幂等于这个数的m 次幂的倒数。
即:mm ma 1a 1a ⎪⎭⎫⎝⎛==- (a≠0) 思考:为什么零指数幂、负指数幂中的底数不等于零呢? 7、科学记数法:n 10a ⨯ 其中(1<a<10, n 为整数)8、单项式乘以单项式法则:单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。
9、单项式乘以多项式的运算法则单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加. 10、单项式乘以多项式的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。
鲁教版初一数学上册知识点总结
鲁教版初一数学上册知识点总结初一数学课本知识点一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
列一元一次方程解应用题的五个步骤(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.(3)列:根据等量关系列出方程.(4)解:解方程,求得未知数的值.(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.七年级数学复习知识点实数知识点一实数的分类1、按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.知识点二实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值|a|≥0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.知识点三实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.知识点四实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.鲁教版初一数学上册知识点。
鲁教版-初一数学上册知识点【-总结归纳】教学内容
鲁教版-初一数学上册知识点【-总结归纳】收集于网络,如有侵权请联系管理员删除初一数学(上)应知应会的知识点代数初步知识1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式;(6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2 ;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2 ,非正数是:-a 2 . 有理数1.有理数:收集于网络,如有侵权请联系管理员删除(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;收集于网络,如有侵权请联系管理员删除(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a=. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:收集于网络,如有侵权请联系管理员删除(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
完整word版,鲁教版七年级数学上册复习知识点总结(K12教育文档)
完整word版,鲁教版七年级数学上册复习知识点总结(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(完整word版,鲁教版七年级数学上册复习知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为完整word版,鲁教版七年级数学上册复习知识点总结(word版可编辑修改)的全部内容。
D C B A鲁教版初二上数学知识点梳理第一章 三角形⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。
三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.⒉ 三角形的分类:(1)按边分类:(2)按角分类:⒊ 三角形的主要线段的定义:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段.表示法:1.AD 是△ABC 的BC 上的中线。
三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形 等边三角形三角形 直角三象形 斜三角形 锐角三角形 钝角三角形 _C_B _A21D C B A D C BA 2。
BD=DC=12BC 。
注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1。
鲁教版七上数学第一章三角形
第一章三角形【知识要点】知识点一三角形的概念1.三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
2.三角形的表示:用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。
3.三角形的分类:1)三角形按边分类:三角形{三边都不相等的三角形等腰三角形{等边三角形底边和腰不相等的等腰三角形2)三角形按角分类:三角形{直角三角形斜三角形{锐角三角形钝角三角形4.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角。
5.等边三角形的定义:三条边都相等的三角形叫做等边三角形(特殊的等腰三角形)。
6.三角形三边的关系:1)三角形的任意两边之和大于第三边。
2)三角形的任意两边之差小于第三边。
几何描述:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。
3)判断三条线段能否组成三角形,只需判断上述两个条件满足其一即可。
【解题技巧】已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b 7.三角形的稳定性:三角形三条边的长度确定之后,三角形的形状就唯一确定了。
【注意事项】1)三角形具有稳定性;2)四边形及多边形不具有稳定性;3)要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。
考查题型一三角形的三边关系【解题思路】任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解.典例1.(2021·四川宜宾·中考真题)若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.4D.8【答案】C【详解】根据三角形的三边关系得5353a -<<+,即28a <<,则选项中4符合题意,故选:C .【名师点拨】本题主要考查了三角形的三边关系,熟练掌握相关不等关系是解决本题的关键. 变式1-1.(2021·湖南娄底·中考真题)2,5,m 是某三角形三边的长,22(3)(7)m m --于( ) A .210m -B .102m -C .10D .4变式1-2.(2020·贵州黔南·中考真题)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为( ) A .9B .17或22C .17D .22变式1-3.(2020·江苏宿迁·中考真题)在△ABC 中,AB=1,5为AC 长度的是( ) A .2 B .4C .5D .6知识点二 与三角形有关的线段1.三角形的高概念:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线。
鲁教版七年级数学知识点
鲁教版七年级数学知识点数学是考试的重点考察科目,同时,数学知识的积累和解题方法的掌握,都需要科学有效的复习方法,想要学好数学,必须持之以恒。
下面是小编给大家整理的一些七年级数学的知识点,希望对大家有所帮助。
初中一年级数学上册知识点整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
七年级上册数学复习资料有理数有理数的分类1.如果按定义分,有理数可以分为整数(正整数;负整数;0)和分数(正分数,负分数)。
如果按正、负分,有理数可以分为正有理数(正整数;正分数)、0、负有理数(负整数;负分数)。
2.所有的有理数都可以用分数表示,π不是有理数。
数轴1.数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。
相反数1.只有符号不同的两个数叫做互为相反数。
(0的相反数是0)绝对值1.数轴上一点a到原点的距离表示a的绝对值。
2.绝对值的性质:非负性。
3.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
有理数的大小1.正数大于0,负数小于0,正数大于负数。
2.两个负数,绝对值大的反而小。
有理数的加法1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。
鲁教版最新初一数学上知识点
侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数初一数学知识点汇总第一章 丰富的图形世界¤1.¤2. ¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。
①几何体与外界的接触面或我们能看到的外表就是几何体的表面。
几何的表面有平面和曲面; ②面与面相交得到线;③线与线相交得到点。
※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱。
※6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。
¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。
¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。
¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。
第二章 有理数及其运算 ※ ※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
※任何一个有理数,都可以用数轴上的一个点来表示。
※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
¤数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
※绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学(上)应知应会的知识点代数初步知识1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式; (6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2 ;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2 ,非正数是:-a 2 .有理数1.有理数:(1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a=. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C正方形=4a ,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V 1πR2h.圆锥=3。