高三统一测试数学文

合集下载

2021年高三数学(文)综合测试(03) 含答案

2021年高三数学(文)综合测试(03) 含答案

2021年高三数学(文)综合测试(03)含答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U为实数集,集合,则下图中阴影部分表示的集合为A. B. C. D.2.执行如右图所示的算法框图,输出的M值是A.2 B. C.-1 D.-23.已知a为实数,若复数为纯虚数,则的值为A.1 B.-1 C.i D.-i4.已知矩形ABCD,,在矩形ABCD中随机取一点P,则出现的概率为A.B.C.D.5.若,且为第二象限角,则A.7 B.C.-7 D.6.将函数图象上各点的横坐标伸长到原的2倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是A.B.C.D.7.在△ABC中,若,则角B的值为A.B.C.或D.或8.某三棱锥的三视图如右图所示,则该三棱锥的表面积是A.B.C.D.9.已知函数,则下列结论正确的是A .B .C .D .10.若实数x ,y 满足不等式组,目标函数的最大值为2,则实数a 的值是A .-2B . 0C .1D .2 11.数列中,满足,且是函数的极值点,则的值是A .2B .3C .4D .512.已知)1)(2(log 2)(),1(log )(>+=+=a t x x g x x f a a ,若时,有最小值4,则a 的最小值为A .1B .2C .1或2D .2或4二、填空题:本大题共4小题,每小题5分.13.如图所示,在直三棱柱中,若用平行于三棱柱的某一侧面的平面去截此三棱柱,使得到的两个几何体能够拼接成长方体,则长方体表面积的最小值为_____.14.平面向量与的夹角为60°,则_____. 15.函数是奇函数,则m 的值为:________.16.已知函数的定义域为A ,若对任意都有不等式 恒成立,则正实数m 的取值范围是________.三、解答题:解答应写文字说明、证明过程或演算步骤.17.(本小题满分12分)已知为等差数列的前n项和,(1)求数列的通项公式;(2)若数列满足:,求数列的前n项和T n.18.(本小题满分12分)长时间用手机上网严重影响着学生的身体健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(1)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长:(2)从A班的样本数据中随机抽取一个不超过21的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求的概率.19.(本小题满分12分)如图甲,⊙O的直径,圆上两点C,D在直径AB的两侧,使,,沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点,P为AC上的动点,根据图乙解答下列各题:(1)求点D到平面ABC的距离;(2)在弧上是否存在一点G,使得?若存在,试确定点G的位置;若不存在,请说明理由.20.(本小题满分12分)已知关于x的函数.(1)当时,求函数的极值;(2)若函数没有零点,求实数a 的取值范围.21.(本小题满分12分)已知函数a x a x x g a x x x f +-+-=-=)1()(,)()(22(其中). (1)如果函数有相同的极值点,求a 的值,并直接写出函数的单调区间; (2)令,讨论函数在区间上零点的个数.22.(本小题满分10分)选修4-1:几何证明选讲已知△ABC 中,,D 是△ABC 外接圆劣弧 AC 上的点(不与点A ,C 重合),延长BD 至E . (1)求证:AD 的延长线平分∠CDE ;(2)若,△ABC 中BC 边上的高为,求△ABC 外接圆的面积.参考答案一、选择题:本大题共12小题,每小题5分.二、填空题:本大题共4小题,每小题5分. 13.24 14.1 15. 16.三、解答题:解答应写文字说明、证明过程或演算步骤 17.(本小题满分12分)解析:(1)(6分)⎩⎨⎧==⇔⎩⎨⎧=+=+⇔⎩⎨⎧=+==+=+212092167210045101672111110172d a d a d a d a S d a a a(2)(6分)由(1)知,12102)12(252321-⋅-++⋅+⋅+⋅=n n n T n n n n n T 2)12(2)32(23212121⋅-+⋅-++⋅+⋅=- n n n n T 2)12(2222222211321--⋅++⋅+⋅+⋅+=-∴-n n n n n 2)23(412)12(21)21(2211-+-=----+=-18.(本小题满分12分)解析:(1)(5分)A 班样本数据的平均值为B 班样本数据的平均值为据此估计B 班学生甲均每周上网时间较长.(2)(7分)依题意,从A 班的样本数据中随机抽取一个不超过21的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b 的取法共有12种, 分别为:),21,14(),12,14(),11,14(),21,11(),12,11(),11,11(),21,9(),12,9(),11,9(其中满足条件“”的共有4种,分别为: 设“”为事件D ,则 答:的概率为19.(本小题满分12分) 解:(1)(6分)△ADO 中,,且又E 是AO 的中点,. 又, 且,∴DE 即为点D 到面ABC 的距离, 又∴点D 到面ABC 的距离为 (2)(6分)BD 弧上存在一点G ,满足,使得 理由如下:连结OF ,FG ,OG ,则△ABC 中,F ,O 为BC ,AB 的中点,又ACD FO ACD AC ACD FO 面面面//,,∴⊂⊂/ ,且G 为BD 弧的中点, 又,且.//.,,ACD FOG FOG OG FO O OG FO 面面面∴⊂= 又,20.(本小题满分12分) 解析:(1)(6分)当时,,所以显然时,,即此时函数单调递减; 当时,即此时函数单调递增; 的极小值为,无极大值 (2)(6分)根据题意,无实根,即无实根,令若在R 上单调递增,存在,使得不合题意若)ln(,0)(');ln(,0)('),ln(,0)(',0a x x h a x x h a x x h a -<<->>-==<当,即解得符合题意 综上所述:21.(本小题满分12分) 解析:(1)(5分)则),)(3(43)('22a x a x a ax x x f --=+-= 令,得或,而二次函数在处有极大值, 所以或,解得或;当时,的递增区间为,递减区间为. 当时,的递增区间为,递减区间为.(2)(7分))1)(()(])1([)()()(222+-+-=+-+---=-x a x a x x a x a x a x x x g x f令),3)(1(4)1(,1)1()(22-+=--=∆+-+=a a a x a x x h ①当即时,无实根,故的零点为,满足题意,即函数有唯一零点; ②当即或时,若,则的实数解为,故在区间上有唯一零点; 若,则的实数解为,故在区间上有两零点,或3; ③当即或时,若,由于0313)3(,1)0(,01)1(>-==<+=-a h h a h , 此时在区间上有一实数解, 故在区间上有唯一零点;若时,由于,313)3(,01)0(,41)1(a h h a h -=>=>+=- 当即时,数形结合可知在区间上有唯一实数 解,故在区间上有唯一零点; 若即时,由于的对称轴为, 故,又且所以在区间上有两个不等零点. 综上,当或时,函数有唯一零点; 当时,函数有两不相等的零点。

四川省大数据精准教学联盟 2021 级高三第一次统一监测文科数学参考答案

四川省大数据精准教学联盟 2021 级高三第一次统一监测文科数学参考答案

四川省大数据精准教学联盟2021级高三第一次统一监测文科数学答案解析与评分标准一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【考查意图】本小题设置数学学习情境,主要考查一元二次不等式解法,集合的交集运算等基础知识;考查数学抽象、数学运算等数学核心素养。

【解析】集合A =x |-1<x <0 ,B =x |-12<x <12 ,则A ∩B =x |-12<x <0 .2.【答案】C【考查意图】本小题设置数学应用情境,主要考查统计图表的应用等基础知识,考查概率统计等思想方法,考查数据分析等数学核心素养。

【解析】根据图表可知,共有10个月的PMI 小于50,所以各月的PMI 的中位数小于50,A 错误;2022年第四季度各月的PMI 比2023年第一季度各月PMI 的波动大,则方差也大,故B 错误;2023年第1季度各月PMI 均大于50,则各月经济总体较上月扩张,C 正确;同理D 错误.3.【答案】C【考查意图】本小题设置数学学习情境,主要考查平面向量的代数运算和数量积运算,两个向量垂直等基础知识,考查数学运算等数学核心素养.【解析】由已知得a +2b =(1,2+2t ),因a +2b ⏊a ,故(a +2b )⋅a =-1+4+4t =0,得t =-34.4.【答案】A【考查意图】本小题设置数学应用情境,以体育锻炼为背景,主要考查概率等基础知识,考查概率统计等思想方法,考查数据分析等数学核心素养。

【解析】依题意,该班学生中既参加了羽毛球运动又参加了乒乓球运动有38+37-60=15(名),故从该班随机抽取一名同学,该同学既参加了羽毛球运动又参加了乒乓球运动的概率为1560=14.5.【答案】D【考查意图】本小题设置数学学习情境,主要考查数列前n 项和与通项公式等基础知识,考查化归与转化、函数与方程等思想方法,考查数学运算、逻辑推理等数学核心素养。

2021年高三下学期统一练习(一)数学文试题 Word版含答案

2021年高三下学期统一练习(一)数学文试题 Word版含答案

2021年高三下学期统一练习(一)数学文试题 Word版含答案高三数学(文科)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集,集合,集合,则集合=(A)(B)(C)(D)2. 下列函数在其定义域上既是奇函数又是增函数的是(A)(B)(C)(D)3.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用茎叶图表示,如图,则甲、乙两名运动员得分的中位数分别为(A)20、18 (B)13、19(C)19、13 (D)18、204. 已知直线和平面,,∥,那么“”是“∥”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件5.已知双曲线的一个焦点F,点P在双曲线的一条渐近线上,点O为双曲线的对称中心,若△OFP为等腰直角三角形,则双曲线的离心率为(A)(B)(C)2 (D)6.已知等比数列{}中,且,那么的值是(A)15 (B)31 (C)63 (D)647. 如图,已知三棱锥的底面是等腰直角三角形,且∠ACB=90O,侧面PAB⊥底面ABC,AB=PA=PB=4.则这个三棱锥的三视图中标注的尺寸x,y,z分别是(A),,2(B)4,2,(C),2,2(D),2,8.经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),用横轴表示产品数量(因变量).某类产品的市场供求关系在不受外界因素(如政府限制最高价格等)的影响下,市场会自发调解供求关系:当产品价格P1低于均衡价格P0时,则需求量大于供应量,价格会上升为P2;当产品价格P2高于均衡价格P0时,则供应量大于需求量,价格又会下降,价格如此继续波动下去,产品价格将会逐渐靠近均衡价格P0.能正确表示上述供求关系的图形是(A)(B)(C)(D)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,若,则∠A=_________.PP1P单价需求曲线供应曲线P1P单价需求曲线供应曲线ABP侧视图zyyx10.已知△ABC中,AB=4,AC=3,∠CAB=90o,则___________.11.已知圆,则圆被动直线所截得的弦长__________.12.已知,则函数的最小值为________.13.已知满足目标函数的最大值为5,则的值为.14.函数.①当b=0时,函数f(x)的零点个数_______;②若函数f(x)有两个不同的零点,则b的取值范围________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求在区间上的最大值和最小值.16. (本小题共13分)下图是根据某行业网站统计的某一年1月到12月(共12个月)的山地自行车销售量(1k代表1000辆)折线图,其中横轴代表月份,纵轴代表销售量,由折线图提供的数据回答下列问题:(Ⅰ)在一年中随机取一个月的销售量,估计销售量不足200k 的概率;(Ⅱ)在一年中随机取连续两个月的销售量,估计这连续两个月销售量递增(如2月到3月递增)的概率;(Ⅲ)根据折线图,估计年平均销售量在哪两条相邻水平平行线线之间(只写出结果,不要过程).17. (本小题共14分)已知在△ABC 中,∠B =90o ,D ,E 分别为边BC ,AC 的中点,将△CDE 沿DE 翻折后,使之成为四棱锥(如图). (Ⅰ)求证:DE ⊥平面;(Ⅱ)设平面平面,求证:AB ∥l ;(Ⅲ)若,,,F 为棱上一点,设,当为何值时,三棱锥的体积是1?18. (本小题共13分)已知函数,数列满足:. (Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为,求数列的前项和. 19 . (本小题共14分)ABEDCC'DEFBA已知函数.(Ⅰ)求曲线在处的切线的方程;(Ⅱ)若函数在定义域内是单调函数,求的取值范围;(Ⅲ)当时,(Ⅰ)中的直线l 与曲线有且只有一个公共点,求的取值范围. 20. (本小题共13分)已知椭圆:过点A (2,0),离心率,斜率为 直线过点M (0,2),与椭圆C 交于G ,H 两点(G 在M ,H 之间),与轴交于点B . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)P 为轴上不同于点B 的一点,Q 为线段GH 的中点,设△HPG 的面积为, 面积为,求的取值范围.丰台区xx 年高三年级第二学期数学统一练习(一)数 学(文科)参考答案二、填空题:本大题共6小题,每小题5分,共30分. 9. 10.16 11. 12. 3 13. 14 . 0 ; 注:14题第一空2分,第二空3分。

江西省宁冈中学2023届高三一模数学(文)试题

江西省宁冈中学2023届高三一模数学(文)试题

一、单选题二、多选题1. 已知,,则( )A.B .或C.D.2. 已知函数,,则下列判断正确的是( )A.是增函数B.的极大值点是C.是减函数D .的极小值点是3. 已知,,,则( )A.B.C.D.4. 已知函数,,则“”是“函数在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 某几何体的三视图如图所示,图中小正方形的边长为1,则该几何体的体积为()A.B.C.D.6. 在正三棱锥中,异面直线与所成角的大小为( )A.B.C.D.7. 已知圆C 的方程为,直线l 过点(2,2),则与圆C 相切的直线方程( )A.与B .与C .与D .与8. 已知函数,以下结论错误的是A .函数的图象关于直线对称B.函数的图象关于点对称C .函数在区间上单调递增D .在直线与曲线的交点中,两交点间距离的最小值为9. 英国数学家贝叶斯在概率论研究方面成就显著,经他研究,随机事件,存在如下关系:.对于一个电商平台,用户可以选择使用信用卡、支付宝或微信进行支付.已知使用信用卡支付的用户占总用户的,使用支付宝支付的用户占总用户的,其余的用户使用微信支付.平台试运营过程中发现三种支付方式都会遇到支付问题,为了优化服务,进行数据统计发现:出现支付问题的概率江西省宁冈中学2023届高三一模数学(文)试题三、填空题四、解答题是,若一个遇到支付问题的用户,使用三种支付方式支付的概率均为,则以下说法正确的是( )A .使用信用卡支付的用户中有的人遇到支付问题B .使用支付宝支付遇到支付问题与使用微信支付遇到支付问题的概率不同C.要将出现支付问题的概率降到,可以将信用卡支付通道关闭D .减少微信支付的人数有可能降低出现支付问题的概率10. 对于,,下列说法正确的有( )A .若,则B .若,则是纯虚数C.D.11. 已知在中,角A ,B,所对的边分别为且,,,则下列说法正确的是( )A .或B .C .D.该三角形的面积为12. 下列说法正确的是( )A .已知随机变量服从二项分布:,设,则的方差B.数据的第60百分位数为9C .若样本数据的平均数为2,则的平均数为8D .用简单随机抽样的方法从51个个体中抽取2个个体,则每个个体被抽到的概率都是13.在正四棱锥中,点是底面中心,,侧棱,则该棱锥的体积为________.14. 已知函数(e 为自然对数的底数),若在上恒成立,则实数a 的取值范围是______.15.已知、是椭圆和双曲线的公共焦点,是他们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为___.16. 如图1,在中,,,为的中点,为上一点,且.现将沿翻折到,如图2.(1)证明:.(2)已知二面角为,在棱上是否存在点,使得直线与平面所成角的正弦值为?若存在,确定的位置;若不存在,请说明理由.17. 已知函数,,().(1)若,求函数的单调区间;(2)若存在极小值点,且,其中,求证:;(3)试问过点可作多少条直线与的图像相切?并说明理由.18.已知等差数列满足.(1)求的通项公式;(2)设,求.19. 根据“2015年国民经济和社会发展统计公报” 中公布的数据,从2011 年到2015 年,我国的第三产业在中的比重如下:年份年份代码第三产业比重附注:回归直线方程中的斜率和截距的最小二乘估计公式分别为:,.(1)在所给坐标系中作出数据对应的散点图;(2)建立第三产业在中的比重关于年份代码的回归方程;(3)按照当前的变化趋势,预测2017 年我国第三产业在中的比重.20. 某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为)作为样本(样本容量)进行统计,按照、、、、的分组作出频率分布直方图,已知得分在、的频数分别为、.(1)求样本容量和频率分布直方图中的、的值;(2)估计本次竞赛学生成绩的众数、中位数、平均数.21. 已知函数,.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间上的最小值和最大值,并求出取得最值时x的值.。

安徽省阜阳市2023-2024学年高三下学期第一次教学质量统测数学试题含答案

安徽省阜阳市2023-2024学年高三下学期第一次教学质量统测数学试题含答案

阜阳市2023-2024学年度高三教学质量统测试卷数学(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1S x x =<-或}5x >,集合{}8T x a x a =<<+,且R S T = ,则实数a 的取值范围为()A.()(),31,-∞--+∞ B.()3,1--C.(][),31,-∞--+∞ D.[]3,1--【答案】B 【解析】【分析】根据并集的定义列出不等式,进而可得出答案.【详解】因为{1S x x =<-或}5x >,{}8T x a x a =<<+,且R S T = ,所以185a a <-⎧⎨+>⎩,解得31a -<<-,即实数a 的取值范围为()3,1--.故选:B .2.设复数z 满足()1i 1i z +=-,则1z +=()A.1 B.C.D.2【答案】B 【解析】【分析】利用复数除法法则计算出i z=-,进而根据共轭复数和模长公式计算即可.【详解】()()()221i 1i 12i i i 1i 1i 1i 2z ---+====-++-,故i z =,i 11z +=+=.故选:B3.设两个正态分布2111()(0)N μσσ>,和2222()(0)N μσσ>,的密度函数图像如图所示.则有A.1212,μμσσ<<B.1212,μμσσ<>C.1212,μμσσ><D.1212,μμσσ>>【答案】A 【解析】【详解】根据正态分布函数的性质:正态分布曲线是一条关于对称,在处取得最大值的连续钟形曲线;越大,曲线的最高点越底且弯曲较平缓;反过来,越小,曲线的最高点越高且弯曲较陡峭,选A .4.已知数列{}n a 满足()22n a n n λλ=+∈R ,则“{}n a 为递增数列”是“0λ≥”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】由{}n a 为递增数列得6λ>-,再由充分条件与必要条件的定义进行判断即可.【详解】由{}n a 为递增数列得,()()2212(1)12420,n n a a n n n n n n λλλ++⎡⎤-=+++-+=++>∈⎣⎦N ,则()42n λ>-+对于n +∈N 恒成立,得6λ>-.可得06λλ≥⇒>-,反之不行,故选:C .5.降水量是指水平地面上单位面积的降水深度(单位:mm ).气象学中,把24小时内的降水量叫作日降雨量,等级划分如下:降水量/mm0.19.9~1024.9~2549.9~5099.9~等级小雨中雨大雨曝雨某数学建模小组为了测量当地某日的降水量,制作了一个上口直径为20cm ,底面直径为8cm ,深度为20cm 的圆台形水桶(轴截面如图所示).若在一次降水过程中用此桶接了24小时的雨水恰好是桶深的12,则当日的降雨所属等级是()A.小雨B.中雨C.大雨D.暴雨【答案】C 【解析】【分析】根据题意,由圆台的体积公式代入计算,即可得到结果.【详解】设上口半径为R ,下口半径为r ,桶深为h ,水面半径为1r ,则17cm 2R rr +==,降水量的体积()()222231111110ππππ310πcm 323h V r r rr r r rr =++⋅=++=,降水深度为2310π3.1cm 31mm π100πV R ===,属于大雨等级.故选:C .6.已知圆22:46120C x y x y +--+=与直线:10l x y +-=,P ,Q 分别是圆C 和直线l 上的点且直线PQ 与圆C 恰有1个公共点,则PQ 的最小值是()A.B. C.1- D.1【分析】PQ ==,CQ 的最小值为圆心()2,3C 到直线的距离,可求PQ 的最小值.【详解】圆22:46120C x y x y +--+=化为标准方程为()()22:231C x y -+-=,则圆C 的圆心为()2,3C ,半径1r =,则1CP =,直线PQ 与圆C相切,有PQ ==,因为点Q 在直线l上,所以CQ ≥=,则PQ ≥.即PQ.故选:A7.设28log 3,log 12,lg15a b c ===,则,,a b c 的大小关系为()A.a b c <<B.a c b<< C.b a c<< D.c b a<<【答案】D 【解析】【分析】根据题意,由对数的运算化简,再由对数函数的单调性即可得到结果.【详解】22232331log 3log 21log 122log 2a ⎛⎫==⨯=+=+⎪⎝⎭,88832331log 12log 81log 122log 8b ⎛⎫==⨯=+=+⎪⎝⎭,101032331lg15log 101log 122log 10c ⎛⎫==⨯=+=+⎪⎝⎭,3332220log 2log 8log 10,a b c <<<∴>> .故选:D .8.已知函数()f x 满足()()()2f x y f x f y +=+-,()14f =且当0x >时,()2f x >,若存在[]1,2x ∈,使得()()2421f ax x f x -+=,则a 的取值范围是()A.10,2⎛⎤ ⎥⎝⎦B.15,28⎡⎤⎢⎥⎣⎦C.52,83⎡⎤⎢⎥⎣⎦D.12,23⎡⎤⎢⎥⎣⎦【分析】根据给定条件,探讨函数()f x 的单调性,再结合赋值法求出3()12f -=-,并由单调性脱去法则,转化为二次方程在[1,2]上有解即得.【详解】任取12,x x ,且12x x <,则210x x ->,而当0x >时,()2f x >,于是21()2f x x ->,又()()()2f x y f x f y +=+-,因此21211211()[()]()()2()f x f x x x f x f x x f x =+-=+-->,则函数()f x 是增函数,而222(4)(2)[(4)2]2(2)21f ax x f x f ax x x f ax x -+=-++=-+=,于是2(2)1f ax x -=-,令0x y ==,得(0)2f =,令1,1x y ==-,得(1)0f -=,令1,1x y =-=-,得(2)2f -=-,令2,1x y =-=-,得(3)4f -=-,令3x y 2==-,得3(12f -=-,即有23(2)()2f ax x f -=-,因此2322ax x -=-,原问题即2432x a x -=在[]1,2有解,令11[,1]2t x =∈,则22242343()33a t t t =-+=--+在1[,1]2t ∈时有解,从而42[1,]3a ∈,12[,]23a ∈,所以a 的取值范围是12[,]23.故选:D【点睛】关键点睛:涉及由抽象的函数关系求函数值,根据给定的函数关系,在对应的区间上赋值,再不断变换求解即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.关于一组样本数据的平均数、中位数、众数,频率分布直方图和方差,下列说法正确的是()A.改变其中一个数据,平均数和众数都会发生改变B.频率分布直方图中,中位数左边和右边的直方图的面积应该相等C.若数据的频率分布直方图为单峰不对称,且在右边“拖尾”,则平均数大于中位数D.样本数据的方差越小,说明样本数据的离散程度越小【答案】BCD 【解析】【分析】根据平均数、中位数、频率分布直方图和方差的性质,逐一分析选项,即可求解.【详解】对于A 中,例如:数据1,3,3,将数据改成2,3,3,数据的众数未改变,仍为3,所以A 错误;对于B 中,根据频率分布直方图中中位数的求法,频率分布直方图中,中位数左边和右边的直方图的面积应该相等,所以B 正确;对于C 中,根据频率分布直方图可得,单峰不对称且在右边“拖尾”,则平均数大于中位数,所以C 正确;对于D .样本数据方差越小,数据越稳定,离散程度越小,所以D 正确故选:BCD .10.已知O 为坐标原点,椭圆22:162x y C +=的左、右焦点分别为12,.,F F A B 两点都在C 上,A ,,O B 三点共线,P (不与,A B 重合)为上顶点,则()A.AB 的最小值为4B.11AF BF +为定值C.存在点A ,使得12AF AF ⊥D.13PA PB k k ⋅=-【答案】BCD 【解析】【分析】求出AB >可判断A ;由椭圆的对称性可判断B ;因为2>c ,所以以12F F 为直径的圆与椭圆有交点可判断C ;求出13PA PB k k ⋅=-可判断D .【详解】对于A ,由椭圆的方程可知2a b c ===,所以焦点()()122,0,2,0F F -,设()11,A x y ,则()11,B x y --,(P ,因为()11,A x y 在椭圆上,所以2211216x y ⎛⎫=- ⎪⎝⎭,2AB AO ====≥即AB >,A 错误;对于B ,由椭圆的对称性可知,1112AF BF AF AF +=+=B 正确;对于C ,因为c b >,所以以12F F 为直径的圆与椭圆有交点,则存在点A ,使得12AF AF ⊥,故C 正确;对于D ,设()11,A x y ,则()11,B x y --(,P 2c =,则2121112211112126213PA PBx y y y k k x x x x ⎛⎫-- ⎪---⎝⎭⋅=⋅===--,故D正确.故选:BCD .11.2022年9月钱塘江多处出现罕见潮景“鱼鳞潮”,“鱼鳞潮”的形成需要两股涌潮,一股是波状涌潮,另外一股是破碎的涌潮,两者相遇交叉就会形成像鱼鳞一样的涌潮.若波状涌潮的图像近似函数()()*πsin ,,3f x A x A ωϕωϕ⎛⎫=+∈< ⎪⎝⎭N 的图像,而破碎的涌潮的图像近似()f x '(()f x '是函数()f x 的导函数)的图像.已知当2πx =时,两潮有一个交叉点,且破碎的涌潮的波谷为-4,则()A.2ω=B.π3f ⎛⎫= ⎪⎝⎭C.π4f x ⎛⎫'-⎪⎝⎭是偶函数 D.()f x '在区间π,03⎛⎫-⎪⎝⎭上单调【答案】BC 【解析】【分析】由()f x ,求得()f x ',由题意得()(2ππ)2f f '=,由*N ω∈,π3ϕ<,解出,ϕω,由破碎的涌潮的波谷为-4,解得A ,得到()f x 和()f x '解析式,逐个判断选项.【详解】()()sin f x A x =+ωϕ,则()()cos f x A x ωωϕ'=+,由题意得()(2ππ)2f f '=,即sin cos A A ϕωϕ=,故tan ϕω=,因为*N ω∈,π3ϕ<,所以tan ϕω=<,所以π,14ϕω==,则选项A 错误;因为破碎的涌潮的波谷为4-,所以()f x '的最小值为4-,即4A ω-=-,得4A =,所以()π4sin 4f x x ⎛⎫=+ ⎪⎝⎭,则πππππππ14sin 4sin cos cos sin 433434342222f ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故选项B 正确;因为()π4sin 4f x x ⎛⎫=+ ⎪⎝⎭,所以()π4cos 4f x x ⎛⎫'=+ ⎪⎝⎭,所以π4cos 4f x x ⎛⎫'-= ⎪⎝⎭为偶函数,则选项C正确;()π4cos 4f x x ⎛⎫'=+ ⎪⎝⎭,由π03x -<<,得πππ1244x -<+<,因为函数4cos y x =在π,012⎛⎫- ⎪⎝⎭上单调递增,在π0,4⎛⎫ ⎪⎝⎭上单调递减,所以()f x '在区间π,03⎛⎫- ⎪⎝⎭上不单调,则选项D 错误.故选:BC三、填空题:本题共3小题,每小题5分,共15分.把答案填在答题卡的相应位置.12.如图,在四边形ABCD 中,,E F 分别为,AD BC 的中点,22CD AB ==,则()AB CD FE +⋅=______.【答案】32##1.5【解析】【分析】连接AF 、DF ,根据平面向量线性运算法则得到()12FE BA CD =+,再根据数量积的运算律计算可得.【详解】连接AF 、DF ,所以FA FB BA =+ ,FD FC CD =+,又E 、F 分别为AD 、BC 的中点,所以()()()111222FE FA FD FB BA FC CD BA CD =+=+++=+,所以()()()12AB CD FE AB CD BA CD +⋅=+⋅+()()12AB CD CD AB =+⋅-()221413222CD AB -=-== .故答案为:3213.抛物线21:2C y px =绕其顶点逆时针旋转02πθθ⎛⎫<<⎪⎝⎭之后,得到抛物线2C ,其准线方程为340x y ++=,则抛物线1C 的焦点坐标为______.【答案】()2,0【解析】【分析】利用旋转后抛物线的顶点到准线的距离等于顶点到其焦点的距离,求出4p =,进而得到结果.【详解】由于抛物线21:2C y px =绕其顶点逆时针旋转02πθθ⎛⎫<<⎪⎝⎭之后,抛物线2C ()24231=+且可知0p >,则4222p ==,则4p =,所以抛物线1C 的焦点坐标为()2,0.故答案为:()2,0.14.已知()sin sin ,cos cos 0a b ab αβαβ+=+=≠,则()cos αβ-=______,()sin αβ+=______.【答案】①.2222a b +-②.222ab a b +【解析】【分析】第一空,将已知条件两边同时平方两式相加,结合同角三角函数基本关系与余弦函数的和差公式即可求解;第二空,利用三角函数的和差公式得到tan2αβ+,再利用倍角公式化简转化即可得解.【详解】由sin sin a αβ+=可得()22sin sin a αβ+=,即222sin sin 2sin sin a αβαβ++=,由cos cos b αβ+=可得()22cos cos b αβ+=,即222cos cos 2cos cos b αβαβ++=,两式相加可得()2222sin sin cos cos a b αβαβ++=+,即()2222cos a b αβ+-=+,解得()222cos 2a b αβ+--=;因为sin sin sin sin 2222αβαβαβαβαβ+-+-⎛⎫⎛⎫+=++-⎪ ⎪⎝⎭⎝⎭2sin cos 22a αβαβ+-==,cos cos cos cos 2222αβαβαβαβαβ+-+-⎛⎫⎛⎫+=++- ⎪ ⎪⎝⎭⎝⎭2coscos 22b αβαβ+-==,所以2sin cos22tan22cos cos 22a b αβαβαβαβαβ+-+==+-,所以()22222222sincos 2tan 2222sin sin cos tan 11222a ab b a b a b αβαβαβαβαβαβαβ+++⨯+====++++⎛⎫+++ ⎪⎝⎭.故答案为:2222a b +-;222ab a b +.【点睛】关键点点睛:本题解决的关键是熟练掌握三角函数半角公式的转化,从而得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC 中,角,,A B C 的对边分别是,,a b c,且sin cos sin cos cos a A B b A A C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅=,求ABC 的面积.【答案】15.π316.2【解析】【分析】(1)根据题意,由正弦定理边化角,代入计算,即可得到结果;(2)根据题意,由余弦定理结合三角形的面积公式代入计算,即可得到结果.【小问1详解】因为sin cos sin cos cos a A B b A A C +=,所以根据正弦定理得sin sin cos sin sin cos cos A A B A B A A C +=,因为sin 0A ≠,所以sin cos sin cos A B B A C +=,即()sin A B C +=,即sin C C =.因为cos 0C ≠,所以tan C =.因为0πC <<,所以π3C =.【小问2详解】cos 1AB AC bc A ⋅== .因为2222cos a b c bc A =+-,所以2292cos 11b c bc A +=+=①.因为2222cos c a b ab C =+-,所以2222π2cos 23cos 3393b c ab C a b b -=-=⨯⨯⨯-=-②.联立①②可得22320b b --=,解得2b =(负根舍去),故ABC 的面积为11sin 322222ab C =⨯⨯⨯=.16.如图,在四棱锥P ABCD -中,四边形ABCD 是正方形,PAB 是等边三角形,平面PAB ⊥平面ABCD ,E ,F 分别是棱PC ,AB 的中点.(1)证明://BE 平面PDF .(2)求平面PBC 与平面PDF 夹角的余弦值.【答案】(1)详见解析;(2)5.【解析】【分析】(1)利用面面垂直的性质定理结合条件可得PF ⊥平面ABCD ,然后利用坐标法,可得平面PDF 的法向量,进而即得;(2)利用坐标法,根据面面角的向量求法即得.【小问1详解】因为PAB 是等边三角形,F 是AB 的中点,所以PF AB ⊥,又平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PF ⊂平面PAB ,所以PF ⊥平面ABCD ,底面ABCD 是正方形,如图,以F 为原点建立空间直角坐标系,不妨令2AB =,则()()()()(0,0,0,0,1,0,2,1,0,2,1,0,F B C D P --,所以11,,22E ⎛⎫- ⎪ ⎪⎝⎭,11,,22BE ⎛⎫= ⎪ ⎪⎝⎭ ,()(2,1,0,FD FP == ,设平面PDF 的法向量为(),,m x y z =,则200m FD x y m FP ⎧⋅=+=⎪⎨⋅==⎪⎩ ,令1x =,可得()1,2,0m =- ,所以111202BE m ⋅=⨯-⨯= ,即BE m ⊥ ,又BE ⊄平面PDF ,所以//BE 平面PDF ;【小问2详解】因为()()(0,1,0,2,1,0,B C P --,所以()(2,0,0,BC BP == ,设平面PBC 的法向量为(),,n x y z '''= ,则200n BC x n BP y ⎧⋅==⎪⎨⋅='''+=⎪⎩ ,令1z '=,可得()0,n = ,又平面PDF 的一个法向量为()1,2,0m =- ,所以cos ,5m n m n m n ⋅===⋅ ,所以平面PBC 与平面PDF夹角的余弦值为5.17.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右顶点分别为()()1,0,1,0A B -,动直线l 过点()2,0M ,当直线l 与双曲线C 有且仅有一个公共点时,点B 到直线l的距离为2.(1)求双曲线C 的标准方程.(2)当直线l 与双曲线C 交于异于,A B 的两点,P Q 时,记直线AP 的斜率为1k ,直线BQ 的斜率为2k .是否存在实数λ,使得21k k λ=成立?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)221x y -=(2)存在,3λ=-【解析】【分析】(1)根据双曲线的渐近线方程,结合点到直线的距离公式即可求解,(2)联立直线与双曲线方程得韦达定理,进而可得()121234my y y y =-+,根据两点斜率公式表达斜率,进而代入化简即可求解.【小问1详解】2221,1y a x b =∴-= ,故当直线l 过()2,0且与双曲线C 有且仅有一个公共点时,l 与C 的渐近线平行.设直线():2l y b x =±-,则点()1,0B 到直线l,12b =∴=,所以双曲线C 的标准方程为221x y -=.【小问2详解】由题可知,直线l 的斜率不为0,设直线()()1122:2,,,,l x my P x y Q x y =+,由221,2,x y x my ⎧-=⎨=+⎩得()()222143010m y my m -++=-≠.2Δ4120m =+>成立,则12122243,11m y y y y m m -+==--,()121234my y y y ∴=-+.121212,11y y k k x x ==+- ,()()()()221212212211121212111313111y y x y my k x my y y y k y x y my my y y x λ++-+∴=====-+++()()122121211233934443313444y y y y y y y y y y -++-+===--++-.故存在实数3λ=-,使得21k k λ=成立.【点睛】方法点睛:解答直线与圆锥曲线相交的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情况,强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.18.已知函数()3ln f x x ax =-.(1)讨论()f x 的单调性.(2)已知12,x x 是函数()f x 的两个零点()12x x <.(ⅰ)求实数a 的取值范围.(ⅱ)()10,,2f x λ⎛⎫∈ ⎪'⎝⎭是()f x 的导函数.证明:()1210f x x λλ'+-<⎡⎤⎣⎦.【答案】(1)答案见解析(2)(ⅰ)30,e ⎛⎫ ⎪⎝⎭;(ⅱ)证明见解析【解析】【分析】(1)求导,对a 进行分类讨论()f x 的单调性;(2)利用方程组113ln x ax =,223ln x ax =得到21213lnx x a x x =-,问题转化为()()21212133ln 01x x x x x x λλ--<+-恒成立,换元后构造函数求出函数单调性及最值,从而得到证明.【小问1详解】()()30ax f x x x-'=>.①当0a ≤时,()()0,f x f x '>在()0,∞+上单调递增.②当0a >时,令()0f x '>得30x a <<,即()f x 在30,a ⎛⎫ ⎪⎝⎭上单调递增;同理,令()0f x '<得3x a >,即()f x 在3,a ∞⎛⎫+ ⎪⎝⎭上单调递减.【小问2详解】(ⅰ)由(1)可知当0a ≤时,()f x 在()0,∞+上单调递增,不可能有两个零点.当0a >时,()f x 在30,a ⎛⎫ ⎪⎝⎭上单调递增,在3,a ∞⎛⎫+ ⎪⎝⎭上单调递减,若使()f x 有两个零点,则30f a ⎛⎫> ⎪⎝⎭,即33ln 30a ->,解得30e a <<,且()10f a =-<,当x →+∞时,()f x ∞→-,则有12331,,,x x a a ∞⎛⎫⎛⎫∈∈+ ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围为30,e ⎛⎫ ⎪⎝⎭.(ⅱ)12,x x 是函数()f x 的两个零点,则有113ln x ax =①,223ln x ax =②,①-②得()()21213ln ln x x a x x -=-,即21213lnx x a x x =-,()()()()21121212213ln33111x x f x x a x x x x x x λλλλλλ+-=-=-+-'+--,因为()f x 有两个零点,所以()f x 不单调,因为12x x <,得2130x x a<<<,所以()21120,10x x x x λλ->+->.若要证明()()1210f x x λλ-'+<成立,只需证()()21212133ln 01x x x x x x λλ--<+-,即证()2122111ln 01x x x x x x λλ--<+-,令21x t x =,则1t >,则不等式只需证()1ln 01t t tλλ--<+-,即证()11ln 0t t t λλ⎡⎤--+-<⎣⎦,令()()11ln ,1h t t t t t λλ⎡⎤=--+->⎣⎦,()()11ln 1h t t t λλ⎛⎫=-+- ⎪⎝⎭',令'1()()(1)ln (1l t h t λt λt ==-+-,()()21t l t t λλ-'+=令()()1t t ϕλλ=-+,因为10,2λ⎛⎫∈ ⎪⎝⎭,得()t ϕ在()1,∞+上单调递减,得()()1210t ϕϕλ<=-<,得()0l t '<,即()h t '在()1,∞+上单调递减,得()()10h t h ''<=,得()0h t '<,即()h t 在()1,∞+上单调递减,所以有()()10h t h <=,故有()11ln 0t t t λλ⎡⎤--+-<⎣⎦,不等式得证.【点睛】关键点点睛:对于双变量问题,要转化为单变量问题,通常情况下利用对数的运算性质进行转化,转化后利用构造新函数及最值进行求解证明.19.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.【答案】(1)见解析;(2)(i )见解析;(ii )41257p =.【解析】【分析】(1)首先确定X 所有可能的取值,再来计算出每个取值对应的概率,从而可得分布列;(2)(i )求解出,,a b c 的取值,可得()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅,从而整理出符合等比数列定义的形式,问题得证;(ii )列出证得的等比数列的通项公式,采用累加的方式,结合8p 和0p 的值可求得1p ;再次利用累加法可求出4p .【详解】(1)由题意可知X 所有可能的取值为:1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:X1-01P ()1αβ-()()11αβαβ+--()1αβ-(2)0.5α= ,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯=(i )()111,2,,7ii i i p ap bp cp i -+=++=⋅⋅⋅ 即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7ii i p p p i -+=+=⋅⋅⋅()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i i i i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=-()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.。

2021年高三上学期第一次统一考试数学(文)试题 含答案

2021年高三上学期第一次统一考试数学(文)试题 含答案

2021年高三上学期第一次统一考试数学(文)试题含答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时长120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合,集合为函数的定义域,则(A) (B) ( C) (D)2. 已知命题:直线,不相交,命题:直线,为异面直线,则是的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件3. 在等差数列中,,则的前5项和=( )(A)7 (B)15 (C)20 (D)25则这个三棱柱的体积等于(A)(B)(C)(D)5.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28 Array粒,则这批米内夹谷约为(A)134石(B)169石(C)338石(D)1365石6.某程序的框图如图所示, 执行该程序,若输入的为,则输出的的值分别为(A) (B) (C) (D)7. 圆心在曲线上,且与直线相切的面积最小的圆的方程为 (A ) (B ) (C ) (D )8.已知是R 上的单调递增函数,则实数a 的取值范围为 (A )(B )(C )(D )9. 已知F 是椭圆的一个焦点,B 是短轴一个端点,线段BF 的延长线交椭圆于点D ,且,则椭圆的率心率是(A ) (B ) (C ) (D )10.设函数()11sin 222f x x x πθθθ⎛⎫⎛⎫⎛⎫=++<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,且其图像关于轴对称,则函数的一个单调递减区间是()11.P 是所在的平面上一点,满足,若,则的面积为(A )4 (B )6 (C )8 (D )16 12. 已知函数在区间内存在零点,则的取值范围是 (A) (B) (C) (D)宁城县高三年级统一考试(xx.10.20)数学试题(文科) 第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置. 13. 若复数满足,则在复平面内对应的点的坐标是______________ 14.已知实数列等比数列,其中成等差数列.则公比_______15. 已知为由不等式组,所确定的平面区域上的动点,若点,则的最大值为___________. 16.已知三棱柱的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球的表面上,且球的表面积为,则此三棱柱的体积为 .三、解答题(共5小题,70分,须写出必要的解答过程)17.(本小题满分12分)在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且3a =2c sin A . (Ⅰ)确定角C 的大小;(Ⅱ)若c =7,且△ABC 的面积为332,求a +b 的值.18.(本小题满分12分)对某校全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查,得到统计数据如下:(Ⅰ)求该校教师在教学中不.经常使用信息技术实施教学的概率; (Ⅱ)在教龄10年以下,且经常使用信息技术实施教学的教师中任选2人,其中恰有一人教龄在5年以下的概率是多少?19.(本小题满分12分)如图,已知AB平面ACD,DE∥AB,△ACD是正三角形,,且F是CD的中点.(Ⅰ)求证AF∥平面BCE;(Ⅱ)设AB=1,求多面体ABCDE的体积.20.(本小题满分12分)已知是抛物线上一点,经过点的直线与抛物线交于两点(不同于点),直线分别交直线于点.(Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知为原点,求证:为定值.21.(本小题满分12分)设函数的导函数为.(Ⅰ)求函数的最小值;(Ⅱ)设,讨论函数的单调性;四、选做题(本小题满分10分.请考生22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分)22.选修4-1:几何证明选讲如图,⊙的半径为6,线段与⊙相交于点、,,,与⊙相交于点.(Ⅰ)求长;(Ⅱ)当⊥时,求证:.23.选修4—4:坐标系与参数方程在直角坐标系中,以原点为极点,以轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系. 设曲线参数方程为(为参数),直线的极坐标方程为.(Ⅰ)写出曲线的普通方程和直线的直角坐标方程;(Ⅱ)求曲线上的点到直线的最大距离.24.选修4-5:不等式选讲设函数.(Ⅰ)当时,解不等式;(Ⅱ)若的解集为,,求证:.宁城县高三年级统一考试(xx.10.20)数学试题(文科)参考答案一、选择题:DBBA BCAD CCAC二、填空题:13、;14、;15、4;16、.三、解答题:17. 解:(1)由3a=2c sin A及正弦定理得,3sin A=2sin C sin A.-----------2分∵sin A≠0,∴sin C=3 2,∵△ABC是锐角三角形,∴C=π3.------------------4分(2)∵C=π3,△ABC面积为332,∴12ab sinπ3=332,即ab=6.①--------------------6分∵c=7,∴由余弦定理得a 2+b2-2ab cos π3=7,即a2+b2-ab=7.②----------------------------9分由②变形得(a+b)2=3ab+7.③将①代入③得(a+b)2=25,故a+b=5.----------------12分18.解:(Ⅰ)该校教师人数为8+10+30+18=66,该校经常使用信息技术实施教学的教师人数为2+4+10+4=20.……………………2分设“该校教师在教学中经常使用信息技术实施教学”为事件A,…………3分则,……………………5分.…………6分所以该校教师在教学中不经常使用信息技术实施教学的概率是.(Ⅱ)设经常使用信息技术实施教学,教龄在5年以下的教师为(i=1,2),教龄在5至10年的教师为(j=1,2,3,4),那么任选2人的基本事件为,,,,,,,,,,,,,,共15个.………………8分设“任选2人中恰有一人的教龄在5年以下”为事件B,包括的基本事件为,,,,,,,共8个,……………………10分则.所以恰有一人教龄在5年以下的概率是. -----------12分19.解:(Ⅰ)取CE 中点P ,连结FP 、BP ,∵F 为CD 的中点,∴FP//DE ,且FP =. 又AB//DE ,且AB =∴AB//FP ,且AB =FP ,∴ABPF 为平行四边形,∴AF //BP . ……………4分 又∵AF 平面BCE ,BP 平面BCE ,∴AF //平面BCE . ……………6分 (II )∵直角梯形ABED 的面积为,C 到平面ABDE 的距离为,∴四棱锥C -ABDE 的体积为.即多面体ABCDE 的体积为.……………12分20.解:(Ⅰ)将代入,得所以抛物线方程为,焦点坐标为 ………………3分(Ⅱ)设,,, 设直线方程为与抛物线方程联立得到 ,消去,得: 则由韦达定理得: ………………5分 直线的方程为:,即,令,得, 同理可得: …………8分又 ,12124(2)(2)44(2)(2)M N y y OM ON y y y y --⋅=+=+++ ………11分所以,即为定值 ………………12分 21.(1)解:,令f /(x )=0,得. ∵当时,f /(x )<0;当时,f /(x )>0, ∴当时,.----------------- 5分 (2)F (x )=ax 2+lnx+1(x >0), .①当a≥0时,恒有F /(x )>0,F (x )在(0,+∞)上是增函数; ②当a <0时,令F /(x )>0,得2ax 2+1>0,解得;P令F /(x )<0,得2ax 2+1<0,解得.综上,当a≥0时,F (x )在(0,+∞)上是增函数; 当a <0时,F (x )在上单调递增,在上单调递减.---12分四、选做题(本小题满分10分.请考生22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分)22.证明(1)∵OC =OD ,∴∠OCD =∠ODC ,∴∠OCA =∠ODB , ∵∠BOD =∠A ,∴△OBD ∽△AOC .∴,∵OC =OD =6,AC =4,∴,∴BD=9.…………………5分 (2)证明:∵OC =OE ,CE ⊥OD .∴∠COD =∠BOD =∠A . ∴∠AOD =180º–∠A –∠ODC=180º–∠COD –∠OCD=∠ADO . ∴AD =AO ……………………10分 23. 解:⑴由得 ,∴……………2分 由得.………………5分⑵在上任取一点,则点到直线的距离为|cos 3sin 4|)4|22d θθθϕ-+++==. ………………7分其中,∴当1,.………………10分 24.解:(1)当时,不等式为,不等式的解集为; ------------ 5分 (2)即,解得,而解集是, ,解得,所以所以. -------------- 10分3755792B5銵n366648F38輸39066989A颚x(282656E69湩20759 5117 儗 40767 9F3F 鼿35494 8AA6 誦25586 63F2 揲34069 8515 蔕32368 7E70 繰。

2023届四川省攀枝花市高三第三次统一考试数学(文)试题【含答案】

2023届四川省攀枝花市高三第三次统一考试数学(文)试题【含答案】

2023届四川省攀枝花市高三第三次统一考试数学(文)试题一、单选题1.设集合,,则( ){}13,Z M x x x =-<≤∈{}1,0,1,2N =-M N ⋂=A .B .C .D .{}12x x -<≤{}1,0,1,2-{}0,1,2{}1,0,1,2,3-【答案】C【分析】化简集合,根据交集的定义求解即可.M 【详解】因为,{}13,Z M x x x =-<≤∈所以,又,{}0,1,2,3M ={}1,0,1,2N =-所以.{}0,1,2M N = 故选:C.2.如果一个复数的实部和虚部相等,则称这个复数为“等部复数”,若复数(i 为虚数单位)i1i z a =-为“等部复数”,则实数a 的值为( )A .B .C .0D .13-1-【答案】B【分析】先化简复数,利用“等部复数”的定义:实部和虚部相等,列出方程求出的值.z a 【详解】,222(1i)i i 1i ((1i i 1i 1i))111a a a z a a a a a a +-+-==+-==++++-复数为“等部复数”,i1i z a =-,22111a a a -∴=++1a ∴=-故选:B .3.攀枝花昼夜温差大,是内陆地区发展特色农业的天然宝地,干热河谷所孕育的早春蔬菜为大家送去新鲜优质的维生素和膳食纤维.下图为攀枝花年月日至日的最高气温与最低气温的天20233612气预报数据,下列说法错误的是( )A .这天的单日最大温差为度的有天7172B .这天的最高气温的中位数为度729C .这天的最高气温的众数为度729D .这天的最高气温的平均数为度729【答案】D【分析】确定这天的单日最大温差为度的日期,可判断A 选项;利用中位数的定义可判断B 717选项;利用众数的概念可判断C 选项;利用平均数公式可判断D 选项.【详解】对于A 选项,这天的单日最大温差为度为月日、月日,共天,A 对;7173103112对于B 选项,这天的最高气温由小到大依次为:、、、、、、(单位:),728282929293031C故这天的最高气温的中位数为度,B 对;729对于C 选项,这天的最高气温的众数为度,C 对;729对于D 选项,这天的最高气温的平均数为,D 错.728229330312042977⨯+⨯++=>故选:D.4.如图所示的程序框图中,若输出的函数值在区间内,则输入的实数x 的取值范围是()f x []3,2-( )A .B .[]4,1-[]2,4-C .D .[]1,4-[]1,2-【答案】B【分析】根据程序框图,明确该程序的功能是求分段函数的值,由此根据该函2log ,1()1,1x x f x x x >⎧=⎨-≤⎩数值域,可求得答案.【详解】由程序框图可知:运行该程序是计算分段函数的值,该函数解析式为 ,2log ,1()1,1x x f x x x >⎧=⎨-≤⎩输出的函数值在区间 内 ,[]3,2-必有当时,,,1x >20log 2x <≤14x ∴<≤当 时 ,,,1x ≤310x -≤-≤21x ∴-≤≤即得 .[2,4]x ∈-故选∶B .5.若角的终边上有一点,则( )β()2,1P tan 2β=A .B .C .D .4343-4545-【答案】A【分析】根据正切函数的定义及二倍角的正切公式求解.【详解】因为角的终边上有一点,β()2,1P 所以,1tan 2β=所以,22tan 14tan 211tan 314βββ===--故选:A6.对于直线m 和平面,,下列命题中正确的是( )αβA .若,,则B .若,,则//m α//αβ//m βm β⊥αβ⊥//m αC .若,,则D .若,,则m α⊥//αβm β⊥m α⊂αβ⊥m β⊥【答案】C【分析】根据线面关系和面面关系逐项判断可得出答案.【详解】对于A ,若,,则或,故A 错误;//m α//αβ//m βm β⊂对于B ,若,,则或,故B 错误;m β⊥αβ⊥//m αm α⊂对于C ,若,,则,故C 正确;m α⊥//αβm β⊥对于D ,若,,则与相交或或,故D 错误.m α⊂αβ⊥m β//m βm β⊂故选:C.7.已知,,,,若“p 且q ”是真命题,则实数a:[1,2]p x ∀∈20x a -≥0:q x ∃∈R 200220x ax a ++-=的取值范围是( )A .B .C .或D .且2a ≤-1a ≤2a ≤-1a =2a >-1a ≠【答案】C【分析】分类讨论为真和为真时,的取值,进而利用集合的交集关系,即可求解p qa 【详解】若p 真,则;若q 真,则或.又因为“p 且q ”是真命题,所以或1a ≤2a ≤-1a ≥2a ≤-.1a =故选:C .8.已知,c =sin1,则a ,b ,c 的大小关系是( )0.0232log 8,π==a b A .c <b <a B .c <a <bC .a <b <cD .a <c <b【答案】D【分析】由对数的运算法则求出a ,然后根据指数函数与正弦函数的单调性分别对b ,c 进行放缩,最后求得答案.【详解】由题意,,,533223log 8log 20.65a ====0.020ππ1b =>=,则.ππsinsin1sin 43c <<⇒<<a c b <<故选:D.9.八角星纹是大汶口文化中期彩陶纹样中具有鲜明特色的花纹.八角星纹以白彩绘成,黑线勾边,中为方形或圆形,具有向四面八方扩张的感觉.图2是图1抽象出来的图形,在图2中,圆中各个三角形为等腰直角三角形.若向图2随机投一点,则该点落在白色部分的概率是( )A .B .C .D .32π2π1285π【答案】D【分析】计算出白色部分对应的面积后根据几何概型的概率公式可求概率.【详解】设圆的半径为2,如图设与交于,设的中点为,连接.HC AF P AF M ,OM AO 则,设,则,故,OM AF ⊥AP a =222354222a a a ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭285a =而题设中空白部分的面积为,22214342a a ⎫⨯⨯⨯+=⎪⎪⎭故点落在白色部分的概率是,22484ππ5πa a ==故选:D.10.已知双曲线,A 为双曲线C 的左顶点,B 为虚轴的上顶点,直线l 垂()2222:10,0x y C a b a b -=>>直平分线段,若直线l 与C 存在公共点,则双曲线C 的离心率的取值范围是( )AB A .B .C .D.)+∞)+∞(【答案】B【分析】先根据题意求得直线l 的斜率,再根据直线l 与C 存在公共点,只需直线l 的斜率大于渐近线的斜率即可求解.ba -【详解】依题意,可得,则,()(),0,0,A a B b -00AB b bk a a -==+又因为直线l 垂直平分线段,所以,AB l a k b =-因为直线l 与C 存在公共点,所以,即,a b ba ->-22a b <则,即,解得222a c a <-2222,2c e a <>e >所以双曲线C 的离心率的取值范围是.)+∞故选:B11.已知函数对任意都有,则当取到最大值时,()()πsin 03f x x ωω⎛⎫=+> ⎪⎝⎭3π0,8x ⎛⎫∈ ⎪⎝⎭()12f x >ω图象的一条对称轴为( )()f x A .B .π8x =3π16x =C .D .π2x =3π4x =【答案】A【分析】先根据,得到,结合,得到的范围,求3π0,8x ⎛⎫∈ ⎪⎝⎭ππ3ππ3383x ωω<+<+1()2f x >3ππ83ω+出的范围,进而得到的最大值为,再利用整体法求出函数的对称轴,得到答案.ωω43【详解】,,3π0,8x ⎛⎫∈ ⎪⎝⎭ 0ω>,ππ3ππ3383x ωω∴<+<+,1()2f x >,π3ππ5π3836ω∴<+≤,所以的最大值为,403ω∴<≤ω43当时,令,43ω=4π()sin 33f x x ⎛⎫=+ ⎪⎝⎭4πππ,Z 332x k k +=+∈解得,π3π,Z 84x k k =+∈当时,对称轴为,经检验,其他三个均不合要求.0k =π8x =故选:A12.定义在R 上的连续函数满足,且为奇函数.当时,()f x ()()11f x f x -=+()42y f x =+(]2,3x ∈,则( )()()()3232f x x x =---(2022)(2023)f f +=A .B .C .2D .01-2-【答案】B【分析】首先根据题意,得到,,从而得到函数的周期()()2=f x f x -()()22f x f x -+=-+()f x 为,再根据求解即可.4()()20233f f =【详解】因为函数满足,所以关于对称,()f x ()()11f x f x -=+()f x 1x =即①.()()2=f x f x -又因为为奇函数,所以,()42y f x =+()()4242f x f x -+=-+即②.()()22f x f x -+=-+由①②知,()()2=-+f x f x 所以,()()()24f x f x f x +=-+=-即,所以函数的周期为,()()4f x f x =+()f x 4所以,()()()2023505433f f f =⨯+=,()()()2022505422=⨯+=f f f 因为时,,(]2,3x ∈()()()3232f x x x =---所以,3(3)(32)3(32)2f =---=-又为奇函数,所以当时,,(42)y f x =+0x =(2)0f =所以,(2022)(2023)022f f +=-=-故选:B.二、填空题13.已知实数x ,y 满足约束条件,则的最大值为___________.010x y x y x -≤⎧⎪+≤⎨⎪≥⎩2z x y =+【答案】2【分析】画出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入即可求解.【详解】作出约束条件对应的平面区域,如图所示,010x y x y x -≤⎧⎪+≤⎨⎪≥⎩由,可得直线,2z x y =+122z y x =-+当直线过点A 时,此时直线在轴上的截距最大,此时取得最大值,122zy x =-+y z 又由,解得,010x x y =⎧⎨+-=⎩(0,1)A 所以的最大值为.z 0212z =+⨯=故答案为:2.14.已知抛物线的焦点为F ,过F 的直线l 与C 交于A ,B 两点,O 为坐标原点,则2:4C y x =________.OA OB ⋅=【答案】3-【分析】求出抛物线的焦点坐标,用点斜式求出直线的方程,将直线方程与抛物线联立得到一AB 元二次方程,利用韦达定理得到,,由即可求出.126x x +=121=x x 1212OA OB x x y y ⋅=+【详解】抛物线的焦点为,24y x =()1,0设A ,B 两点的坐标为和,由题意得直线的方程为,11(,)x y 22(,)x y AB 1y x =-将直线和抛物线联立,可得,241y x y x ⎧=⎨=-⎩2610x x -+=其中,364320∆=-=>则,,126x x +=121=x x .1212OA OB x x y y ⋅=+()()121211x x x x +--=()121221x x x x =-++21613=⨯-+=-故答案为:3-15.如图,圆台中,O 在线段上,上下底面的半径分别为12O O 12O O =12OO ,________.11r =2r =【答案】69π5【分析】列出外接球半径所满足的方程,解出半径,得外接球表面积.【详解】设外接球半径为R,,=26920R =所以外接球表面积为,269π4π5R =故答案为:.69π516.如图,四边形中,与相交于点O ,平分,ABCD AC BD AC DAB ∠,,则的值_______.π3ABC ∠=33AB BC ==sin DAB ∠【分析】由余弦定理求出AC =sin BAC ∠=【详解】在中,,ABC π,3,13ABC AB BC ∠===由余弦定理得2222cos AC AB BC AB BC ABC ∠=+-⨯⨯,2213123172=+-⨯⨯⨯=所以.AC =由正弦定理得,sin sin BC ACBAC ABC =∠∠即sin sin BC ABC BAC AC ∠∠⋅===cos BAC ∠=又因为平分,所以.AC DAB∠sin 2sin cos DAB BACBAC ∠∠∠==三、解答题17.某企业从生产的一批产品中抽取个作为样本,测量这些产品的一项质量指标值,由测量结100果制成如图所示的频率分布直方图.(1)求这件产品质量指标值的样本平均数(同一组数据用该区间的中点值作代表)和中位数;100x(2)用频率代替概率,按分层抽样的方法从质量指标值位于、内的产品中随机抽取[)15,25[)35,45个,再从这个产品中随机抽个,求这个产品质量指标值至少有一个位于内的概率.6622[)35,45【答案】(1)平均数为,中位数为25x =23.75(2)35【分析】(1)将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全部相加可得出,利用x 中位数的定义可求得样本的中位数;(2)分析可知质量落在有个,分别记为、、、,质量落在有个,分别[)15,254A B C D [)35,452记为、,列举出所有的事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可a b 求得所求事件的概率.【详解】(1)解:由已知得.100.01510200.04010300.02510400.0201025x =⨯⨯+⨯⨯+⨯⨯+⨯⨯=因为.设中位数为,则,0.150.40.5+>x ()15,25x ∈则,解得.()0.015100.04150.5x ⨯+⨯-=23.75x =(2)解:质量指标值位于、内的产品的频率分别为,[)15,25[)35,450.04100.4⨯=,其中,0.02100.2⨯=0.4:0.22:1=所以用分层抽样的方法抽取的个产品中,质量落在有个,6[)15,254分别记为、、、,质量落在有个,分别记为、,A B C D [)35,452a b 则从这个产品中随机抽个,共种情况,如下:、、、、、、6215AB AC AD Aa Ab BC 、、、、、、、、,这种情况发生的可能性是相等的.BD Ba Bb CD Ca Cb Da Db ab 15设事件为从这个产品中随机抽个,M 62这个产品质量指标值至少有一个位于内,2[)35,45有、、、、、、、、,共种情况.Aa Ab Ba Bb Ca Cb Da Db ab 9则.()93155P M ==18.已知等差数列的公差为,前n 项和为,现给出下列三个条件:①成等{}n a ()0d d ≠n S 124,,S S S 比数列;②;③.请你从这三个条件中任选两个解答下列问题.432S =()6632S a =+(1)求数列的通项公式;{}n a (2)若,且,设数列的前n 项和为,求证:.()122n n n b b a n --=≥13b =1n b ⎧⎫⎨⎬⎩⎭n T 1132n T ≤<【答案】(1)42n a n =-(2)证明见解析【分析】(1)先分析条件①②③分别化简,若选①②,①③,②③,联立化简后条件求首项与公差得出通项公式即可;(2)由,利用累加法求出求出,再由裂项相消法求出的前n 项和,结()122n n n b b a n --=≥n b 1n b ⎧⎫⎨⎬⎩⎭合的单调性可得证.n T 【详解】(1)由条件①得,因为,,成等比数列,则,1S 2S 4S 2214S S S =即,又,则,()()2111246a d a a d +=+0d ≠12d a =由条件②得,即,414632S a d =+=13162a d +=由条件③得,可得,即.()6632S a =+()11615352a d a d +=++12a =若选①②,则有,可得,则;1122316d a a d =⎧⎨+=⎩124a d =⎧⎨=⎩()1142n a a n d n =+-=-若选①③,则,则;124d a ==()1142n a a n d n =+-=-若选②③,则,可得,所以.1343162a d d +=+=4d =()1142n a a n d n =+-=-(2)由,且,()12284n n n b a n b n -=--=≥13b =当时,2n ≥则有()()()()1213213122084n n n b b b b b b b b n -=+-+-++-=++++- ()()2841213412n n n -+-=+=-又也满足,故对任意的,有,13b =241n b n =-*n ∈N 241n b n =-则,()()11111212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭所以,21111112111121233521121n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎛⎫=-< ⎪+⎝⎭⎝⎭⎭⎝⎭⎣⎦ 由于单调递增,所以,21n n T n =+113n T T ≥=综上:.1132n T ≤<19.如图1,圆O 的内接四边形中,,,直径.将圆沿折ABCD 45DAC ∠=︒60CAB ∠=︒2AC =AC 起,并连接、、,使得为正三角形,如图2.OB OD BD BOD(1)证明:图2中的平面;AB ⊥BCD (2)在图2中,求三棱锥的体积.D OBC -【答案】(1)证明见解析【分析】(1)利用勾股定理证明,然后结合可证;AB BD ⊥AB BC ⊥(2)利用可求答案.12D OBC O BCD A BCDV V V ---==【详解】(1)由题意得到,.1AB BD ==AD =222AD AB BD =+所以.AB BD ⊥因为为直径所对的圆周角,所以.ABC ∠AB BC ⊥又,平面,平面,BD BC B ⋂=BD ⊂BCD BC ⊂BCD 平面.∴AB ⊥BCD (2)因为平面,平面,AB ⊥BCD CD ⊂BCD所以,因为,,AB CD ⊥AD CD ⊥AB AD A ⋂=所以平面,因为平面,所以,DC ⊥ABD BD ⊂ABD DC BD ⊥所以1122D OBC O BCD A BCD V V V AB BD DC ---===⋅⋅20.已知椭圆的焦点坐标为和,且椭圆经过点.C ()12,0F -()22,0F G ⎛ ⎝(1)求椭圆的标准方程;C (2)椭圆的上、下顶点分别为点和,动点在圆上,动点在椭圆上,直线、C M N A 221x y +=B C MA 的斜率分别为、,且.证明:、、三点共线.MB 1k 2k 125k k =N A B 【答案】(1)2215x y +=(2)证明见解析【分析】(1)求出的值,利用椭圆的定义可求得,进而可求得的值,由此可得出椭圆的标c a b C 准方程;(2)计算得出,结合已知条件可得出,即可证得结论成立.15BM BN k k ⋅=-AN BN k k =【详解】(1)易知椭圆的.2c =点在椭圆上,且G 12GF GF +==∴2a a =⇒=由得,椭圆的标准方程为:.222a b c =+1b =∴C 2215x y +=(2)设,()22,B x y因为.22222222222211111555BM BNy y y y k k x x x y -+--⋅=⋅===--由得.125k k =21115BN k k k =-=-为圆的直径,所以,,.MN 221x y +=NA MA ⊥∴11AN BN k k k =-=故、、三点共线.N A B 【点睛】关键点点睛:本题考查三点共线的证明,解题的关键在于根据椭圆的方程计算得出,以及由圆的几何性质得出,结合斜率关系来进行证明.15BM BN k k ⋅=-NA MA ⊥21.已知函数在处的切线方程为.()e ln x f x x a x=-1x =()2e 1y x b =+-(),a b R ∈(1)求实数a ,b 的值;(2)当时,恒成立,求正整数m 的最大值.1,12x ⎡⎤∈⎢⎥⎣⎦()2e 0x f x x m --+<【答案】(1),1a =-e 1b =+(2)3【分析】(1)求出导数,根据题意列出方程组求解即可得解;(2)分离参数转化为的最小值,利用导数判断单调性及极值确定最小值()()2e ln x g x x x x=-+-+为,根据单调性求出的范围即可得解.()00212g x x x =-++()0g x 【详解】(1)定义域为,.()0,∞+()()1e x af x x x '=+-由题意知,()()12e 2e 112e 1e f a f b ⎧=-=+⎪⎨=+-='⎪⎩解得,.1a =-e 1b =+(2)由题意有恒成立,即恒成立()2e ln 0x x x x m -+-+<()2e ln x m x x x <-+-+设,,.()()2e ln xg x x x x =-+-+1,12x ⎡⎤∈⎢⎥⎣⎦()()11e x g x x x ⎛⎫'=-- ⎪⎝⎭当时,,∴112x ≤≤10x -≥令,其中,则()1e x h x x =-1,12x ⎡⎤∈⎢⎥⎣⎦()21e 0x h x x '=+>所以函数在上单调递增()1e x h x x =-1,12x ⎡⎤∈⎢⎥⎣⎦因为,,所以存在唯一,1202h ⎛⎫=< ⎪⎝⎭()1e 10h =->01,12x ⎛⎫∈ ⎪⎝⎭使得,即,可得.()0001e 0x h x x =-=001e x x =00ln x x =-当时,,此时函数单调递减,012x x <<()0g x '>()g x 当时,,此时函数单调递增.01x x <<()0g x '<()g x ,∴()()()()00000000min 00122ln 2212x g x g x x e x x x x x x x ==-+-+=-+⋅+=-++,由对勾函数性质知函数在递减,21122(1y x x x x =-++=+-()0,1x ∈,.01,12x ⎛⎫∈ ⎪⎝⎭∴()()0002123,4g x x x =-++∈当时,不等式对任意恒成立,∴3m ≤()2e ln xm x x x <-+-+1,12x ⎡⎤∈⎢⎥⎣⎦正整数m 的最大值是3.∴【点睛】关键点点睛:第一个关键点首先要分离参数,将问题转化为恒成立,()2e ln x m x x x<-+-+第二个关键在于求取函数的最小值,需结合零点存在性定理得出隐零点()()2e ln x g x x x x=-+-+,分析的范围.01,12x ⎛⎫∈ ⎪⎝⎭()000212g x x x =-++22.在平面直角坐标系中,曲线的参数方程为(t 为参数),曲线xOy 1C 11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.()222:24C x y -+=(1)求,的极坐标方程;1C 2C (2)若射线分别与曲线,相交于A ,B 两点,求的面积.()π06θρ=≥1C 2C 2C AB △【答案】(1),2cos 24ρθ=4cos ρθ=【分析】(1)两式平方相减消去参数即可得出曲线普通方程;利用将直角坐标方程1C cos sin x y ρθρθ=⎧⎨=⎩转化为极坐标方程;(2)利用极坐标的几何意义,求得的长,利用直线与夹角为及的长,求得AB 2OC π6θ=π62OC 边上的高,从而求得面积.AB 【详解】(1)依题意得,化简整理得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=-+⎪⎩224x y -=令,,化简得.cos x ρθ=sin y ρθ=2cos 24ρθ=对于,化简得:.()22222440x y x y x -+=⇒+-=4cos ρθ=(2)设,(),A A ρθ(),B B ρθ依题意得,解得2cos 24π6ρθθ⎧=⎪⎨=⎪⎩A ρ=,解得,4cos π6ρθθ=⎧⎪⎨=⎪⎩Bρ=∴B A AB ρρ=-=-设到射线的距离为d ,2C π6θ=,解得,2πsin6d OC =1d =∴(21122C AB S AB d =⋅==△23.已知函数.()13f x x x =-+-(1)解不等式;()1f x x ≤+(2)设函数的最小值为c ,正实数a ,b 满足,求的最小值.()f x a b c +=111a b ++【答案】(1)[]1,5(2)43【分析】(1)分类讨论去绝对值符号解不等式;(2)利用绝对值三角不等式得c 的值,再利用基本不等式求的最小值.111a b ++【详解】(1)当时,不等式可化为,,1x <4211x x x -≤+⇒≥x ∈∅当时,不等式可化为,得,即.13x ≤≤21x ≤+1x ≥13x ≤≤当时,不等式可化为,得,即.3x >241x x -≤+5x ≤35x <≤综上所述,原不等式的解集为.[]1,5(2)由绝对值不等式性质得,()()13132x x x x -+-≥-+-=所以,即.2c =2a b +=所以.()1111111412131313b a a b a b a b a b +⎛⎫⎛⎫⎡⎤+=+++=++≥ ⎪ ⎪⎣⎦+++⎝⎭⎝⎭当且仅当,即时取到等号,21a b a b +=⎧⎨=+⎩3212a b ⎧=⎪⎪⎨⎪=⎪⎩所以的最小值为.111a b ++43。

2023届江西省部分学校高三上学期1月联考数学(文)试题(word版)

2023届江西省部分学校高三上学期1月联考数学(文)试题(word版)
故 在 处取得极大值,也是最大值,
故 .
因为 ,所以 ,即 ,所以 ,
则 .故 对一切 恒成立,
即 对一切 恒成立.
【点睛】含参不等式的证明,若根据参数范围进行适当放缩,消去参数,这样可以简化不等式结构,便于构造函数进行研究,放缩消参是处理含参不等式的常规技巧,值得学习体会,常用放缩方法有切线放缩,也可结合题干中参数取值范围进行放缩.
(一)必考题:共60分.
17.公差不为 的等差数列 的前 项和为 ,且满足 , 、 、 成等比数列.
(1)求 的前 项和 ;
(2)记 ,求数列 的前 项和 .
【答案】(1)
(2)
【解析】
【分析】(1)设等差数列 的公差为 ,则 ,根据题意可得出关于 的方程,求出 的值,可求得数列 的通项公式,利用等差数列的求和公式可求得 ;
(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.
[选修4-4:坐标系与参数方程]
22.在平面直角坐标系 中,曲线C的参数方程为 ( 为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是 .
(1)求曲线C的普通方程和直线l的直角坐标方程;
1
3
1
1
6
3
3
4
1
2
4
1
2
5
3
1
2
6
3
1
6
1
2
1
2
2
5
3
4
5
(1)以此样本数据来估计顾客的抽奖情况,分别估计某顾客抽奖1次,积分为3分和2分的概率:
(2)某顾客抽奖3次,求该顾客至多有1次的积分大于1的概率.

2021年高三下学期综合测试(一)数学(文)试题

2021年高三下学期综合测试(一)数学(文)试题

2021年高三下学期综合测试(一)数学(文)试题注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B铅笔把答案涂在答题卡的相应位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用锚笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁.考试结束后,将答题卷和答题卡交回.一、选择题:本题共10小题,每小题5分,共50分1.设复数z=(1-3i)(2+i)(其中i是虚数单位),则复数z在复平面上所对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知向量a=(1,-2),b=(m,4),且a∥b,那么2a-b等于A.(4,0) B.(0,4) C.(4,-8) D.(-4,8)3.下列命题中,错误..的是A.一条直线与两个平行平面中的一个相交,则必与另一个平面相交B.平行于同一平面的两个不同平面平行C.若直线l不平行平面α,则在平面α内不存在与l平行的直线D.如果平面α不垂直平面,那么平面α内一定不存在直线垂直于平面4.设数列是等差数列,若数列的前n项和S n取得最小值为A.4 B.7 C.8 D.155.已知则“a=b”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.如右图,设A,B两点在河的两岸,一测量者在A的同测,在所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45º,∠CAB=105º后,就可以计算出A,B两点的距离为(精确到0.1)A. 70.7mB. 78.7mC.86.6mD.90.6m7.已知z=2x+y,其中x,y满足,且z的最大值是最小值的4倍,则m的值是A. B. C. D.8,如图所示的程序框图运行的结果A. B. C. D.9.通过随机询问110名性别不同的行人,对过马路是愿意走斑线还是愿意走人行天桥进行抽样调查,得到如下的列表:由,算得.8.750605060)20203040(11022≈⨯⨯⨯⨯-⨯⨯=K 附表:参照附表,得到的正确结论是A .在犯错误的概率不超过O.1%的前提下,认为“选择过马路的方式与性别有关”B 。

陕西省宝鸡市2023届高三上学期一模文科数学试题

陕西省宝鸡市2023届高三上学期一模文科数学试题

一、单选题1.已知函数,,其中,为自然对数的底数,若,使,则实数的取值范围是( )A.B.C.D.2. 已知是数满足,则对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数的图像为( )A.B.C.D.4. 已知某几何体的三视图如图所示,其中半圆和扇形的半径均为,则该几何体的体积为()A.B.C.D.5. 在中,,,则( )A.B.C.D.6.已知曲线在点处的切线与曲线也相切,则的值为( ).A.B.C.D.7. 集合,若且,则满足条件的集合的个数为( )A .7B .8C .15D .168. 下列说法中错误的是A .先把高二年级的名学生编号为到,再从编号为到的名学生中随机抽取名学生,其编号为,然后抽取编号为,,的学生,这样的抽样方法是系统抽样法.B .正态分布在区间和上取值的概率相等C .若两个随机变量的线性相关性越强,则相关系数的值越接近于D .若一组数据的平均数是,则这组数据的众数和中位数都是陕西省宝鸡市2023届高三上学期一模文科数学试题陕西省宝鸡市2023届高三上学期一模文科数学试题二、多选题三、填空题四、解答题9. 已知函数的部分图象如图所示,则下列结论正确的是()A.的图象关于点对称B.在区间的最小值为C.为偶函数D.的图象向右平个单位后得到的图象10. 已知非零向量,,对任意,恒有,则( )A.在上的投影的数量为1B.C.D.11. 已知是圆上不同的两点,椭圆的右顶点和上顶点分别为,直线分别是圆的两条切线,为椭圆的离心率.下列选项正确的有( )A .直线与椭圆相交B.直线与圆相交C .若椭圆的焦距为两直线的斜率之积为,则D.若两直线的斜率之积为,则12.设实数满足,则下列不等式一定成立的是( )A.B.C.D.13.已知的取值如表所示:若与呈线性相关,且回归方程为,则等于___________.23454614. 设集合A={x ∣log 2x<1}, B=, 则A =____________.15.的展开式中的常数项为___.(用数字作答)16. 已知曲线E 上任意一点Q到定点的距离与Q 到定直线的距离之比为.(1)求曲线E 的轨迹方程;(2)斜率为的直线l 交曲线E 于B ,C 两点,线段BC 的中点为M ,点M 在x 轴下方,直线OM 交曲线E 于点N ,交直线于点D ,且满足(O 为原点).求证:直线l 过定点.17. 某县依托种植特色农产品,推进产业园区建设,致富一方百姓.已知该县近年人均可支配收入如下表所示,记年为,年为,…以此类推.年份年份代号人均可支配收入(万元)(1)使用两种模型:①;②的相关指数分别约为,,请选择一个拟合效果更好的模型,并说明理由;(2)根据(1)中选择的模型,试建立关于的回归方程.(保留位小数)附:回归方程中斜率和截距的最小二乘估计公式分别为,.参考数据:,令,.18. 某区的区人大代表有教师6 人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为,,乙校教师记为,,丙校教师记为,丁校教师记为.现从这6 名教师代表中选出 3 名教师组成十九大报告宣讲团,要求甲、乙、丙、丁四个学校中,.(1)请列出十九大报告宣讲团组成人员的全部可能结果;(2)求教师被选中的概率;(3)求宣讲团中没有乙校教师代表的概率.每校至多选出1名19. 已知函数.(1)若曲线在点处的切线与直线平行,求直线的方程;(2)若对任意,恒成立,求实数的取值范围.20.在中,内角,,所对的边分别为,,,且.(1)求;(2)若,求.21. 已知数列是各项均为正数的等比数列,记其前项和为,已知.(1)求的通项公式;(2)设,求数列的前项和为.。

四川省达州市2023届高三联合测试 一模试题-文科数学试卷(后附参考答案)

四川省达州市2023届高三联合测试 一模试题-文科数学试卷(后附参考答案)

一诊数学(文)试卷第1页(共4页)达州市普通高中2023届第一次诊断性测试数学试题(文科)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x =≤1,{|1}B x x =<,则A B =A .[0 1),B .(0 1),C .( 1)-∞,D .( 1]-∞,2.复数z 满足1=2i z,则z =A .12-B .12C .1i2-D .1i23.已知向量a ,b ,满足⊥a b ,(12),a = ,则()-⋅=a b a A .0B .2CD .54.四川省将从2022年秋季入学的高一年级学生开始实行高考综合改革,高考采用“3+1+2”模式,其中“1”为首选科目,即物理与历史二选一.某校为了解学生的首选意愿,对部分高一学生进行了抽样调查,制作出如下两个等高条形图,根据条形图信息,下列结论正确的是A .样本中选择物理意愿的男生人数少于选择历史意愿的女生人数B .样本中女生选择历史意愿的人数多于男生选择历史意愿的人数C .样本中选择物理学科的人数较多D .样本中男生人数少于女生人数5.“0a b >>”是“e 1a b->”的A .充分不必要条件B .必要不充分条件C .充分必要条件D.既不充分也不必要条件一诊数学(文)试卷第2页(共4页)6.《将夜》中宁缺参加书院的数科考试,碰到了这样一道题目:那年春,夫子游桃山,一路摘花饮酒而行,始切一斤桃花,饮一壶酒,复切一斤桃花,又饮一壶酒,后夫子惜酒,故再切一斤桃花,只饮半壶酒,再切一斤桃花,饮半半壶酒,如是而行,终夫子切六斤桃花而醉卧桃山.问:夫子切了五斤桃花一共饮了几壶酒?A .18B .4716C .238D .31167.三棱锥P ABC -的底面ABC 为直角三角形,ABC △的外接圆为圆O ,PQ ⊥底面ABC ,Q 在圆O 上或内部,现将三棱锥的底面ABC 放置在水平面上,则三棱锥P ABC -的俯视图不可能是A.B .C .D .8.将函数1π()sin()23f x x ω=+(0)ω>图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到函数()g x 的图象,直线l 与曲线()y g x =仅交于11()A x y ,,22()B x y ,,ππ(())66P g ,三点,π6为1x ,2x 的等差中项,则ω的最小值为A .8B .6C .4D .29.曲线()()e xf x x m =+()m ∈R 在点(0(0))f ,处的切线平分圆22(2)(2)5x y -+-=,则函数()y f x =的增区间为A .(,1)-∞-B .(0 )+∞,C .(1 )-+∞,D .(0e),10.点F 为双曲线22221x y a b-=(0 0)a b >>,的一个焦点,过F 作双曲线的一条渐近线的平行线交双曲线于点A ,O 为原点,||OA b =,则双曲线的离心率为A B .C .D 11.在棱长为2的正方体1111ABCD C D 中,E ,分别为AB ,BC 的中点,则A .平面1D EF ∥平面11BA C B .点P 为正方形1111A B C D 内一点,当DP ∥平面1B EF 时,DP 的最小值为2C .过点1D ,E ,F 的平面截正方体1111ABCD A B C D -所得的截面周长为+D .当三棱锥1B BEF -的所有顶点都在球O 的表面上时,球O 的表面积为12π12.已知!(1)(2)321n n n n =⨯-⨯-⨯⨯⨯⨯ ,规定0!1=,如3!3216=⨯⨯=.定义在R上的函数()y f x =图象关于原点对称,对任意的0x <,都有(()1xf xf x x =-.若12()10099!f =,则(1)f =A .0B .1C .2D .199!一诊数学(文)试卷第3页(共4页)二、填空题:本题共4小题,每小题5分,共20分.13.抛物线22(0)y px p =>上的点(4)M a ,到焦点的距离为5,则焦点坐标为.14.从集合{1 2 3 4 5},,,,中随机取两个不同的数a ,b ,则满足||2a b -=的概率为.15.已知正项数列{}n a 前n 项和n S 满足(1)2n n n a a S m +=+,m ∈R ,且3510a a +=,则m =.16.已知正方形ABCD 边长为2,M ,N 两点分别为边BC ,CD 上动点,45=∠MAN ,则CMN △的周长为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)党的十九大提出实施乡村振兴战略以来,农民收入大幅提升,2022年9月23日某市举办中国农民丰收节庆祝活动,粮食总产量有望连续十年全省第一.据统计该市2017年至2021年农村居民人均可支配收入的数据如下表:年份20172018201920202021年份代码x12345人均可支配收入y (单位:万元)1.301.401.621.681.80(1)根据上表统计数据,计算y 与x 的相关系数r ,并判断y 与x 是否具有较高的线性相关程度(若0.30||0.75r <≤,则线性相关程度一般,若||0.75r ≥则线性相关程度较高,r 精确到0.01);(2)市五届人大二次会议政府工作报告提出,2022年农村居民人均可支配收入力争不低于1.98万元,求该市2022年农村居民人均可支配收入相对2021年增长率最小值(用百分比表示).参考公式和数据:相关系数()()niix x y y r --=∑,51()() 1.28iii x x y y =--=∑,521()0.17ii y y =-≈∑ 1.3≈.18.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,ABC △的面积tan S A =,BC (1)求a ;(2)求ABC △外接圆面积的最小值.一诊数学(文)试卷第4页(共4页)19.(12分)如图,四棱锥P ABCD -的底面ABCD 是梯形,AD BC ∥,AB BC ⊥.E 为AD 延长线上一点,PE ⊥平面ABCD ,2PE AD =,tan 2PDA ∠=-.F 是PB 中点.(1)证明:EF PA ⊥;(2)若22BC AD ==,三棱锥E PDC -的体积为13,求点C 到平面DEF 的距离.20.(12分)已知F 是椭圆C :22221(0)x y a b a b+=>>的一个焦点,过点( )P t b ,的直线l 交C 于不同两点A ,B .当t a =,且l经过原点时,||AB =,||||AF BF +=.(1)求C 的方程;(2)D 为C 的上顶点,当4t =,且直线AD ,BD 的斜率分别为1k ,2k 时,求1211k k +的值.21.(12分)已知函数()ln ()f x x x a a =+∈R .(1)若()f x 最小值为0,求a 的值;(2)231()1(0)8x g x x x x =--+>,若7ea ≥,()0gb <,证明()f x b >.(二)选考题:共 10分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10 分) 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为 ρ2−2 ρcos − θ2 ρsin − θ2 =0 ,直线l 的参数方程为2cos ()2sin x t t y t θθ=+⎧⎨=+⎩,为参数.(1)写出曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,定点(2 2)P ,,求PA PB +的最小值.23.[选修4-5:不等式选讲](10分)设函数12)(-=x x f .(1)若()()f x f x m >+的解集为{|0}x x <,求实数m 的值;(2)若0a b <<,且()()f a f b =,求411a b +-的最小值.A BC DEFP达州市普通高中2023届第一次诊断性测试文科数学参考答案一、选择题:1.A 2.C3.D4.C5.A6.C7.D 8.C9.C10.D11.B12.C二、填空题:本题共4小题,每小题5分,共20分.13.(1,0)14.31015.1-16.4三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)由表知x 的平均数为1234535x ++++==.522221()(13)(23)(53)10i i x x =∴-=-+-++-=∑.5()()0.98iix x y y r --=∑.75.098.0> ,∴y 与x 具有较高的线性相关程度.(2)设增长率为p ,则1.8(1)p +≥1.98,解得p ≥0.1.∴min 0.110%p ==.该市2022年农村居民人均可支配收入相对2021年增长率最小值为10%.18.解:(1)由A S tan =得AAA bc cos sin sin 21=,∵0πA <<,0sin >A ,∴2cos =A bc .取BC 中点D ,连接AD ,则1()2AD AB AC =+ ,∴22242AD AB AB AC AC =+⋅+ ,即A bc c b cos 21222++=,∴822=+c b .∵448cos 2222=-=-+=A bc c b a ,∴2=a .(2)设ABC △外接圆半径为R ,由正弦定理R A a 2sin =,得AR sin 1=.由(1)知bc A 2cos =22412b c =+≥,当且仅当2==c b 时取“=”.∵0πA <<,∴A <0≤π3,∴0sin 2A <≤,∴A R sin 1=23332=,当sin 2A =,即π3A =时取“=”.∴ABC △外接圆面积最小值为2234π(π33⨯=.19又E AD PE = ,∴AB ⊥平面PAD .∵PA ⊂平面PAD ,∴PA AB ⊥.取P A 的中点M ,连接EM ,FM ,∵F 为PB的中点,∴FM PA ⊥.∵tan 2PDA ∠=-,∴tan 2PDE ∠=,∴2=DEPE ,∴AD DE PE 22==,∴D 为AE 的中点,∴PE AE =,∴EM PA ⊥.又M FM EM = ,∴PA ⊥平面EFM .∵EF ⊂平面EFM ,∴EF PA ⊥.(2)解:∵222BC AD DE ===,∴2PE =.∴ BC AE ∥,且 BC AE =,∵AB BC ⊥,∴四边形ABCE 为矩形,∴CE ⊥平面PAE .1111123323E PDC P DEC DEC V V S PE CE --==⋅=⨯⨯⨯⨯=△,∴1=CE .连接M D ,Rt BCE △中51222=+=BE ,Rt PEB △中35222=+=PB .∵F 为PB 中点,∴点F 到平面ABCD 的距离1211==PE h ,Rt PEB △中,2321==PB EF ,111122ECD S =⨯⨯=△.由(1)知FM PAE ⊥面,11=22FM AB =,在Rt FME △中,52DF ==,∴DEF △中,22235()1)222cos 33212DEF +-∠==⨯⨯,3sin DEF ∠=,124DEF S DE EF sin DEF =⨯⨯⨯∠=△.设点C 到平面DEF 的距离为2h ,则121133F EDC C DFE DEC DFE V V S h S h --==⋅=⋅△△,解得5522=h .所以点C 到平面DEF 的距离为552.20.解:(1)由题意,当t a =,且l 经过原点时,l 的方程为by x a=,且点A ,B 关于原点对称.设00( )A x y ,,将b y x a=代入22221x y a b +=,并化简得222a x =,即2202a x =,∴2202b y =.∵||AB =2222004()2()6x y a b +=+=.设C 的另一个焦点为0F ,根据对称性,0||||||||AF BF AF AF +=+=,根据椭圆定义得2a =,∴22a =.∴21b =.所以C 的方程为2212x y +=.(2)由(1)知,点D 坐标为(0 1),.A B C M E F PD由题意可设l :(1)4x k y =-+,即4x ky k =+-,将该式代入2212x y +=,并化简得222(2)2(4)8140k y k k y k k ++-+-+=,∴16(47)0k ∆=->.设11()A x y ,,22()B x y ,,则1222(4)2k k y y k -+=-+,21228142k k y y k -+=+.∴12122164()822kx x k y y k k -+=++-=+.∴1212211212121212()1111()1x x x y x y x x k k y y y y y y +-++=+==---++2222212121221212222(814)2(4)1642(4)()()2228142(4)()1122k k k k k kky y k y y x x k k k k k k k y y y y k k -+----+-+-++++=-+--++++++1=-.即12111k k +=-.21.解:(1)由()ln f x x x a =+得0x >,且()ln 1f x x '=+当10e x <<时,()0f x '<,()f x 单调递减,当1ex >时,()0f x '>,()f x 单调递增.所以min 11()()()0e ef x f x f a ===-+=极小,∴1e a =.(2)证明:由231()18x g x x x =--+得322231344()144x x g x x x x -+'=-+=(0>x ).设32()344h x x x =-+,则28()989()9h x x x x x '=-=-,当809x <<时,()0h x '<,()h x 单调递减,当89x >时,()0h x '>,()h x 单调递增.∴当0x >时,()min 8()()09h x h x h =>≥,即()0g x '>,()g x 在区间(0 )+∞,单调递增.∵(2)0g =,∴若0x >,则当且仅当02x <<时,()0g x <,∵()0g b <,∴2b <.由(1)知,min 11()()e e f x f a ==-.∵7ea ≥,∴min 16()()e e f x f x a =-≥≥.∴6()2ef x b >>≥,即()f x b >.22.解:(1)将222x y ρ=+,cos x ρθ=,sin y ρθ=代入C 的极坐标方程22cos ρρθ-2sin 20ρθ--=得曲线C 为222220x y x y +---=,即4)1()1(22=-+-y x .(2)易知点P 在直线l 上,将直线l 的参数方程2cos ()2sin x t t y t θθ=+⎧⎨=+⎩,为参数代入曲线C 方程得4)sin 1()cos 1(22=+++θθt t ,整理得02)cos (sin 22=-++t t θθ.设点A ,B 对应该的参数分别为1t ,2t ,则)cos (sin 221θθ+-=+t t ,0221<-=t t ,由参数t 的几何意义不妨令||||1P A t =,||||2PB t =.∴||||||||||2121t t t t PB P A -=+=+122sin 44)(21221+=-+=θt t t t .当12sin -=θ,即ππ()4k k θ=-∈Z 时,22|)||(|=+PB P A .23.(1)解:不等式可化为|1|||22-+>m x x ,∴|1||1|-+>-m x x ,两边同时平方可得222m m mx -<.原不等式解集为{|0}x x <,∴0>m ,即21mx -<.∴021=-m,2=m .(2)解: )()(b f a f =,∴|1||1|22--=b a ,|1||1|-=-b a .)1(2)1(||x f x f x -==+,∴)(x f y =关于直线1=x 对称,∴b a <<<10,∴11-=-b a ,即2=+b a .所以1)1(45)1114(-+-+=-+-+b a a b b a b a ≥9425=+,当且仅当1)1(4-=-b aa b ,即34,32==b a 时取“=”,∴114-+b a 的最小值为9.。

2021年高三上学期期末统一检测数学文试题 含解析

2021年高三上学期期末统一检测数学文试题 含解析

2021年高三上学期期末统一检测数学文试题含解析注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的所在县(市、区)、姓名、试室号、座位号填写在答题卷上对应位置,再用2B铅笔将准考证号涂黑.2. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能写在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内相应的位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.参考公式:锥体的体积公式其中S为锥体的底面积,为锥体的高台体的体积公式,其中分别是台体的上、下底面积,表示台体的高.一、选择题:本大题共10小题,每小题5分,满分50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合大于且小于5的整数},则( )A. B. C. D.2.函数的定义域是()A. B. C. D.3.若(为虚数单位)则复数的共轭复数A. B. C. D.4.已知平面向量, , 且, 则向量是( )A.B.C.D.5.已知变量满足约束条件,则的最大值是( )A. B. C. D.6.执行如图1所示的程序框图.若,则输出的值是()A. B. C.D.7.在中,分别是角的对边长.已知,则()A. B. C. D.8.已知圆和圆关于直线对称,则直线的方程是()A. B. C. D.9.某圆台的三视图如图2所示(单位:cm),则该圆台的体积是A. B. C. D.10.已知集合,若对于任意,存在,使得成立,则称集合是“好集合”.给出下列4个集合: ①②③④其中所有“好集合”的序号是()A.①②④B.②③C.③④D.①③④二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.设为等差数列的前n项和,,则12.若曲线在点处的切线与直线垂直,则______.13.已知直线过椭圆的左焦点和一个顶点B.则该椭圆的离心率()▲14.(坐标系与参数方程选做题)在极坐标系中,已知点,则过点且平行于极轴的直线的极坐标方程为15.(几何证明选讲选做题)如图3,过外一点分别作切线和割线,为切点,为割线与的交点,过点作的切线交于点. 若,,则.三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数的最小正周期为.(1) 求的值;(2) 若,求.17.(本小题满分12分)从一批柚子中,随机抽取100个,获得其重量(单位:克)数据按照区间,,,进行分组,得到频率分布直方图,如图4.(1) 根据频率分布直方图计算抽取的100个柚子的重量众数的估计值.(2) 用分层抽样的方法从重量在和的柚子中共抽取5个,其中重量在的有几个?(3) 在(2)中抽出的5个柚子中,任取2个,求重量在的柚子最多有1个的概率.18. (本题满分14分)如图,在三棱锥中,底面为等腰直角三角形,,棱垂直底面,,,,是的中点.(1)证明平面ABC;(2)证明:BC 平面PAC;(3)求四棱锥的体积.19.(本小题满分14分)已知数列满足.(1)求数列的通项公式;(2)设为数列的前项和,求.(3)证明:20. (本小题满分14分)已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为 6.过椭圆的右焦点的动直线与椭圆相交于、两点.(1)求椭圆的方程;(2)若线段中点的横坐标为,求直线的方程;(3) 若线段的垂直平分线与轴相交于点.设弦的中点为,试求的取值范围.21.(本小题满分14分)已知函数.(1)若,求在上的最小值;(2)若存在,使,求的取值范围.肇庆市中小学教学质量评估xx 学年第一学期统一检测题高三数学(文科)参考答案一、选择题:二、填空题: 11.12. 13. 14. 15.1【解析】 ,,所以2【解析】 由 得且3【解析】4【解析】 ∵,∴,∴5【解析】 “角点”坐标分别为,6【解析】 第一次循环:;第二次循环:;第三次循环:; 第四次循环:,结束;输出7【解析】 ∵,∴∵=,∴sinB===.8【解析】方程经配方,得圆心坐标是,半径长是2.圆的圆心坐标是 ,半径长是2.因为两圆关于直线对称,所以直线是线段OC 的垂直平分线.线段OC 的中点坐标是 ,直线OC 的斜率 ,所以直线的斜率,方程是 ,即.9【解析】 圆台上底面积为,下底面积为,高为 ,体积()()121143733V S S h πππ==⨯= 10【解析】对于①2121212121210()10(0)x x y y x x x x x x x +=+=⇒+=≠不成立,故选项A 、D 错;对于④,,由,即, ,不成立. 故选项C 错;所以选B.11【解析】设公差为d ,则8a 1+28d =4a 1+8d ,即a 1=-5d ,a 7=a 1+6d =-5d +6d =d =-2,所以a 9=a 7+2d =-6.12【解析】,由得13【解析】由得,∴=,即=.∴=,e==.14.【解析】先将极坐标化成直角坐标表示, 转化为点 ,即过点且平行于轴的直线为,再化为极坐标为15【解析】由条件得,所以,又,由切割线定理有,故三、解答题16【解析】(1)由,得 (2分)∴ (3分)∴ (5分)(2)∵,∴, (7分)∴2sin 2sin cos 2cos sin 666πππθθθ⎛⎫=+=+ ⎪⎝⎭ (9分) (12分)17【解析】(1)众数的估计值为最高的矩形的中点,即众数的估计值等于(克) (2分)(2)从图中可知,重量在的柚子数(个) (3分)重量在的柚子数(个) (4分)从符合条件的柚子中抽取5个,其中重量在的个数为(个) (6分)(3)由(2)知,重量在的柚子个数为3个,设为,重量在的柚子个数为2个,设为,则所有基本事件有:,共10种 (9分)其中重量在的柚子最多有1个的事件有:,共7种 (11分)所以,重量在的柚子最多有1个的概率. (12分)18【解析】(1)证明:∵,,∴,(1分)∴ (2分)又∵平面ABC ,平面ABC ;∴平面ABC ;(3分)(2)证明:∵PA ⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥PA . (4分)∵,∴即BC ⊥AC . (5分)又∵,∴平面. (7分)(3)∵为等腰直角三角形,F 是AB 的中点,∴,∴的面积 (8分)过D 作于,则,∴平面,且三棱锥的高,(9分)又,∴, (10分)∴三棱锥的体积(11分)又三棱锥的体积1111116.424332323P ABC ABC V S PA AB CF PA -∆==⨯⋅⋅=⨯⨯⨯⨯= (13分) ∴四棱锥的体积 (14分)19【解析】(1), (2分)故数列是首项为2,公比为2的等比数列。

2021年高三高考模拟统一考试(一)数学(文)试题 含答案

2021年高三高考模拟统一考试(一)数学(文)试题 含答案

UAB2021年高三高考模拟统一考试(一)数学(文)试题 含答案数 学 (文史类) 注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,本卷满分150分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、考生号、座位号,填写在答题卡内的相关空格上.3.第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.4.第Ⅱ卷每题的答案填写在答题卡相应题号下的空格内.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.复数2-i2+i=( )A . 35-45IB . 35+45iC .1-45iD .1+35i 2.已知全集U=R ,集合A={x| 0<x<9, x ∈R}和B={x| -4<x<4, x ∈Z} 关系的韦恩图如图所示,则阴影部分所示集合中的元素共有( ) A .3个 B .4个 C .5个 D .无穷多个 3.是“直线与直线平行”的( )A. 充分不必要条件B. 必要不充分条件 C . 充要条件 D. 既不充分又不必要条件 4.已知sin θ=45,sin θ-cos θ>1,则sin 2θ=( )A .-45B .-1225C .2425D .-24255.右图是一个算法框图,则输出的k 的值是( ) A. 3 B. 4 C. 5 D. 6 6.若x ,y ∈R ,且⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x ,则z =x +2y 的最小值等于( )A .2B .3C .5D .97. 已知圆C :的圆心为抛物线 的焦点,直线3x +4y +2=0与圆 C 相切,则该圆的方程为( ) A . B . C .D .8.右图所示是某一容器的三视图,现向容器中匀速注水, 容器中水面的高度h 随时间t 变化的可能图象是( )A .B .C .D .9.已知函数的最小正周期为2,且,则函数的图象向左平移个单位所得图象的函数解析式为( )A . B.C . D.10.已知函数f (x )为奇函数,且当x ≥0时,f (x )=,则f ()=( )A .B .C .D .11.设F 1,F 2是双曲线的左、右焦点,过F 2与双曲线的一条渐近线平行的直线交另一条渐近线于点M ,若点M 在以F 1F 2为直径的圆上,则双曲线的离心率为( ) A. B. C. 2 D..12.若函数在区间内为减函数,在区间为增函数,则实数的取值范围是( ) A. B. C. D. .第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设在的边上,, 若 (为实数),则的值为__________.14.小明通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小明周末不在家看书的概率为__________.15.已知A 、B 、C 是球O 的球面上三点,AB=2,BC=4,且∠ABC=60°,球心到平面ABC 的距离为 , 则球O 的表面积为_________. 16.中,,则的最小值为__________.三.解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知数列是公差不为零的等差数列,,且是的等比中项. (Ⅰ)求数列的通项公式;(Ⅱ)设为数列的前项和,求使成立的所有的值.18.(本小题满分12分)已知四棱锥底面ABCD 是矩形PA ⊥平面ABCD ,AD =2,AB =1, E .F 分别是线段AB ,BC 的中点,(Ⅰ)在PA 上找一点G ,使得EG ∥平面PFD ;.(Ⅱ)若PB 与平面所成的角为,求三棱锥D--EFG 的体积.19.(本小题满分12分)为预防H 7N 9病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定xx 个流感样本分成三组,测试结果如下表:分组 A 组 B 组 C 组 疫苗有效 673 a b 疫苗无效7790c已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是0.33.(I )现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C 组抽取样本多少个? (II )已知b≥465,c ≥30,求通过测试的概率.20(本小题满分12分)已知函数f (x )=,x ∈[1,3], (I )求f (x )的最大值与最小值;(II )若f (x )<4﹣a t 于任意的x ∈[1,3],t ∈[0,2]恒成立,求实数a 的取值范围. 21.(本题满分12分)设椭圆:的左、右焦点分别为,上顶点为A ,以为圆心为半径的圆恰好经过点A 且与直线相切(I )求椭圆C 的方程;(II )过右焦点作斜率为K 的直线与椭圆C 交于M 、N 两点,在x 轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出m 的取值范围,如果不存在,说明理由。

河南省洛阳市2021-2022学年高三上学期第一次统一考试数学(文)试卷

河南省洛阳市2021-2022学年高三上学期第一次统一考试数学(文)试卷

洛阳市2021—2022学年高中三年级第一次统一考试数学试卷(文)本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分。

第1卷1至2页,第Ⅱ卷3至4页.考试时间120分钟。

第I 卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名、考号填写在答题卡上。

2.考试结束,将答题卡交回。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z =sin π3+icos π3,则|z |=A .4B .3C .2D .1 2.已知全集为R ,集合A ={x |-2<x <l},集合B ={x |-x 2+x <0}.则A ∪(∁R B )=A .(-2,1]B .(-1,1]C .(-∞,-2)∪[1,+∞)D .(-∞,0]∪(1,+∞)3.某种游戏棋盘形状如图,已知大正方形的边长为12.每个小正方形的边长均为2.在游戏棋盘上随机取一点,则该点取自小正方形的概率为A .19B .29C .16D .136.4.已知数列{a n }是等差数列,且2a 8-a 812=4.则其前七项和S 7=A .42B .35C .28D .215.已知命题p : x ∈R ,x 2+x +1>0;命题q :若a >b ,则1a <1b.下列命题为真的是A .(¬p )∨q ∧B .(¬p )∧(¬q )C .p )∧qD .p ∨q 6.若右面框图所给的程序运行结果为28,那么判断框中应填入的关于k 的条件是A .k ≥6B .k ≥7C .k ≥8D .k ≥97.若a =(3)23,b =e 13,c =log 3e .则A .a >b >cB .b >a >cC .a >c >bD .c >a >b 8.已知函数f (x )=sin(ωx +2π3)在[-π,π]上的图象如图所示。

则f (x )的最小正周期是 A .3π2B .4π3C .7π6D .2π39.直线x +y +2=0分别与x 轴、y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上运动,则△ABP 面积的最小值为A .6B .4C .2D .4-2 2k =10, S=1 开始S=S+k k =k -1结束输出S 是 否10.如图,AB ,CD 分别是圆柱上、下底面圆的直径,且AB ⊥CD .O 1,O 分别为上、下底面圆心,若圆柱的轴截面为正方形,且三楼锥A -BCD 的体积为43,则该圆柱的侧面积为A .9πB .10πC .12πD .14π11.已知双曲线x 2-y 2=1的左、右焦点分别为F 1,F 2,点A 在双曲线上且AF 1→•AF 2→=0,则△AF 1F 2的内切圆的半径为A .3- 2B .3+ 2C .3+1D .3-1.12.已知函数f (x )=ln x ,g (x )=x -sin x ,若存在x 1,x 2∈[1,π](x 1≠x 2)使得|f (x 1)-f (x 2)|<k |g (x 1)-g (x 2)|成立.则实数k 的取值范围是 A .(11-cos l ,12π) B .(0,12π)C .(12π,+∞)D .(11-cos l,+∞)第Ⅱ卷(非选择题,共90分)二、填空题:本大题共1小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市石景山区 年 高 三 统 一 测 试数学试题(文科)考生须知: 1.本试卷为闭卷考试,满分150分,考试时间为120分钟。

2.本试卷各题答案均答在本题规定的位置。

第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数21i +等于 ( )A .2i -B .2iC .1i -D .1i + 2.已知命题:,2p x R x ∀∈≥,那么命题p ⌝为( )A .,2x R x ∀∈≤B .,2x R x ∀∈≤C .2,-≤∈∀x R xD .2,-<∈∀x R x3.已知平面向量)2,1(=a ,m b a m b 则且,//),,2(-=的值为( )A .1B .-1C .4D .-44.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:㎝2)为 ( )A .80B .60C .40D .205.经过点P (2,-3)作圆25)1(22=++y x 的弦AB ,使点P 为弦AB 的中点,则弦AB所在直线方程为( )A .05=--y xB .05=+-y xC .05=++y xD .05=-+y x6.已知程序框图如图所示,则该程序框图的功能 是 ( ) A .求数列}1{n 的前10项和)(*N n ∈B .求数列}21{n 的前10项和)(*N n ∈C .求数列}1{n 的前11项和)(*N n ∈D .求数列}21{n的前11项和)(*N n ∈7.已知函数)(x f 的导函数)(x f '的图象如图所示,那么函数)(x f 的图象最有可能的是( )8.已知函数x x f x 2log )31()(-=,正实数c b a ,,是公差为正数的等差数列,且满足0)()()(<⋅⋅c f b f a f 。

若实数d 是方程0)(=x f 的一个解,那么下列四个判断:①a d <;②;b d <③;c d >④c d >中有可能成立的个数为 ( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分。

把答案填在题中横线上。

9.函数)2lg(1x x y -++=的定义域是 。

10.若y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+30030x y x y x ,则y x z -=2的最大值为 。

11.函数x x y 2cos 2sin =的最小正周期是 ,最大值是 。

12.等差数列}{n a 中,1,563=-=a a ,此数列的通项公式为 ,设n S 是数列}{n a 的前n 项和,则8S 等于 。

13.某校从参加高三年级期末考试的学生中抽出60名学生,并统计了他们的历史成绩(成绩 均为整数且满分为100分),把其中不低于 50分的成绩分成五段[)[)]100,90[70,60,60,50 后,画出部分频率分布直方图(如图),那么历史成绩在[)80,70的学生人数为 。

14.在数列}{n a 中,若),,2(,*212为常数p N n n p a a n n ∈≥=--,则称}{n a 为“等方差数列”,下列是对“等方差数列”的判断; ①若}{n a 是等方差数列,则}{2n a 是等差数列; ②})1{(n-是等方差数列;③若}{n a 是等方差数列,则),}({*为常数k N k a kn ∈也是等方差数列;④若}{n a 既是等方差数列,又是等差数列,则该数列为常数列。

其中正确命题序号为 。

(将所有正确的命题序号填在横线上)三、解答题:本大题共6小题,共80分。

解答题应写出文字说明,证明过程或演算步骤。

15.(本题满分13分)在ABC ∆中,角A 、B 、C 所对的边分虽为c b a ,,,且。

C c a 43cos ,2,1===(1)求)sin(B A +的值; (2)求A sin 的值; (3)求⋅的值。

16.(本题满分13分) 为援助汶川灾后重建,对某项工程进行竞标,共有6家企业参与竞标,其中A 企业来自辽宁省,B 、C 两家企业来自福建省,D 、E 、F 三家企业来自河南省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同。

(1)企业E 中标的概率是多少?(2)在中标的企业中,至少有一家来自河南省的概率是多少? 17.(本题满分14分)如图,已知直三棱柱ABC —A 1B 1C 1,4,2,901===︒=∠AA BC AC ACB 。

E 、F 分别是棱CC 1、AB 中点。

(1)求证:1BB CF ⊥;(2)求四棱锥A —ECBB 1的体积;(3)判断直线CF 和平面AEB 1的位置关系,并加以证明。

18.(本题满分13分)在数列}{n a 中,),2(22,3*11N n n n a a a n n ∈≥-+==-且(1)求32,a a 的值;(2)证明:数列}{n a n +是等比数列,并求}{n a 的通项公式; (3)求数列n n S n a 项和的前}{。

19.(本题满分14分)已知椭圆)0(12222>>=+b a by a x 的离心率为36,长轴长为32,直线mkx y l +=:交椭圆于不同的两点A 、B 。

(1)求椭圆的方程;(2)求k m 求且,0,1=⋅=的值(O 点为坐标原点); (3)若坐标原点O 到直线l 的距离为23,求AOB ∆面积的最大值。

20.(本题满分13分)已知函数),(3)(23R b a x bx ax x f ∈-+=,在点))1(,1(f 处的切线方程为.02=+y(1)求函数)(x f 的解析式;(2)若对于区间]2,2[-上任意两个自变量的值21,x x ,都有c x f x f ≤-|)()(|21,求实数c 的最小值。

(3)若过点)2)(,2(≠m m M ,可作曲线)(x f y =的三条切线,求实数m 的取值范围。

参考答案一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1—5CBDAA 6—8BAC二、填空题:本大题共6小题,每小题5分,共30分。

把答案填在题中横线上。

9.[)21,- 10.9 11.212,π 12.112-=n a n ,-1613.1814.①②③④ 注:一题两空的第1个空3分,第2个空2分。

三、解答题:本大题共6小题,共80分。

解答题应写出文字说明、证明过程或演算步骤。

15.(本题满分13分) 解:(1)ABC ∆在 中,C B A -=+πC C B A sin )sin()sin(=-=+∴π又43cos =C ,20π<<∴C ,.47cos 1sin 2=-=∴C C.47)sin(=+∴B A 3分 (2)由正弦定得得.sin sin CcA a =.8142471sin sin =⨯==∴cCa A 8分(2)由余弦定理得C ab b a c cos 2222-+= 43121)2(222⨯⨯⨯-+=∴b b ,则02322=--b b解得212-==b b 或(舍) 11分.234321cos ||||=⨯⨯=⨯⋅=⋅∴C 13分 16.(本题满分13分)解:(1)从这6家企业中选出2家的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共有15种 4分 其中企业E 中标的选法有(A ,E ),(B ,E ),(C ,E ),(D ,E ),(E ,F )共5种 7分则企业 E 中标的概率为31155= 8分 (2)解法一:在中标的企业中,至少有一家来自河南省选法有 (A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共12种 12分 则“在中标的企业中,至少有一家来自河南省”的概率为 541512= 13分解法二:在中标的企业中,没有来自河南省选法有:(A ,B ),(A ,C ),(B ,C )共3种 11分∴“在中标的企业中,没有来自河南省”概率为51153= 12分∴“在中标的企业中,至少有一家来自河南省”的概率为.54511=- 13分17.(本题满分14分)(1)证明: 三棱柱ABC —A 1B 1C 1是直棱柱, ⊥∴1BB 平面ABC 1分又⊂CF 平面ABC , 2分1BB CF ⊥∴ 3分(2)解: 三棱柱ABC —A 1B 1C 1是直棱柱, ⊥∴1BB 平面ABC ,又⊂AC 平面ABC1BB AC ⊥∴︒=∠90ACB BC AC ⊥∴ .1B BC BB =⋂⊥∴AC 平面ECBB 1 6分AC S V SCBB ECBB A ⋅=∴-11317分E 是棱CC 1的中点,2211==∴AA EC62)42(21)(2111+⨯+⨯=⋅+=∴BC BB EC S ECBB 8分.426313111=⨯⨯=⋅=∴-AC S V ECBB ECBB A 9分 (3)解:CF//平面AEB 1,证明如下:取AB 1的中点G ,联结EG ,FG G F , 分别是棱AB 、AB 1中点.21,//11BB FG BB FG =∴ 又.21,//11BB EC BB EC =EC FG EC FG =∴,//∴四边形FGEC 是平行四边形 11分.//EG CF ∴ 12分 又⊄CF 平面AEB ,⊂EG 平面AEB 1, 13分 //CF ∴平面AEB 1。

18.(本题满分13分)(1)解:),2(22,3*11N n n n a a a n n ∈≥-+==-且.622212=-+=∴a a 2分.1323223=-+=a a 4分(2)证明:.212221)22()1(11111=-+-+=-++-+=-++-----n a n a n a n n a n a n a n n n n n n}{n a n +∴数列是首项为411=+a ,公比为2的等比数列。

7分11224+-=⋅=+∴n n n n a ,即,21n a n n -=+}{n a ∴的通项公式为)(2*1N n n a n n ∈-=+ 9分(3)解: }{n a 的通项公式为)(2*1N n n a n n ∈-=+)321()2222(1432n S n n ++++-+++=∴+ 11分.2822)1(21)21(2222++-=+⨯---⨯=+n n n n n n 13分19.(本题满分14分) 解:(1)设椭圆的半焦距为c ,依题意⎪⎩⎪⎨⎧==3,36a a c解得2=c由.1,222=+=b c b a 得 2分∴所求椭圆方程为.1322=+y x 3分(2).1,1+=∴=kx y m设),(),,(2211y x B y x A ,其坐标满足方程⎪⎩⎪⎨⎧+==+11322kx y y x消去y 并整理得,06)31(22=++kx x k则00)31(4)6(22>⨯+-=∆k k , 解得0≠k 5分 故0,31621221=⋅+-=+x x k kx x 6分0=⋅1)()1()1()1(2121221212121++++=+⋅++=+∴x x k x x k kx kx x x y y x x 7分0133113160)1(2222=+-=++-⋅+⨯+=k k k k k k33±=∴k 8分 (3)由已知231||2=+k m ,可得)1(4322+=k m 9分将y m kx +=代入椭圆方程,整理得.0336)31(222=-+++m kmkx x k(*)0)33)(31(4)6(222>-+-=∆m k km.3133,3162221221km x x k km x x +-=⋅+-=+∴ 10分]13)1(12)13(36)[1())(1(2|2222222122|+--+-=-+=∴k m k m k k x x k AB22222222)13()19)(1(3)13()13)(1(12+++=+-++=k k k k m k k 11分)0(463212361912316912322242≠=+⨯+≤+++=+++=k kk k k k 12分当且仅当2219k k =,即33±=k 时等号成立,经检验,33±=k 满足(*)式 当0=k 时,3|=AB 13分综上可知.2||max =AB∴当|AB 最大时,AOB ∆的面积最大值2323221=⨯⨯=S 14分 20.(本题满分13分)解:(1)323)(2-+='bx ax x f 1分根据题意,得⎩⎨⎧='-=,0)1(,2)1(f f即⎩⎨⎧=-+-=-+,0323,23b a b a解得⎩⎨⎧==.0,1b a 2分.3)(3x x x f -=∴ 3分(2)令33)(2-='x x f 即0332=-x ,解得1±=xx -2 )1,2(-- -1(-1,1) 1 (1,2) 2 ()f x ' + 0 - 0 + )(x f-2极大值极小值2(1)2,(1)2f f -==-[2,2]x ∴∈-当时,max min ()2,() 2.f x f x ==-则对于区间[-2,2]上任意两个自变量的值12,x x ,都有12max min |()()||()()|4f x f x f x f x -≤-=所以 4.c ≥所以c 的最小值为4。

相关文档
最新文档