一次函数知识点归纳与常见题型
初中数学一次函数学霸笔记
初中数学一次函数学霸笔记一、知识点总结1. 一次函数的概念:形如y=kx+b(k≠0,k、b为常数)的函数称为一次函数。
2. 一次函数的解析式有三种求法:(1)代入法(适用于已知数据求解析式)。
(2)加减消元法(适用于两个形如y=kx+b(k≠0)的函数相加减,再化为一般形式)。
(3)乘法法则(适用于已知某两个变量之间的函数关系求解析式)。
3. 确定一次函数的解析式需要注意:①k≠0;②b为直线与y轴交点的纵坐标;③k、b为常数,与自变量和整数无关;④图像性质:直线上升、下降。
二、考点总结考点1 根据条件确定一次函数解析式题型以选择题、填空题为主。
所给条件通常为表格、实际问题或具体数据,确定解析式的方法有三种:代入法、加减消元法、乘法法则。
解题时要注意分析自变量与函数的关系,确定函数类型。
例1 一次函数y=kx+b中,y随x的增大而减小,且图像与y轴交于正半轴,由此可以判断k和b的符号为( )。
A. k为负数,b为正数B. k、b均为负数C. k为正数,b为负数D. k、b均为正数解:由图像的性质可知,k<0;又因为图像与y轴交于正半轴,所以b>0。
故选A。
考点2 一次函数的性质解题时要抓住“k”、“b”的符号判断其增减性,但一定要注意分析一次函数所表示的意义。
当k>0时,直线必经过一、三象限,图像上升;当k<0时,直线必经过二、四象限,图像下降;当b>0时,图像与y轴交于正半轴;当b=0时,直线与y轴重合;当b<0时,直线与y轴交于负半轴。
例2 已知一次函数的图像经过A(2,3),B(4,5)两点,求这个函数的解析式。
解:设一次函数的解析式为y=kx+b(k≠0)。
将A(2,3),B(4,5)代入得方程组:解得:k=2,b=1。
所以这个函数的解析式为y=2x+1。
考点3 求一次函数图像上某点的坐标问题解题时要注意分析该点在直线上还是在直线上下运动中得到的,以免漏解。
一次函数经典题型习题精华含答案
一次函数经典题型习题精华含答案一、线性方程的基本概念在数学中,一次函数又称为线性函数,是最基本的一类函数。
一次函数的标准形式可以表示为:y = kx + b,其中k和b分别表示斜率和截距。
二、一次函数的图像与性质1. 斜率的意义斜率k表示了函数图像在坐标平面上的倾斜程度。
斜率越大,函数图像越陡峭;斜率为负值时,函数图像下降;斜率为正值时,函数图像上升。
2. 截距的意义截距b表示了函数图像与y轴的交点。
当x = 0时,y = b,因此截距实际上就是函数图像与y轴的交点的y坐标值。
3. 函数图像的性质一次函数的图像是一条直线,其性质包括:经过点(0,b)、斜率为k。
三、一次函数的常见题型及解答1. 求斜率题目:已知一次函数y = 2x - 3,求其斜率。
解答:根据一次函数的标准形式,可知该函数的斜率为2。
2. 求截距题目:已知一次函数y = 3x + 4,求其截距。
解答:根据一次函数的标准形式,可知该函数的截距为4。
3. 求函数图像上某点的坐标题目:已知一次函数y = 2x + 1,求其图像上x = 3处的点的坐标。
解答:将x = 3代入函数中,可得到y = 2 * 3 + 1 = 7,因此该点的坐标为(3, 7)。
4. 求函数图像与坐标轴的交点题目:已知一次函数y = -2x + 5,请求函数图像与x轴和y轴的交点坐标。
解答:与x轴的交点:当y = 0时,-2x + 5 = 0,解得x = 2.5。
因此,与x 轴的交点坐标为(2.5, 0)。
与y轴的交点:当x = 0时,y = 5。
因此,与y轴的交点坐标为(0, 5)。
5. 求函数图像的斜率和截距题目:已知函数图像经过点(2, 7)和(4, 9),求该一次函数的斜率和截距。
解答:首先利用两点坐标求斜率:k = (9 - 7) / (4 - 2) = 2 / 2 = 1。
接下来,选择其中一点代入斜率k和函数形式求截距:7 = k * 2 + b,带入斜率和已知点的坐标,可求得b = 5。
一次函数解方程知识点总结
一次函数解方程知识点总结一次函数是指函数的形式为y=ax+b的函数,其中a和b为常数且a不等于0。
一次函数解方程是指求解形式为ax+b=0的一次方程,其中a和b为已知的常数,x为未知数。
一次函数解方程的基本思想是通过移项、合并同类项、对等式两边进行相反运算等方法,使得方程的未知数x的系数化为1,从而求解出x的值。
下面将详细介绍一次函数解方程的基本步骤、方法和常见题型。
一、基本步骤1. 移项:将方程中所有含有未知数x的项移到等式的一边,将常数项移到等式的另一边。
注意,移项时要保持等式两边的平衡,不改变等式的值。
2. 合并同类项:将移项后的同类项进行合并,化简方程。
3. 求解未知数:通过对等式两边进行相反运算,使得未知数x的系数化为1,从而求解出x的值。
二、方法1. 加减法法:通过加减法将方程中的多项式进行合并,化简方程,最终求解出x的值。
2. 乘除法法:通过乘除法将方程中的系数进行变形,从而化简方程,最终求解出x的值。
3. 通解法:当一次函数解方程有多组解时,可使用通解法求出所有解的形式表示。
4. 检验法:在得到x的值后,将x代入原方程进行检验,以确认所得的x是否为方程的解。
5. 方程有两个未知数时,需用两个方程一起求解。
比如连个方程是a * x +b * y = cd * x +e * y = f6. 方程组方法:将两个一次方程联立起来成为一个方程组,通过消元法解方程组以求出未知数的值。
三、常见题型1. 类型一:一次方程的基本形式,如ax+b=0。
例题:求解方程2x-5=0的解。
解答:移项得2x=5,再除以2得x=5/2,所以方程的解为x=5/2。
2. 类型二:一次方程的变形形式,如ax+b=c例题:求解方程3x+7=10的解。
解答:移项得3x=10-7,再化简得3x=3,再除以3得x=1,所以方程的解为x=1。
3. 类型三:带有括号的一次方程,如ax+(b+c)x=d例题:求解方程2(x+3)=5的解。
一次函数的题型及解题方法
一次函数的题型及解题方法
一次函数是数学中常见的一种函数,其形式为 y = kx + b,其中 k 和 b 是
常数,且k ≠ 0。
一次函数在日常生活和科学研究中有着广泛的应用。
一次函数常见的题型包括:
1. 一次函数的图像和性质:这类题目通常要求我们根据给定的k 和b 的值,画出函数的图像,并分析函数的增减性、与坐标轴的交点等性质。
2. 一次函数的解析式:这类题目通常给出一个一次函数的图像或一些点的坐标,要求我们求出函数的解析式。
3. 一次函数的应用题:这类题目通常涉及到生活中的实际问题,如路程、速度、时间等问题,要求我们根据题意建立一次函数模型,并求解。
解题方法:
1. 对于一次函数的图像和性质,我们可以先根据 k 和 b 的值计算出函数的
表达式,然后根据函数的表达式分析其图像和性质。
2. 对于求一次函数的解析式,我们可以使用待定系数法或两点式等方法求解。
3. 对于一次函数的应用题,我们需要仔细审题,理解题意,然后根据题意建立一次函数模型,最后求解模型得出答案。
下面是一个具体的例子:
题目:已知直线 y = kx + b 与 x 轴、y 轴的交点分别为 A(-3,0) 和 B(0,2),求该直线的解析式。
解题方法:
1. 首先,我们可以将点 A(-3,0) 和 B(0,2) 的坐标代入到直线方程 y = kx +
b 中,得到两个方程:
-3k + b = 0
b = 2
2. 解这个方程组,我们可以得到 k = 2/3 和 b = 2。
3. 因此,该直线的解析式为 y = 2x/3 + 2。
一次函数的应用(知识点+例题)
1.(2013•鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).一次函数的应用知识点一:一次函数与坐标轴交点和面积问题1:交点问题一次函数b kx y +=的图象是经过(0,b )和(-kb,0)两点。
【典型例题】1.直线y=-x+2与x 轴的交点坐标是 ,与y 轴的交点坐标是 2.直线y=-x -1与x 轴的交点坐标是 ,与y 轴的交点坐标是 3.函数y=x+1与x 轴交点为( )A .(0,-1)B .(1,0)C .(0,1)D .(-1,0)4.直线y=-32x+3与x 轴、y 轴所围成的三角形的面积为( ) A .3 B .6 C .34 D .325.直线y=-2x-4交x 轴、y 轴于点A 、B ,O 为坐标原点,则S △AOB = 。
6.若直线y=3x+b 与两坐标轴所围成的三角形的面积是6个单位,则b 的值是 。
7.如图所示,已知直线y=kx-2经过M 点,求此直线与x 轴交点坐标和直线与两坐标轴围成三角形的面积.2:面积问题面积:一次函数y=kx+b 与x 、y 轴所交的两点与原点组成的三角形的面积为2b k(1):两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解。
(2):复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形)。
(3):往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高。
1. 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。
考点10一次函数(解析版)
第四章一次函数考点类型大总结【知识点及考点类型梳理】一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数. 3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-bk,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0,b >0一、二、三y 随x 的增大而增大k >0,b <0一、三、四y =kx +b (k ≠0)k <0,b >0一、二、四y 随x 的增大而减小k <0,b <0二、三、四3.k ,b 的符号与直线y =kx +b (k ≠0)的关系在直线y =kx +b (k ≠0)中,令y =0,则x =-b k ,即直线y =kx +b 与x 轴交于(–bk,0).①当–bk>0时,即k ,b 异号时,直线与x 轴交于正半轴.②当–bk=0,即b =0时,直线经过原点.③当–bk<0,即k ,b 同号时,直线与x 轴交于负半轴.4.两直线y =k 1x +b 1(k 1≠0)与y =k 2x +b 2(k 2≠0)的位置关系:①当k 1=k 2,b 1≠b 2,两直线平行;②当k 1=k 2,b 1=b 2,两直线重合;③当k 1≠k 2,b 1=b 2,两直线交于y 轴上一点;④当k 1·k 2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y =kx (k ≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k 的一元一次方程.(3)解方程,求出待定系数k .(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx +ny =p (m ,n ,p 是常数,且m ≠0,n ≠0)都能写成y =ax +b (a ,b 为常数,且a ≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.七、一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.考点类型一、一次函数与正比例函数的定义1.在下列函数中:①8y x =-;②312y x =+;③1y =;④285y x =-+;⑤0.51y x =--,一次函数有()A .1个B .2个C .3个D .4个【答案】C 【分析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数,据此进行判断即可.【详解】解:①8y x =-属于一次函数;②312y x =+属于一次函数;③1y =不属于一次函数;④285y x =-+属于二次函数;⑤0.51y x =--属于一次函数;∴一次函数有3个,故选:C .2.下列问题中,两个变量之间是正比例函数关系的是()A .汽车以80km/h 的速度匀速行驶,行驶路程(km)y 与行驶时间(h)x 之间的关系B .圆的面积()2cm y 与它的半径(cm)x 之间的关系C .某水池有水315m ,现打开进水管进水,进水速度35m /h ,h x 后水池有水3m yD .有一个边长为x 的正方体,则它的表面积S 与边长x 之间的函数关系【答案】A 【分析】根据正比例函数的定义逐个判断即可求解【详解】选项A:y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意;选项B:2y x π=属于二次函数,两个变量之间不是成正比例函数关系,不合题意;选项C:y=15+5x ,属于一次函数,两个变量之间不是成正比例函数关系,不合题意;选项D:S=6x 2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;故选:A 【点睛】本题考查正比例函数的定义,正确理解正比例函数的定义是关键3.在①8y x =-;②8y x=-;③1y =;④286y x =-+;⑤0.51y x =--,一次函数有()A .1个B .2个C .3个D .4个【答案】B 【分析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数,据此进行判断即可.【详解】解:①y =-8x 属于一次函数;②y =8x-属于反比例函数;③y不属于一次函数;④y =-8x 2+6属于二次函数;⑤y =-0.5x -1属于一次函数,∴一次函数有2个,故选:B .举一反三4.下列函数中是一次函数的是()A .y =2x B .2y x=C .y =x 2D .y =kx +b (k ,b 为常数)【答案】A 【分析】利用一次函数定义进行解答即可.【详解】解:A 、y =2x是一次函数,故此选项符合题意;B 、y =2x是反比例函数,不是一次函数,故此选项不合题意;C 、y =x 2是二次函数,故此选项不符合题意;D 、当k =0时,y =kx +b (k ,b 为常数)不是一次函数,故此选项不合题意;故选:A .5.下列函数是正比例函数的是()A .2x y =B .2y x=C .2y x =D .2(1)y x =+【答案】A 【分析】根据用x 表示成y 的函数后,若符合()0y kx k =≠的形式,是正比例函数解答即可.【详解】A 、2xy =是正比例函数;B 、2y x=是反比例函数;C 、2y x =是二次函数;D 、()21y x =+是一次函数.故选:A .考点类型二、一次函数的图像6.函数2y x =-的图象经过的象限是()A .第一,二,三象限B .第一,二,四象限C .第一,三,四象限D .第二,三,四象限【答案】C【分析】根据一次函数k=1>0,b=-2<0,即可得到答案.【详解】y x=-中,k=1>0,b=-2<0,解:∵函数2y x=-的图象经过的象限是:第一,三,四象限,∴2故选C.【点睛】本题主要考查一次函数图像所经过的象限,掌握一次函数图像与一次函数中的系数k,b的关系,是解题的关键.7.若一次函数y=(k﹣2)x+1的函数值y随x的增大而减小,则()A.k<2B.k>2C.k<0D.k>0【答案】A【分析】根据一次函数的性质,可得答案.【详解】解:由题意,得k-2<0,解得k<2,故选:A.【点睛】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大,当k<0时,函数值y随x 的增大而减小.8.若一次函数的y=kx+b(k<0)图象上有两点A(﹣2,y1)、B(1,y2),则下列y大小关系正确的是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【答案】B【分析】首先观察一次函数的x项的系数,当x项的系数大于0,则一次函数随着x的增大而增大,当x小于0,则一次函数随着x的减小而增大.因此只需要比较A、B点的横坐标即可.【详解】解:根据一次函数的解析式y =kx +b (k <0)可得此一次函数随着x 的增大而减小因为A (﹣2,y 1)、B (1,y 2),根据-2<1,可得12y y >故选B .9.已知直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,则1m ______2m 【答案】>【分析】根据一次函数增减性可得,k <0,y 随x 的增大而减小,k >0,y 随x 的增大而增大即可判断得出答案.【详解】解:∵直线的解析式为32y x b=-+∴k <0∴y 随x 的增大而减小∵直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,21-<-∴12m m >故答案为:>.10.在一次函数23y x =-+中,当05x ≤≤时,y 的最小值为________.【答案】-7【分析】根据一次函数的性质得y 随x 的增大而减小,则当x =5时,y 有最小值,然后计算x =-5时的函数值即可.【详解】解:∵k =-2<0,∴y 随x 的增大而减小,∴当x =5时,y 有最小值,把x =5代入y =-2x +3得y =-10+3=-7.故答案为:-7.11.关于一次函数y =﹣2x +4,下列结论正确的是()A .图象过点(0,-2)B .图象经过一、三、四象限C.y随x的增大而增大D.图象与x轴交于点(2,0)【答案】D【分析】根据一次函数的性质对各项进行逐一判断即可.【详解】A、当x=0时,y=4,过点(0,4),故A选项错误;B、因为k=-2<0,图象经过第一、二、四象限,故B错误;C、因为k=-2<0,y随x的增大而减小,故C错误;D、当y=0时,x=2,即图象与x轴交于点(2,0),故D正确.故选:D12.下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn<0)图象的是()A.B.C.D.【答案】B解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y =mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n 的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n 的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n 的图象经过第一、二、四象限;故本选项错误;故选:B .【点睛】本题综合考查了正比例函数、一次函数图象与系数的关系.解题的关键是掌握一次函数(0)y kx b k =+≠的图象有四种情况:①当0k >,0b >,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象限.13.一次函数52y x =-的图象过点()11,x y ,()()12131,,2,x y x y ++,则()A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】A 【分析】先根据一次函数的解析式判断出函数的增减性,再根据x 1<x 1+1<x 1+2即可得出结论.【详解】解:∵一次函数52y x =-中,k =5>0,∴y 随着x 的增大而增大.∵一次函数52y x =-的图象过点()11,x y ,()()12131,,2,x y x y ++,且x 1<x 1+1<x 1+2,∴123y y y <<,故选:A .14.若直线y =kx +b 不经过第一象限,则()A .k >0,b <0B .k <0,b ≤0C .k <0,b ≥0D .k <0,b >0【答案】B 【分析】由题意,结合一次函数图象特点,直线必过第二、三、四象限或经过原点和第二、四象限,由此讨论求解即可.【详解】解:由直线y kx b =+不经过第一象限,可分两种情况:当直线经过第二、三、四象限时,∵直线必过第二、四象限,∴k <0,∵直线还经过第三象限,即直线与y 轴的交点在y 轴的负半轴,∴b <0;当直线经过原点和第二、四象限时,k <0,b =0,综上,k <0,b ≤0,故选:B .【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数的图象在直角坐标系中的位置与系数k 、b 的关系是解答的关键.15.将直线23y x =-向上平移2个单位长度,所得的直线解析式为________.【答案】y =2x -1【分析】根据k 值不变,b 值加2可得出答案.【详解】解:平移后的解析式为:y =2x -3+2=2x -1.故答案为:y =2x -1.【点睛】本题考查的是关于一次函数的图象与它平移后图象的变换的题目,在解题过程中只要抓住平移后直线方程的斜率不变这一性质,就能很容易解答了.16.在平面直角坐标系中,要得到函数y =2x ﹣1的图象,只需要将函数y =2x 的图象()A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位【答案】B【分析】根据“上加下减”的原则写出新直线解析式.【详解】解:由“上加下减”的原则可知,将函数2y x =的图象向下平移1个单位长度所得函数的解析式为21y x =-.故选:B .【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.17.点P (a ,b )在函数3y x =的图象上,则代数式622021a b -+的值等于_________.【答案】2021.【分析】把点P 的坐标代入一次函数解析式,得出3b a =,将3b a =代入622021a b -+中计算即可.【详解】解:∵点P (a ,b )在函数3y x =的图象上,∴3b a =,∴62202162320212021a b a a -+=-+= 故答案为:2021.【点睛】本题主要考查了一次函数的图像性质,结合代数式求值是解题的关键.18.已知函数y 1=(m +1)x ﹣m 2+1(m 是常数).(1)m 为何值时,y 1随x 的增大而减小;(2)m 满足什么条件时,该函数是正比例函数?(3)若该函数的图象与另一个函数y 2=x +n (n 是常数)的图象相交于点(m ,3),求这两个函数的图象与y 轴围成的三角形的面积.【答案】(1)m <﹣1;(2)m =1;(3)4【分析】(1)根据题意10+<m ,解得即可;(2)根据正比例函数的定义得到10m +≠,210m -+=,解得1m =;(3)由函数()2111y m x m =+-+经过点(),3m 求得2m =,得到交点为()2,3,根据交点坐标求得函数1y 的解析式,即可求得与y 轴的交点坐标,把交点坐标代入2y x n =+,求得解析式,即可求得与y 轴的交点坐标,然后根据三角形面积公式即可求得两个函数的图象与y 轴围成的三角形的面积.【详解】解:(1)由题意:10+<m ,1m ∴<-,即1m <-时,1y 随x 的增大而减小;(2)若该函数是正比例数,则10m +≠,210m -+=,1m ∴=,即1m =时,该函数是正比例数;(3) 两个的图象相交于点(),3m ,()2113m m m ∴+-+=,2m ∴=,∴交点坐标为()2,3,∴该点到y 轴的距离为2,将2m =代入()2111y m x m =+-+,得:133y x =-,将交点坐标()2,3代入2y x n =+,得:1n =,21y x ∴=+,∴两个函数图象与y 轴的交点坐标分别为()0,3-和()0,1,∴所围成的三角形的面积为:()13224--⨯÷=⎡⎤⎣⎦.【点睛】本题考查了一次函数的性质,一次函数图象上点的坐标特征,正比例函数的定义,一次函数图象与系数的关系,三角形的面积等,熟练掌握一次函数的性质以及求得交点坐标是解题的关键.考点类型三、求一次函数表达式19.已知3y +与x 成正比例,且2x =时,1y =.求y 关于x 的函数表达式;【答案】y 关于x 的函数表达式为23y x =-.【分析】设3y kx +=(0k ≠),再把2x =,1y =代入求出y 关于x 的关系式即可.【详解】设3y kx +=(k 是常数且0k ≠),把2x =,1y =代入,得132k +=,解得2k =,所以32y x +=,所以y 关于x 的函数表达式为23y x =-.【点睛】本题考查正比例函数的定义,根据题意求出k 的值是解题的关键.20.已知y ﹣2与x +1成正比例,且x =2时,y =8(1)写出y 与x 之间的函数关系式;(2)当x =﹣4时,求y 的值.【答案】(1)y =2x +4,(2)-4【分析】(1)设y ﹣2=k (x +1)(k 为常数,k≠0),把x =2,y =8代入求出k 即可;(2)把x =﹣4代入y =2x +4计算即可求出答案.【详解】解:(1)∵y ﹣2与x +1成正比例,∴设y ﹣2=k (x +1)(k 为常数,k≠0),把x =2,y =8代入得:8﹣2=k (2+1),解得:k =2,即y ﹣2=2(x +1),即y =2x +4,∴y 与x 之间的函数关系式是y =2x +4;(2)当x =﹣4时,y =2×(﹣4)+4=﹣4.21.某物流公司引进A 、B 两种机器人用来搬运某种货物.这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象,根据图象提供的信息,解答下列问题:(1)P 点的含义是;(2)求y B 关于x 的函数解析式;(3)如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了多少千克?【答案】(1)A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克;(2)y =90x ﹣90(1≤x ≤6);(3)如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了150千克【分析】(1)观察函数图象,根据点P 为线段OG 、EF 的交点结合题意即可找出点P 的含义;(2)根据点E 、P 的坐标利用待定系数法即可求出y B 关于x 的函数解析式;(3)根据工作总量=工作效率×工作时间,分别求出A 、B 两种机器人连续运5小时的云货量,二者做差即可得出结论.【详解】解:(1)P 点的含义是:A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克.故答案为:A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克.(2)设y B 关于x 的函数解析式为y B =kx +b ,将(1,0)、(3,180)代入y B =kx +b ,03180k b k b +=⎧⎨+=⎩,解得:9090k b =⎧⎨=-⎩,∴y B 关于x 的函数解析式为y =90x ﹣90(1≤x ≤6).(3)连续工作5小时,A 种机器人的搬运量为(180÷3)×5=300(千克),连续工作5小时,B 种机器人的搬运量为[180÷(3﹣1)]×5=450(千克),B 种机器人比A 种机器人多搬运了450﹣300=150(千克).答:如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了150千克.22.如图,在平面直角坐标系中,一次函数y kx b =+的图象与x 轴、y 轴分别交于A ,B 两点,且经过点()2,6D -,与正比例函数3y x =的图象相交于点C ,点C 的横坐标为1.(1)求一次函数y kx b =+的解析式(2)求BOC 的面积【答案】(1)4y x =-+;(2)2【分析】(1)求出点C 的坐标,将,C D 坐标代入到y kx b =+中,求出即可;(2)求出点B 的坐标,根据三角形的面积公式即可求出;【详解】解:(1)当1x =时,3y =设直线y kx b =+过()()1,32,6-,∴623k b k b=-+⎧⎨=+⎩解得:14k b =-⎧⎨=⎩∴函数解析式为4y x =-+(2)当0x =时,4y =∴14122BOC S =⨯⨯= 考点类型四、一次函数与一元一次方程23.画出函数33y x =-+的图象,根据图象回答下列问题:求方程330x -+=的解【答案】图像见详解;1x =.【分析】利用两点法画出函数的图象,然后令0y =,即直线与x 轴的交点的横坐标就是方程330x -+=的解.【详解】解:∵函数33y x =-+,令0y =,则1x =;令0x =,则3y =,33y x =-+的图像如图所示:由图可知,方程330x -+=的解是1x =;【点睛】本题考查了画一次函数的图像,由图像求一元一次方程的解,解题的关键是掌握一次函数的性质进行解题.考点类型五、一次函数的综合24.如图,在平面直角坐标系中,一次函数6y x =-+的图象与x 轴、y 轴分别交于B 、C 两点,与正比例函数12y x =的图象交于点A .(1)求A 、B 、C 三点的坐标;(2)求OAC 的面积;(3)若动点M 在射线AC 上运动,当OMC 的面积是OAC 的面积的12时,求出此时点M 的坐标.【答案】(1)()4,2A ,()6,0B ,()0,6C ;(2)12;(3)()2,4或()2,8-.【分析】(1)在一次函数6y x =-+中,分别令0y =,0x =,即可求出B 、C 的坐标,再联立一次函数和正比例函数即可求出交点A 的坐标;(2)利用(1)中,找到OC ,A x 的长即可求出OAC 的面积;(3)根据OMC 的面积是OAC 的面积的12时,求出M 的横坐标,再分情况讨论即可找到M 的坐标.【详解】解:(1)∵一次函数6y x =-+的图象与x 轴、y 轴分别交于B 、C 两点,∴令0x =,则6y =,故()0,6C ,令0y =,则6x =,故()6,0B ,而A 为一次函数6y x =-+和正比例函数12y x =图象的交点,联立方程得:612y x y x =-+⎧⎪⎨=⎪⎩,解得:42x y =⎧⎨=⎩,∴A 的坐标为()4,2.故答案为:()4,2A ,()6,0B ,()0,6C .(2)由(1)可知:6OC =,4A x =,∴12OAC A S OC x =⨯⨯△164122=⨯⨯=.故答案为:12.(3)由题意得:12OMC OAC S S =△△11262=⨯=,而116622OMC M M S OC x x =⨯⨯=⨯⨯=△∴2M x =|,∴2M x =±,分情况讨论:①当2M x =时,6264y x =-+=-+=,故此时M 点的坐标为()2,4,②若2M x =-时,6268y x =-+=+=,故此时M 点的坐标为()2,8-,综上,M 点的坐标为()2,4或()2,8-;故答案为:()2,4或()2,8-.25.如图,直线l 分别与x 轴,y 轴相交于点A (5,0),B (0,4),点E (2.5,m )在l 上,直线y =kx +b经过点E ,并与x 轴相交于点F .若EF 将△AOB 分割为左右两部分,且四边形OFEB 与△FEA 的面积之比为3:2,则线段OF 的长为()A .0.5B .1C .1.5D .2【答案】B【分析】利用待定系数法求直线AB 的解析式,然后根据一次函数图象上点的坐标特点求得E 点坐标,从而确定点E 为AB 的中点,从而结合三角形面积比计算求解.【详解】解:设直线AB 的解析式为y kx b =+,将(5,0)A ,(0,4)B 代入,504k b b +=⎧⎨=⎩,解得:454k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为:4y x 45=-+,又 点(2.5,)E m 在AB 上,4 2.5425m ∴=-⨯+=,E ∴点坐标为(2.5,2),又 50 2.52+=,0422+=,∴点E 是线段AB 的中点,FEA FEB S S ∆∆∴=,又 四边形OFEB 与FEA ∆的面积之比为3:2,FBA S ∆∴与AOB S ∆的面积之比为4:5,∴45 AF OA=4 AF∴=,1OF OA AF∴=-=,故选:B.【点睛】本题考查一次函数的应用,掌握待定系数法求函数解析式的步骤,理解一次函数的性质,利用数形结合思想解题是关键.26.如图,已知一次函数y=12x+3的图象与x轴,y轴分别交于A,B两点.点C(4,n)在该函数的图象上,连接OC.(1)直接写出点A,B的坐标;(2)求△OAC的面积.【答案】(1)A(﹣6,0),B(0,3);(2)15【分析】(1)根据一次函数y=12x+3,分别令x=0,y=0即可求出A,B的坐标;(2)根据点C(4,n)在该函数的图象上,将之代入一次函数解析式求出C点的坐标,根据三角形的面积公式即可求得三角形面积.【详解】解:(1)∵一次函数y=12x+3的图象与x轴,y轴分别交于A,B两点,令x=0,则y=3,令y=0,则x=-6,∴A(﹣6,0),B(0,3);(2)把点C (4,n )代入y =12x +3得14352n =⨯+=,∴点C 的坐标为(4,5),∴11651522AOC C S OA y ∆=⨯⨯=⨯=.【点睛】本题考查了一次函数图象上点的坐标特征,三角形的面积的计算,正确的识别图形是解题的关键.27.如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由.【答案】(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OPA 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y S OA P =,列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+∴34k =∴一次函数解析式为364y x =+(2)如图:∵OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形∵()6,0A -∴6OA =∴1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x +=解得132x =-把132x =-代入一次函数364y x =+中,得98y =∴当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为27828.如图,直线AB 的解析式为2y x =+,直线AC 的解析式为4y x =-+,两条直线交于点A ,且分别与x 轴交于点B 、点C .(1)求ABC 的面积;(2)点D 为线段AC 上一点,连接BD ,若BD =D 的坐标.【答案】(1)9ABC S = ;(2)()3,1D .【分析】(1)过点A 作AE x ⊥轴于点E ,联立两直线解析式求交点坐标()1,3A ,可得3AE =,再求直线与x 轴两交点坐标()2,0B -,()4,0C ,可求()426BC =--=,利用三角形面积公式求即可;(2)过点D 作DF x ⊥轴于点F ,设点D 的横坐标为m ,(),4D m m -+,根据勾股定理222BD DF BF =+,即()()22242m m =-+++解方程即可.【详解】解:(1)过点A 作AE x ⊥轴于点E ,由题意联立方程组24y x y x =+⎧⎨=-+⎩,解得:13x y =⎧⎨=⎩,∴()1,3A ,∴3AE =.当0y =时,20x +=,∴2x =-,∴()2,0B -,当0y =时,40x -+=,∴4x =,∴()4,0C ,∴()426BC =--=,∴1163922ABC S BC AE =⋅=⨯⨯=△;(2)过点D 作DF x ⊥轴于点F ,设点D 的横坐标为m ,∵点D 在直线AC 上,∴4y m =-+,∴(),4D m m -+,∴4DF m =-+,∴()22BF m m =--=+,在Rt DBF △中,90DFB ∠=︒,根据勾股定理222BD DF BF =+,∴()()22242m m =-+++,整理得2230m m --=,解得:13m =,21m =-(不合题意,舍去),∴()3,1D .29.如图,在平面直角坐标系中,▱ABCD 各顶点的坐标分别为A (1,﹣1),B (2,﹣3),C (4,﹣3),D(3,﹣1),若直线y =﹣3x +b 与▱ABCD 有交点,则b 的取值范围是()A .3≤b ≤8B .2≤b ≤8C .2≤b ≤9D .﹣3≤b ≤9【答案】C【分析】根据A 、B 的坐标求出直线AB 的解析式,然后与直线3y x b =-+进行比较k 的值,最后进行分析计算即可得到答案.【详解】解:设直线AB 解析式为y mx n=+∵A 点坐标为(1,-1),B 点的坐标为(2,-3)∴132m n m n-=+⎧⎨-=+⎩∴解得21m n =-⎧⎨=⎩∴直线AB 解析式为21y x =-+∵23->-∴直线3y x b =-+的倾斜程度比直线21y x =-+的倾斜程度更厉害即为下图所示的情况时,直线3y x b =-+与平行四边ABCD 有交点当直线3y x b =-+经过A (1,-1)时∴1131b -=-⨯+,解得12b =当直线3y x b =-+经过C (4,-3)时∴2334b -=-⨯+,解得29b =综上所述29b ≤≤故选C.【点睛】本题主要考查了一次函数图像与图形的交点问题,解题的关键在于能够找到临界直线进行求解计算.30.如图,在平面直角坐标系xOy 中,直线AB 与x 轴,y 轴分别交于点30A (,),点04B (,),点D 在y 轴的负半轴上,若将DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)直接写出结果:线段AB 的长__________,点C 的坐标__________;(2)求直线CD 的函数表达式;(3)点P 在直线CD 上,使得2PAC OAB S S = ,求点P 的坐标.【答案】(1)5AB =,()80,C ;(2)直线CD 的函数表达式为364y x =-;(3)P 点坐标为7224,55⎛⎫ ⎪⎝⎭或824,55⎛⎫- ⎪⎝⎭.【分析】(1)运用勾股定理即可求出线段AB 的长;根据折叠得AC AB =,可得点C 的坐标;(2)设点D 的坐标为:()0,m ,而CD BD =,根据222OC OD CD +=,即可求出点D 的坐标,运用待定系数法设直线CD 的表达式为y kx b =+,将点C 、点D 代入即可求出答案;(3))设ACP △边AC 上的高为h ,根据2PAC OAB S S = ,求出h ,即可知道点P 的纵坐标,最后代入直线CD 的函数表示式中,即可求出答案.【详解】解:(1)()3,0A ,()0,4B ,3OA ∴=,4OB =,90AOB ∠=︒Q ,5AB ∴==;由折叠得:5AC AB ==,358OC OA AC ∴=+=+=,∴点C 的坐标为()8,0;故答案为:5AB =,80C (,);(2)设点()0,D m ,则OD m =-,由折叠可知,4CD BD m ==-,在Rt OCD △中,222=+CD OD OC ,()222(4)8m m ∴-=-+,解得:6m =-,0,6D ∴-(),设直线CD 的函数表达式为y kx b =+,将()8,0C 、0,6D -()代入,得806k b b +=⎧⎨=-⎩,解得,34k =,6b =-,∴直线CD 的函数表达式为364y x =-.(3)设ACP △边AC 上的高为h ,则1134622OAB S OA OB =⋅⋅=⨯⨯= ,1522PAC S AC h h =⋅⋅= ,且2PAC OAB S S = ,245h ∴=,因此点P的纵坐标为245或245-,当245y=时,即324645x-=,解得725x=;当245y=-时,即324645x-=-,解得85x=,因此,点P坐标为7224,55⎛⎫⎪⎝⎭或824,55⎛⎫-⎪⎝⎭.【点睛】本题考查了待定系数法求一次函数解析式,折叠的性质,勾股定理,三角形面积公式等.课后巩固1.一次函数y=﹣3x﹣2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】k<0,函数一定经过第二,四象限,b<0,直线与y轴交于负半轴,所以函数图象过第三象限,所以函数图象不过第一象限.【详解】解:∵k=﹣3<0,b=﹣2<0,∴函数的图象不经过第一象限,故选:A.2.一次函数y=﹣2x+b的图象经过点A(2,y1),B(﹣1,y2),则y1与y2的大小关系正确的是()A.y1<y2B.y1>y2C.y1=y2D.无法确定【答案】A【分析】在y=kx+b中,当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大;利用一次函数的增减性进行判断即可.【详解】解:在一次函数y=-2x+b中,。
一次函数易错题压轴题题型归纳及方法
一次函数易错题压轴题题型归纳及方法一次函数易错题压轴题题型归纳及方法一、基础概念梳理1.1 一次函数的定义和性质一次函数是指函数 f(x) = ax + b,其中 a 不等于 0。
其图像为一条直线,斜率为 a,截距为 b。
在直角坐标系中,表现为直线过原点或不过原点。
一次函数的性质包括斜率和截距等。
1.2 一次函数的图像和特征一次函数的图像呈线性关系,表现为直线。
斜率决定了直线的斜率和方向,截距决定了直线和 y 轴的交点。
掌握一次函数的图像和特征是解题的关键。
二、易错题分析2.1 斜率与线性关系易错点:部分学生对斜率的计算和理解存在困难,无法准确求解斜率或理解斜率的意义。
解决方法:要重点训练学生如何计算斜率,以及斜率对线性关系的影响。
可以通过练习题和实例来加深理解。
2.2 截距的求解易错点:学生在求解截距时常常出错,或者无法正确理解截距的含义。
解决方法:通过大量的实例练习,加深学生对截距的理解和运用能力。
可以设计一些生活中的例子来帮助学生理解截距的含义。
2.3 点斜式方程易错点:学生在转化为一般式方程时,容易出错或混淆概念。
解决方法:通过举例和练习,让学生掌握点斜式方程和一般式方程之间的转化,加深对一次函数的理解和掌握能力。
三、高级拓展题3.1 一次函数的应用在生活中,一次函数的应用非常广泛,包括经济学、物理学和工程学等领域。
这些应用题往往涉及到实际问题的建模和解决,需要学生有较强的数学建模和解题能力。
3.2 特殊题型及解法除了基本的一次函数题,还有一些特殊的题型需要引起重视,包括两条直线的关系、两个一次函数的综合运用等。
这些题型需要学生拓展思维,掌握各种解题方法。
四、总结回顾在学习一次函数这一题型时,学生需要注重基本概念的理解和掌握,加强实例练习,培养解题思维,拓展应用能力。
重点关注易错点,并采取有效的方法加以解决,提高学生对一次函数的理解和应用能力。
个人观点及理解对于一次函数的学习和掌握,我认为重在理解和应用。
一次函数的知识点与题型总结.docx
在一个变化过程中只能取同一数值的量。
一次函数的章节的知识整理与题型总结第一节函数一、知识归纳1、变量:在一个变化过程屮可以取不同数值的量。
3、函数的概念:一般地,在某个变化过程中,冇两个变量x 和y,如呆给定 一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是 自变量,y 是因变量。
*判断Y 是否为X 的函数,只要看X 取值确定的吋候,Y 是否有唯一确定 的值与之对应4、 定义域:一个函数的自变量允许取值的范围,叫做这个函数的定义域。
5、 要使函数的解析式有意义(即确定函数定义域的方法)。
(1) 函数的解析式是整式时,自变量可取全体实数; (2) 函数的解析式是分式吋,自变量的取值应使分母壬0; (3) 函数的解析式是二次根式时,自变量的取值应使被开方数N0。
(4) 函数的解析式是三次根式时,自变量的取值应是一切实数。
(5) 对于反映实际问题的函数关系,应使实际问题有意义。
6、 函数的表示方法列表法:一口 了然,使用起来方便,但列出的对应值是有限的,不易 看出口变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数Z 间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
7、 函数的图像:一•般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形, 就是这个函数的图象.2、(2)1660 1400(3)3050例2•函数是研究A.常量Z间的对应关系的C.变量与常量之间对应关系的()B.常量与变量Z间的对应关系的D.变量之间的对应关系的8、描点法画函数图形的一般步骤第一步:列表(表中给出一些口变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数二、经典题型题型考点一求简单的函数关系式,识别自变量与因变量,给定自变量的值,相应地会求出函数的值。
一次函数题型及解题方法
一次函数题型及解题方法考点一、一次函数的图象与性质【方法总结】一次函数的k值决定直线的方向,如果k>0,直线就从左往右上升,y随x的增大而增大;如果k<0,直线就从左往右下降,y随x的增大而减小;而b值决定直线和y轴的交点,如果b>0,则与y轴的正半轴相交;如果b<0,则与y轴交于负半轴;当b=0时,一次函数就变成正比例函数,图象过原点.考点二、确定一次函数的解析式【方法总结】用待定系数法求一次函数的步骤:①设出函数关系式;②把已知条件(自变量与函数的对应值)代入函数关系式中,得到关于待定系数的方程(组);③解方程(组),求出待定系数的值,写出函数关系式.考点三、一次函数与一次方程(组)【方法总结】两个函数图象的交点坐标,既满足其中一个函数的表达式,也满足另一个函数的表达式,求函数图象的交点坐标,就是解这两个函数图象的表达式所组成的方程组的解,讨论图象的交点问题就是讨论方程组解的情况.考点四、一次函数与一元一次不等式补充:方法二,kx+3>0也就是函数y>0,结合图像x轴上方的部分,此时x<2【方法总结】先把已知点的坐标代入求出解析式,然后在解不等式求出解集。
或者利用函数图像分析来解答,函数大于0也就是对应图像中在x轴以上的部分函数,再找出对应的x的取值范围即可。
考点五、一次函数与图形面积问题【方法总结】两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高考点六、一次函数的平移一次函数图象的性质一次函数y=kx+b的图象可由正比例函数y=kx的图象平移得到,b>0,上移b 个单位;b<0,下移|b|个单位.一次函数与方程、方程组及不等式的关系1.y=kx+b与kx+b=02.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.。
(完整版)初中一次函数及相关典型例题
一次函数复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点3 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点4 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k ≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交;当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b=0时,即-kb =0时,直线经过原点; 当k ,b 同号时,即-kb ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限;当k >0,b=0时,图象经过第一、三象限;当b >O ,b <O 时,图象经过第一、三、四象限;当k ﹤O ,b >0时,图象经过第一、二、四象限;当k ﹤O ,b=0时,图象经过第二、四象限;当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系.直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ;当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b .(3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例讲解 基本题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2. [分析] 本题主要考查对一次函数及正比例函数的概念的理解.解:(1)(3)(5)(6)是一次函数,(l )(6)是正比例函数.例2 当m 为何值时,函数y=-(m-2)x 32-m +(m-4)是一次函数?[分析] 某函数是一次函数,除应符合y=kx+b 外,还要注意条件k ≠0. 解:∵函数y=(m-2)x 32-m +(m-4)是一次函数,∴⎩⎨⎧≠--=-,0)2(,132m m ∴m=-2.∴当m=-2时,函数y=(m-2)x 32-m +(m-4)是一次函数.小结 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.基础应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.[分析] (1)弹簧每挂1kg 的物体后,伸长0.5cm ,则挂xkg 的物体后,弹簧的长度y 为(l5+0.5x )cm ,即y=15+0.5x .(2)自变量x 的取值范围就是使函数关系式有意义的x 的值,即0≤x ≤18.(3)由y=15+0.5x 可知,y 是x 的一次函数.解:(l )y=15+0.5x .(2)自变量x 的取值范围是0≤x ≤18.(3)y 是x 的一次函数.学生做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s (千米)与行驶时间t (时)之间的函数关系式是 .老师评一评 研究本题可采用线段图示法,如图11-19所示.火车从乌鲁木齐出发,t 小时所走路程为58t 千米,此时,距离库尔勒的距离为s 千米,故有58t+s=600,所以,s=600-58t .例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.[分析] 本题给出了函数关系式,欲求函数值,但没有直接给出t 的具体值.从题中可以知道,t=0表示中午12时,t=1表示下午1时,则上午10时应表示成t=-2,当t=-2时,M=(-2)3-5×(-2)+100=102(℃).答案:102例5 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.[分析] 由y-3与x 成正比例,则可设y-3=kx ,由x=2,y=7,可求出k ,则可以写出关系式.解:(1)由于y-3与x 成正比例,所以设y-3=kx .把x=2,y=7代入y-3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y-3=2x ,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y =4时,4=2x+3,∴x=21. 学生做一做 已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .老师评一评 由y 与x+1成正比例,可设y 与x 的函数关系式为y=k (x+1).再把x=5,y=12代入,求出k 的值,即可得出y 关于x 的函数关系式. 设y 关于x 的函数关系式为y=k (x+1).∵当x=5时,y=12,∴12=(5+1)k ,∴k=2.∴y 关于x 的函数关系式为y=2x+2.【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M[分析] 本题考查正比例函数的图象和性质,因为当x 1<x 2时,y 1>y 2,说明y 随x 的增大而减小,所以1-2m ﹤O,∴m >21,故正确答案为D 项. 学生做一做 某校办工厂现在的年产值是15万元,计划今后每年增加2万元.(1)写出年产值y (万元)与年数x (年)之间的函数关系式;(2)画出函数的图象;(3)求5年后的产值.老师评一评 (1)年产值y (万元)与年数x (年)之间的函数关系式为y=15+2x .(2)画函数图象时要特别注意到该函数的自变量取值范围为x ≥0,因此,函数y=15+2x 的图象应为一条射线.画函数y=12+5x 的图象如图11-21所示.(3)当x=5时,y =15+2×5=25(万元)∴5年后的产值是25万元.例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式. [分析] 从图象上可以看出,它与x 轴交于点(-1,0),与y 轴交于点(0,-3),代入关系式中,求出k 为即可.解:由图象可知,图象经过点(-1,0)和(0,-3)两点,代入到y=kx+b 中,得⎩⎨⎧+=-+-=,03,0b b k ∴⎩⎨⎧-=-=.3,3b k ∴此函数的表达式为y=-3x-3.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.[分析]图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.解:由题意可设所求函数表达式为y=2x+b,∴图象经过点(2,-1),∴-l=2×2+b.∴b=-5,∴所求一次函数的表达式为y=2x-5.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例8 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?[分析]判断某函数是一次函数,只要符合y=kx+b(k,b中为常数,且k≠0)即可;判断某函数是正比例函数,只要符合y=kx(k为常数,且k ≠0)即可.解:(1)y是x的一次函数.∵y+a与x+b是正比例函数,∴设y+a=k(x+b)(k为常数,且k≠0)整理得y=kx+(kb-a).∵k≠0,k,a,b为常数,∴y=kx+(kb-a)是一次函数.(2)当kb-a=0,即a=kb时,y是x的正比例函数.例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?[分析]这是一道实际生活中的应用题,解题时必须对两种不同的收费方式仔细分析、比较、计算,方可得出正确结论.解:(1)y1=50+0.4x(其中x≥0,且x是整数)y2=0.6x(其中x≥0,且x是整数)(2)∵两种通讯费用相同,∴y 1=y 2,即50+0.4x=0.6x .∴x =250.∴一个月内通话250分时,两种通讯方式的费用相同.(3)当y 1=200时,有200=50+0.4x ,∴x=375(分).∴“全球通”可通话375分.当y 2=200时,有200=0.6x ,∴x=33331(分). ∴“神州行”可通话33331分. ∵375>33331, ∴选择“全球通”较合算.例10 已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.[分析] 由已知y+2与x 成正比例,可设y+2=kx ,把x=-2,y=0代入,可求出k ,这样即可得到y 与x 之间的函数关系式,再根据函数图象及其性质进行分析,点(m ,6)在该函数的图象上,把x=m ,y=6代入即可求出m 的值.解:(1)∵y+2与x 成正比例,∴设y+2=kx (k 是常数,且k ≠0)∵当x=-2时,y=0.∴0+2=k ·(-2),∴k =-1.∴函数关系式为x+2=-x ,即y=-x-2.(2)列表;x0 -2(3)由函数图象可知,当x ≤-2时,y ≥0.∴当x ≤-2时,y ≥0.(4)∵点(m ,6)在该函数的图象上,∴6=-m-2,∴m =-8.(5)函数y=-x-2分别交x 轴、y 轴于A ,B 两点,∴A (-2,0),B (0,-2).∵S △ABP =21·|AP|·|OA|=4, ∴|BP|=428||8==OA . ∴点P 与点B 的距离为4.又∵B 点坐标为(0,-2),且P 在y 轴负半轴上,∴P 点坐标为(0,-6).例11 已知一次函数y=(3-k )x-2k 2+18.(1)k 为何值时,它的图象经过原点?(2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象平行于直线y=-x ?(4)k 为何值时,y 随x 的增大而减小?[分析] 函数图象经过某点,说明该点坐标适合方程;图象与y 轴的交点在y 轴上方,说明常数项b >O ;两函数图象平行,说明一次项系数相等;y 随x 的增大而减小,说明一次项系数小于0.解:(1)图象经过原点,则它是正比例函数.∴⎩⎨⎧≠-=+-,03,01822k k ∴k =-2. ∴当k=-3时,它的图象经过原点. (2)该一次函数的图象经过点(0,-2).∴-2=-2k 2+18,且3-k ≠0,∴k=±10∴当k=±10时,它的图象经过点(0,-2)(3)函数图象平行于直线y=-x ,∴3-k=-1,∴k =4.∴当k =4时,它的图象平行于直线x=-x .(4)∵随x 的增大而减小,∴3-k ﹤O .∴k >3.∴当k >3时,y 随x 的增大而减小.例12 判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.解:设过A ,B 两点的直线的表达式为y=kx+b .由题意可知,⎩⎨⎧+=-+=,02,31b b k ∴⎩⎨⎧-==.2,1b k ∴过A ,B 两点的直线的表达式为y=x-2.∴当x=4时,y=4-2=2.∴点C (4,2)在直线y=x-2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.学生做一做 判断三点A (3,5),B (0,-1),C (1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例13 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x 从0开始逐渐增大时,y=2x+8和y=6x 哪一个的函数值先达到30?这说明了什么?(2)直线y=-x 与y=-x+6的位置关系如何?甲生说:“y=6x 的函数值先达到30,说明y=6x 比y=2x+8的值增长得快.” 乙生说:“直线y=-x 与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?[分析] (1)可先画出这两个函数的图象,从图象中发现,当x >2时,6x >2x+8,所以,y=6x 的函数值先达到30.(2)直线y=-x 与y=-x+6中的一次项系数相同,都是-1,故它们是平行的,所以这两位同学的说法都是正确的.解:这两位同学的说法都正确.例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x ,甲旅行社的收费为y 甲元,乙旅行社的收费为y 乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.[分析] 先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论.解:(1)甲旅行社的收费y 甲(元)与学生人数x 之间的函数关系式为 y 甲=240+21×240x=240+120x. 乙旅行社的收费y 乙(元)与学生人数x 之间的函数关系式为y 乙=240×60%×(x+1)=144x+144.(2)①当y 甲=y 乙时,有240+120x=144x+144,∴24x =96,∴x=4.∴当x=4时,两家旅行社的收费相同,去哪家都可以.②当y 甲>y 乙时,240+120x >144x+144,∴24x <96,∴x <4.∴当x ﹤4时,去乙旅行社更优惠.③当y 甲﹤y 乙时,有240+120x ﹤140x+144,∴24x >96,∴x >4.∴当x >4时,去甲旅行社更优惠.小结 此题的创新之处在于先通过计算进行讨论,再作出决策,另外,这两个函数都是一次函数,利用图象来研究本题也不失为一种很好的方法.学生做一做 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,并写出自变量X 的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由. 老师评一评 先求出两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,再通过比较,探索出结论.(1)甲方案的付款y 甲(元)与所购买的水果量x (千克)之间的函数关系式为y 甲=9x (x ≥3000);乙方案的付款y 乙(元)与所购买的水果量x (千克)之间的函数关系式为y 乙=8x+500O (x ≥3000).(2)有两种解法:解法1:①当y 甲=y 乙时,有9x=8x+5000,∴x=5000.∴当x=5000时,两种方案付款一样,按哪种方案都可以.②当y 甲﹤y 乙时,有9x ﹤8x+5000,∴x <5000.又∵x ≥3000,∴当3000≤x ≤5000时,甲方案付款少,故采用甲方案.③当y 甲>y 乙时,有9x >8x+5000,∴x >5000.∴.当x >500O 时,乙方案付款少,故采用乙方案.解法2:图象法,作出y 甲=9x 和y 乙=8x+5000的函数图象,如图11-24所示,由图象可得:当购买量大于或等于3000千克且小于5000千克时,y 甲﹤y 乙,即选择甲方案付款少;当购买量为5000千克时,y 甲﹥y 乙即两种方案付款一样;当购买量大于5000千克时,y 甲>y 乙,即选择乙方案付款最少.【说明】 图象法是解决问题的重要方法,也是考查学生读图能力的有效途径.例15 一次函数y=kx+b 的自变量x 的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,则这个函数的解析式为 .[分析] 本题分两种情况讨论:①当k >0时,y 随x 的增大而增大,则有:当x=-3,y=-5;当x=6时,y=-2,把它们代入y=kx+b 中可得⎩⎨⎧+=-+-=-,62,35b k b k ∴⎪⎩⎪⎨⎧-==,4,31b k ∴函数解析式为y=-31x-4.②当k ﹤O 时则随x 的增大而减小,则有:当x=-3时,y=-2;当x=6时,y=-5,把它们代入y=kx +b 中可得⎩⎨⎧+=-+-=-,65,32b k b b ∴⎪⎩⎪⎨⎧-=-=,3,31b k ∴函数解析式为y=-31x-3. ∴函数解析式为y=31x-4,或y=-31x-3. 答案:y=31x-4或y=-31x-3. 【注意】 本题充分体现了分类讨论思想,方程思想在一次函数中的应用,切忌考虑问题不全面.中考试题预测例1 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例,当x=20时y=160O ;当x=3O 时,y=200O .(1)求y 与x 之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?[分析] 设举办乒乓球比赛的费用y (元)与租用比赛场地等固定不变的费用b (元)和参加比赛的人数x (人)的函数关系式为y=kx+b (k ≠0).把x=20,y=1600;x=30,y=2000代入函数关系式,求出k ,b 的值,进而求出y 与x 之间的函数关系式,当x=50时,求出y 的值,再求得y ÷50的值即可.解:(1)设y 1=b ,y 2=kx (k ≠0,x >0),∴y=kx+b .又∵当x=20时,y=1600;当x=30时,y=2000,∴⎩⎨⎧+=+=,302000,201600b k b k ∴⎩⎨⎧==.800,40b k∴y 与x 之间的函数关系式为y=40x+800(x >0).(2)当x=50时,y=40×50+800=2800(元).∴每名运动员需支付2800÷50=56(元〕答:每名运动员需支付56元.例2 已知一次函数y=kx+b ,当x=-4时,y 的值为9;当x=2时,y 的值为-3.(1)求这个函数的解析式。
一次函数知识点及分类练习题(绝对经典全面)
一次函数知识点及分类练习题一、一次函数的定义1.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A. 0B. ﹣1C. ±1D. 12.若函数是一次函数,则m的值为( )A. B. -1 C. 1 D. 23.下列函数:①y= x,②y=2x-1,③ ,④y=-x中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个4.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.二、一次函数的性质5.已知一次函数. 若随的增大而增大,则的取值范围是()A. B. C. D.6.已知一次函数的图象经过第二、三、四象限,则的取值范围在数轴上表示为(). A. B.C. D.7.已知(-1,y1),(1.8,y2),(- , y3)是直线y = -3x + m (m 为常数)上的三个点,则y1,y2,y3的大小关系是( )A. y3>y1>y2B. y1>y3>y2C. y1>y2>y3D. y3>y2>y18.下列图象中,哪个是一次函数的大致图象()A. B. C. D.9.在一次函数y=kx+2中,若y随x的增大而增大,则k________0.(填“>”或“<”),它的图象不经过第________象限.10.若点P(-3,),Q(2,)在一次函数的图象上,则与的大小关系是________三、一次函数图像的平移11.直线y=2x+2向下平移4个单位后与x轴的交点坐标是()A. (0,1)B. (0,-1)C. (-1,0)D. (1,0)12、一次函数的图像先向下平移5个单位后再向右平移4个单位,其函数关系式为13、一次函数能过平移后变为y=-5x+6,其平移过程是14.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为________.四、一次函数的求值15.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是( )A. 6或-6B. 6C. -6D. 6或316.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)17.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .18.一次函数y=﹣2x+6的图象与x轴交点坐标是________,与y轴交点坐标是________.19.在一次函数中,随的增大而________(填“增大”或“减小”),当时,y的最小值为________.20.在函数y=﹣3x+7中,如果自变量x大于2,那么函数值y的取值范围是________.五、一次函数的解析式21.已知一次函数的图象过点(3,5) 与(-4, -9),那么这个函数的解析式是________,则该函数的图象与轴交点的坐标为________.22.已知直线经过点﹙1,2﹚和点﹙3,0﹚,这条直线的解析式.23.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求此一次函数的解析式.六、一次函数与方程及不等式的关系24.如图,直线l1的解析式是y=2x-1,直线l2的解析式是y=x+1,则方程组的解是________.25.如图,直线与直线交于P ,则方程组的解是________.26.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.27.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.24题25题26题28.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.七、一次函数的应用29.一次函数y=x+4与坐标轴所围成的三角形的面积为________30、如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为________.31.一个一次函数的图象与直线y=﹣2x+1平行,且经过点(﹣2,﹣6),则这个一次函数的解析式为________.32.某养猪专业户利用一堵砖墙(长度足够)围成一个长方形猪栏,围猪栏的栅栏一共长40m ,设这个长方形的相邻两边的长分别为x (m)和y(m).(1)求y关于x的函数表达式和自变量的取值范围;(2)若长方形猪栏砖墙部分的长度为5m ,求自变量x 的取值范围.33.如图,直线y=kx+6(k≠0)与x轴,y轴分别交于点E,F,点E的坐标为(-8,0),点A 的坐标为(-6,0),点P(x,y)是线段EF上的一个动点(1)求k的值;(2)求点P在运动过程中△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)当△OPA的面积为9时,求点P的坐标.34.如图,在平面直角坐标系中,直线与轴交于点A,直线与轴交于点B,与直线y=2x+3交于点C(-1,n).(1)求n、k的值;(2)求△ABC的面积.。
(完整版)一次函数知识点总结和常见题型归类
(完整版)一次函数知识点总结和常见题型归类一次函数知识点总结与常见题型基本概念1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。
在圆的周长公式C =2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =21-3x (5)y =x 2-1中,是一次函数的有()(A )4个(B )3个(C )2个(D )1个P116 1 P87 23、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
例题:下列函数中,自变量x 的取值范围是x ≥2的是()A .yB .yC .yD .y函数y =x 的取值范围是___________.已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是()A .2325≤<-y B .2523<<="" bdsfid="97" c="" d="" p="">523≤<y< bdsfid="99" p=""></y<>5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.例题:P117 56、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
一次函数常考知识点和题型梳理
一次函数常考知识点和题型梳理在之前的文章内容中,我们先后讲解了有关反比例函数和二次函数的知识点和常考题型,“函数三巨头”怎么能够少了“一次函数”,现在我们来结交下这位“朋友”:一次函数的基本内容兵马未动,粮草先行。
要理解一个函数,首先要从基础开始。
概念理解不透彻,知识不牢固。
当我们开始一个问题的时候,难免会磕磕绊绊,理解不了。
1、表达式:一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数。
(当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数)一次函数一般形式 y=kx+b成立的条件:● k不为零● x指数为1● b取任意实数2、函数图象:(1)一次函数y=kx+b的图象是经过(0,b)和(-b/k,0)两点的一条直线,我们称为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到。
(2)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限;b>0,图象经过第一、二象限;b<0,图象经过第三、四象限。
3、增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小。
总结:(1)k>0且b>0 直线经过第一、二、三象限,y随x的增大而增大。
(2)k>0且b<0 直线经过第一、三、四象限,y随x的增大而增大。
(3)k<0且b>0 直线经过第一、二、四象限,y随x的增大而减小。
(4)k<0且b<0直线经过第二、三、四象限,y随x的增大而减小。
4、图像的平移:遵循“上加下减,左加右减”的原则:当b>0时,将直线y=kx的图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移b个单位。
5、一次函数的对称若两函数关于x轴对称,则y=kx+b变成y=-kx-b,交点为(-b/k,0);若两函数关于y轴对称,则y=kx+b变成y=-kx+b,交点为(0,b);若两函数关于x=n对称,则y=kx+b变成y=-kx+2nk+b,交点为(n,kn+b);若两函数关于y=n对称,则y=kx+b变成y=-kx+(2n-b),交点为[(n-b)/k,n];若两函数关于原点对称,则y=kx+b变成y=kx-b,无交点。
初中数学一次函数考点归纳及例题详解
一次函数考点归纳及例题详解 考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数. 【例题】1.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 2.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.3.已知一次函数kxk y )1(-=+3,则k = .4.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.【例题】1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 一次函数y = -3 x + 2的图象不经过第 象限.4. 一次函数2y x =+的图象大致是( )5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.27.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >29.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。
八年级数学《一次函数》知识点归纳与例题
八年级数学《一次函数》知识点归纳与例题一、知识点总结1、一次函数与正比例函数的定义:例如:y =kx +b (k ,b 是常数,k ≠0)那么y 叫做x 的一次函数,特别地当b =0时,一次函数y =kx +b 就成为y =kx (k 是常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图象与性质(形状、位置、特殊点、增减性)①、形状:一次函数的图象是一条 ;画法:确定两个点就可以画一次函数图象。
②、位置:直线的位置是由k 、b 当k 0时,图象经过一、三象限; 当k 0时,图象经过二、四象限。
当b 0时,图象与y 轴相交于正半轴; 当b 0时,图象与y 轴相交于负半轴; 当b 0时,图象经过坐标原点。
x 轴和y 轴交点分别是④、性质:一次函数)0(≠+=k b kx y ,当k 0y 的值随x 值的增大而增大;当k 0y 的值随x 值的增大而减小。
3、待定系数法求函数解析式在一次函数y =kx +b (k ≠0)中有两个未知数k 和b ,所以,要确定其关系式,一般需要两个条件,常见的是已知两点坐标P 1(a 1,b 1),P 2(a 2,b 2)代入得⎩⎨⎧b 1=a 1k +b ,b 2=a 2k +b ,求出k ,b 的值即可,这种方法叫做__________.4、一次函数与方程、方程组及不等式的关系 ①、y =kx +b 与kx +b =0直线y =kx +b 与x 轴交点的横坐标是方程kx +b =0的解,方程kx +b =0的解是直线y =kx +b 与x 轴交点的横坐标. ②、y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围. ③、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点. 【知识拓展】1、两条直线的位置关系设直线 1和 2的解析式为y =k 1x +b 1和y 2=k 2x +b 2则它们的位置关系由系数关系确定:① k 1≠k 2⇔ 1与 2相交;② k 1=k 2,b 1≠b 2⇔ 1与 2平行;+b一次函数)0(≠+=k b kx y 的图象 如图,判断k 、b 符号。
专题06一次函数常考重难点题型(十大题型)(原卷版)
专题06 一次函数常考重难点题型(十大题型)【题型1 函数与一次(正比例)函数的识别】【题型2 函数值与自变量的取值范围】【题型3 一次函数图像与性质综合】【题型4 一次函数过象限问题】【题型5 一次函数的增减性】【题型6 一次函数的增减性(大小比较问题)】【题型7一次函数图像判断】【题型8 一次函数图像的变换(平移与移动)】【题型9 求一次函数解析式(待定系数法)】【题型10 一次函数与一次方程(组)】【题型1 函数与一次(正比例)函数的识别】【解题技巧】(1)判断两个变量之间是否是函数关系,应考以下三点: (1)有两个变量: 2)一个变量的变化随另一个变量的变化而变化: (3)自变量每确定一个值,因变量都有唯一的值与之对应。
(2)判断正比例函数,需关于x的关系式满足:= (0),只要与这个形式不同,即不是正比例函数。
(3)一次函数必须满足k+b (0)的形式,其中不为0的任意值1.(2023春•右玉县期末)下列各曲线中不能表示y是x的函数的是()A.B.C.D.2.(2023春•临西县期末)下列函数中,y是x的一次函数的是()A.y=1B.C.y=2x﹣3D.y=x2 3.(2023春•潮阳区期末)下列函数中,表示y是x的正比例函数的是()A.y=2x+1B.y=2x2C.y2=2x D.y=2x 4.(2023春•武城县期末)已知y=(m﹣1)x|m|+4是一次函数,则m的值为()A.1B.2C.﹣1D.±1 5.(2023春•鼓楼区校级期末)正比例函数x的比例系数是()A.﹣3B.C.D.36.(2023春•南岗区校级期中)若函数y=2x2m+1是正比例函数,则m的值是.7.(2023春•岳阳楼区校级期末)已知函数y=(m﹣1)x+m2﹣1.(1)当m为何值时,y是x的一次函数?(2)当m为何值时,y是x的正比例函数?【题型2 函数值与自变量的取值范围】【解题技巧】:函数的取值范围考虑两个方面:(1)自变量的取值必须要使函数式有意义:(2)自量的取值须符合实际意义。
《一次函数》知识点归纳和题型归类
一次函数知识点归纳和题型归类一、知识回顾1•一次函数定义形如y 的函数(其中k, b是常数,且k 0) 叫做一次函数.特别地,当b=0时,一次函数y = ( k=0),这时y叫做x的正比例函数.正比例函数 ______________ 一次函数。
2. —次函数图象一次函数y=kx ・b(k=O)的图象是一条经过( ________ , 0)和(0 , ) 的直线.正比例函数y=kx是一条经过 _________ 的直线.3. —次函数性质在一次函数y=kx・b(k=O)(1)当k>0时,y随x的增大而(2)当k<0时,y随x 的增大而.(3)函数y_kx・b(k=O)的图象经过象限的情况:k b图象经过象限k>0b>0 b<0K<0b>0 b<04. 用图象法解二元一次方程组(1)将方程组的每个方程都化为(2)在同一直角坐标系中画出这两个一次函数的(3)_____________________ 这两条直线的的坐标,就是这个二元一次方程组的解5. —次函数与一元一次不等式的关系一次一次不等式kx b>0(或kx b<0)的解集,就是使一次函数_________________ 中y>0(或y<0)的'的取值范围.反映在图象上是一次函数图象在x轴上方部分(或x轴下方部分)对应的 _____________ 6. —次函数的应用在实际生活中,如何应用函数知识解决实际问题,关键是建立函数模型,即列出符合题意的函数解析式,再利用方程(组)求解.二、基础演练二.典型题训练题型一、点的坐标方法:x轴上的点纵坐标为0, y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A (m,n)在第二象限,则点(|m|,-n )在第 ____________ 象限;2、若点P (2a-1,2-3b )是第二象限的点,贝U a,b的范围为_________________________ ;3、已知A (4, b), B (a,-2 ),若A, B关于x轴对称,则a= __________ ,b= ________ ;若A,B关于y轴对称,贝U a= ______ ,b= ________ ; 若若A, B关于原点对称,贝U a= _______ ,b= ________ ;4、若点M( 1-x,1-y )在第二象限,那么点N( 1-x,y-1 )关于原点的对称点在第________________ 象限。
一次函数知识点归纳和题型归类
一次函数知识点归纳和题型归类一次函数是初中数学中比较基础但重要的一章,我们需要熟练掌握其中的知识点和题型。
本篇文章将对一次函数的知识点进行归纳和题型进行分类,帮助初学者更好地掌握这一章的知识。
一、函数的概念首先,需要明确函数的概念。
函数是一个有特定规律的对应关系,对于每一个自变量,都有且只有一个因变量与之对应。
用数学符号表示,就是y=f(x),其中x 是自变量,y是因变量,f(x)是规律。
二、一次函数的概念一次函数是一种函数,其特征是自变量的最高次数为1。
用数学符号表示,可以写成y=kx+b的形式,其中k和b为常数。
三、常规解题方法在解一次函数题目时,我们需要掌握两种基本的方法——画图法和代数法。
1.画图法:画出函数的图像,并根据题目中的条件标注出截距或斜率等信息,通过图像判断问题的解。
2.代数法:根据函数公式中k和b的意义,列出方程组,解得x或y的值,从而得出问题的解。
四、基础知识点1.截距:指函数图像与y轴的交点,用b表示。
2.斜率:指函数图像的斜率,用k表示。
斜率表示函数的增长或减少的速度,斜率大表示函数增长或减少的速度快。
3.函数图像:一次函数的图像是一条直线,其斜率和截距决定了函数的图像形状。
4.平行和垂直:一次函数的图像平行于y轴,意味着斜率为无穷大,而平行于x轴,则斜率为零。
两条直线垂直的条件是斜率的乘积为负一。
五、题型归类在进行题型分类时,我们可以根据难度和解题思路来划分不同的类型。
下面列出了一些常见的一次函数题型。
1.求截距:已知函数图像上的一点和其斜率,求函数的截距。
2.求斜率:已知函数图像上的两点,求函数的斜率。
3.求交点:已知两个函数,求它们的交点。
4.根据图像判断:已知函数图像的截距或斜率,求函数是否有解,以及解的性质。
5.综合问题:将已知函数与图形相结合,需要综合运用所学的知识求解问题。
总的来说,一次函数作为中等难度的内容,在实际的生活中有许多应用,例如物理、经济和地理等领域。
《一次函数》经典例题剖析(附练习及答案)
《一次函数》复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数. 知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置; ①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①如图11-18(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限); ②如图11-18(2)所示,当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限); ③如图11-18(3)所示,当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限); ④如图11-18(4)所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限). (5)由于|k|决定直线与x 轴相交的锐角的大小,k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x 向上平移一个单位得到的.知识点3 正比例函数y=kx (k ≠0)的性质 (1)正比例函数y=kx 的图象必经过原点;(2)当k >0时,图象经过第一、三象限,y 随x 的增大而增大; (3)当k <0时,图象经过第二、四象限,y 随x 的增大而减小. 知识点4 点P (x 0,y 0)与直线y=kx+b 的图象的关系(1)如果点P (x 0,y 0)在直线y=kx+b 的图象上,那么x 0,y 0的值必满足解析式y=kx+b ; (2)如果x 0,y 0是满足函数解析式的一对对应值,那么以x 0,y 0为坐标的点P (1,2)必在函数的图象上.例如:点P (1,2)满足直线y=x+1,即x=1时,y=2,则点P (1,2)在直线y=x+l 的图象上;点P ′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P ′(2,1)不在直线y=x+l 的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx (k ≠0)中只有一个待定系数k ,故只需一个条件(如一对x ,y 的值或一个点)就可求得k 的值.(2)由于一次函数y=kx+b (k ≠0)中有两个待定系数k ,b ,需要两个独立的条件确定两个关于k ,b 的方程,求得k ,b 的值,这两个条件通常是两个点或两对x ,y 的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b ; (2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 解:设一次函数的关系式为y =kx+b (k ≠0), 由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交;当b=0时,即-kb=0时,直线经过原点;当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例剖析基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21(6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32m+(m-4)是一次函数?基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.例5 已知y-3与x 成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例9 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?例10 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例11 已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.例12 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?例13 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.学生做一做判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例14 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快.”乙生说:“直线y=-x与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?例15 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.学生做一做某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.例16 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .基础训练习题:1.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?2.已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3.(1)求这个函数的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数知识点总结与常见题型基本概念1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。
在圆的周长公式C =2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
例题:下列函数中,自变量x 的取值范围是x ≥2的是( )A .yB .yC .yD .y 函数y =x 的取值范围是___________.已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( )A .2325≤<-yB .2523<<yC .2523<≤yD .2523≤<y5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
9、正比例函数及性质一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y =kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k >0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,•直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )(3) 走向:k >0时,图像经过一、三象限;k <0时,•图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( )A .0B .23C .23-D .32-.(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( )A .0<kB .1>kC .1≤kD .1<k(4)东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是_______________.(5)平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是__________. 10、一次函数及性质一般地,形如y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y =kx +b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y =kx +b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y =kx +b ,它可以看作由直线y =kx 平移|b |个单位长度得到.(当b >0时,向上平移;当b <0时,向下平移)(1)解析式:y =kx +b (k 、b 是常数,k ≠0 (2)必过点:(0,b )和(-kb,0)(3)走向: k >0,图象经过第一、三象限;k <0,图象经过第二、四象限b >0,图象经过第一、二象限;b <0,图象经过第三、四象限 ⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小. (5)倾斜度:|k | 越大,图象越接近于y 轴;|k | 越小,图象越接近于x 轴. (6)图像的平移: 当b >0时,将直线y =kx 的图象向上平移b 个单位; (上加下减,左加右减) 当b <0时,将直线y =kx 的图象向下平移b 个单位. 例题:若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n ..函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线 .若直线axy+-=和直线bxy+=的交点坐标为(8,m),则=+ba____________.已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1 B.3mC.m D.3m-111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:与y 轴的交点(0,b),与x轴的交点(kb-,0).即横坐标或纵坐标为0的点.b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小☆k、b的符号对直线位置的影响☆图像过一、二、三象限图像过一、三、四象限图像过一、二、四象限图像过二、三、四象限(大大不过四)(大小不过二)(小大不过三)(小小不过一)思考:若m<0, n>0, 则一次函数y=mx+n的图象不经过()A.第一象限B. 第二象限C.第三象限D.第四象限12、正比例函数与一次函数图象之间的关系一次函数y =kx +b 的图象是一条直线,它可以看作是由直线y =kx 平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移). 13、直线y =k 1x +b 1与y =k 2x +b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2 (3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:k 1·k 2= –1 14、用待定系数法确定函数解析式的一般步骤: (1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 15、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值.16、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax +b >0或ax +b <0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 17、一次函数与二元一次方程组(1)以二元一次方程ax +by =c 的解为坐标的点组成的图象与一次函数y =bcx b a +-的图象相同. (2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y =1111b c x b a +-和y =2222b cx b a +-的图象交点.18、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x 轴的交点(kb-,0). 直线(b ≠0)与两坐标轴围成的三角形面积为s =kb b k b 2212=⨯⨯常见题型一、考察一次函数定义 1、若函数()213m y m x=-+是y 关于x 的一次函数,则m 的值为 ;解析式为 . 2、要使y =(m -2)x n -1+n 是关于x 的一次函数,n ,m 应满足 , .二、考查图像性质1、已知一次函数y =(m -2)x +m -3的图像经过第一,第三,第四象限,则m 的取值范围是________.2、若一次函数y =(2-m )x +m 的图像经过第一、•二、•四象限,•则m •的取值范围是______3、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .4、直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( )5、直线0px qy r ++=(0)pq ≠如图5,则下列条件正确的是( ).,1A p q r == .,0B p q r == .,1C p q r =-= .,0D p q r =-=6、如果0ab >,0a c <,则直线a cy x b b=-+不通过( )A .第一象限B .第二象限C .第三象限D .第四象限 7、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )8、如果0ab >,0a c <,则直线a cy x b b=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9、b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上.10、要得到y =-32x -4的图像,可把直线y =-32x ( ).(A )向左平移4个单位(B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位 11、已知一次函数y =-kx +5,如果点P 1(x 1,y 1),P 2(x 2,y 2)都在函数的图像上,且当x 1<x 2时,有y 1<y 2成立,那么系数k 的取值范围是________.12、已知点(-4,y 1),(2,y 2)都在直线y =- 12x +2上,则y 1 、y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较 三、交点问题1、若直线y =3x -1与y =x -k 的交点在第四象限,则k 的取值范围是( ).(A )k <13 (B )13<k <1 (C )k >1 (D )k >1或k <132、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .4、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A . 0,0k b >> .0,0B k b >< .0,0C k b <> .0,0D k b <<5、如图所示,已知正比例函数x y 21-=和一次函数b x y +=,它们的图像都经过点P (a ,1),且一次函数图像与y 轴交于Q 点。