最新浙教版数学七年级上知识点总结--
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
1.有理数:
(1)整数和分数统称有理数.
(2)有理数的分类: ①
⎪
⎪
⎩
⎪
⎪
⎨
⎧
⎩
⎨
⎧
⎩
⎨
⎧
负分数
负整数
负有理数
零
正分数
正整数
正有理数
有理数②
⎪
⎪
⎩
⎪
⎪
⎨
⎧
⎩
⎨
⎧
⎪⎩
⎪
⎨
⎧
负分数
正分数
分数
负整数
零
正整数
整数
有理数
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;a a
和-互为相反数,0的相反数是0;
(2)注意: a-b+c的相反数是-a+b-c;a+b的相反数是-a-b;
4.绝对值:
(1) 数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示。
(2) 绝对值可表示为:
⎪⎩
⎪
⎨
⎧
<
-
=
>
=
)0
a(
a
)0
a(
)0
a(
a
a或
⎩
⎨
⎧
≤
-
≥
=
)0
(
)0
(
a
a
a
a
a;
(4) ①非负性:|a|≥0②|a|=|-a| ③若|a|=b,则a=±b ④0
a
1
a
a
>
⇔
=;0
a
1
a
a
<
⇔
-
=;数轴上两点间的距离:|a-b|
5. 比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:
①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
1.有理数加法法则:·同号两个数相加,取加数的符号,并把绝对值相加。
·异号的两个数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
·互为相反数的两数相加得0. ·一个数同0相加仍得这个数
2.灵活运用运算律:①相反数相加;②同号相加;③同分母相加;④凑整的相加。
3.加法交换律:a b b a
+=+
4.加法结合律:()()
a b c a b c
++=++
5.有理数减法法则:减去一个数等于加上这个数的相反数。
6.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘积仍得0。
7.倒数:如果两个数互为倒数,则它们的乘积为1。(如:-2与
1
-
2
)注意:①零没有倒数②倒数等于本身的数:1,-1等于本身的数汇总:相反数等于本身的数:0,绝对值等于本身的数:正数和0 ,
平方等于本身的数:0,1 算术平方根于本身的数:0,1 平方根于本身的数:0
立方等于本身的数:0,1,-1. 立方根于本身的数:0,1,-1
8.有理数乘法法则
乘法法则:①两数相乘,同号得正,异号得负,绝对值相乘。
越来越大
②任何数与0相乘,积仍为0。
乘法交换律:ab ba = 乘法结合律:()()ab c a bc = 乘法分配律:()a b c ac bc +⨯=+
10.有理数除法法则:·除以一个不等于0的数,等于乘这个数的倒数。
·两个有理数相除,同号得正,异号得负,绝对值相除。
·0除以任何数都得0,且0不能作除数,否则无意义。
11.有理数的乘方:求n 个相同因数a 的积的运算叫做乘方,乘方的结果叫做幂。 注意:①非负数:a 2≥0;若a 2+|b|=0
; ②据规律 ⇒⎪⎪⎭
⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 立方呢?
12.有理数混合运算顺序:· 先算乘方,再乘除,后加减; · 同级运算,从左到右进行;
· 如有括号,先算括号内的运算。
13.科学记数法:把一个数记成a ×10n
(101<≤a ,n 是整数)的形式,这种记数法叫科学记数法.
19. 216000精确到千位表示为:( ),近似数2.14的准确数X 的范围是( )
一、实数的概念及分类
1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数
实数 负有理数
正无理数
无理数 无限不循环小数
负无理数
实数 正实数
负实数
2、无理数
无理数抓住“无限不循环”,归纳起来主要有三类:
(1)开不尽方的数,如
32,7等;(2)化简后含有π的数,如3π+8等;(3)有特定结构的无限不循环小数,如0.1010010001…等; 二、平方根、算数平方根和立方根 1、平方根
a 的平方根(或二次方跟):a ±,a 的算术平方根a ,a 的负平方根—a ,0的平方根和算术平方根都是0
一个数有两个平方根,他们互为相反数; 零的平方根是零; 负数没有平方根。
a (a ≥0) 注意a 的双重非负性: 0≥a (a ≥0)
==a a 2 -a (a <0) ;如 0
x-110
1
x x -≥∴= =⨯⨯⨯⨯
a n a a a a 个数 幂