三级奥数鸡兔同笼问题例题及答案
小学鸡兔同笼问题练习题及答案解析
小学鸡兔同笼问题练习题及答案解析1.题目:鸡比兔多13只,鸡腿比兔腿多16条,鸡和兔各有多少只?答案:鸡有25只,兔有12只。
解析:设兔有x只,则鸡有x+13只。
根据题意,鸡腿比兔腿多16条,即2(x+13) - 4x = 16,解得x=12,所以兔有12只,鸡有25只。
2.题目:笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚,鸡和兔各有多少只?答案:鸡有23只,兔有12只。
解析:设兔有x只,则鸡有35-x只。
根据题意,4x + 2(35-x) = 94,解得x=12,所以兔有12只,鸡有23只。
3.题目:鸡比兔多3只,鸡腿比兔腿多2条,鸡和兔各有多少只?答案:鸡有7只,兔有4只。
解析:设兔有x只,则鸡有x+3只。
根据题意,2(x+3) - 4x = 2,解得x=4,所以兔有4只,鸡有7只。
4.题目:鸡和兔共有100只,腿共248只,鸡和兔各有多少只?答案:鸡有34只,兔有66只。
解析:设兔有x只,则鸡有100-x只。
根据题意,4x + 2(100-x) = 248,解得x=66,所以兔有66只,鸡有34只。
5.题目:鸡比兔少5只,鸡腿比兔腿少6条,鸡和兔各有多少只?答案:鸡有19只,兔有24只。
解析:设兔有x只,则鸡有x-5只。
根据题意,2(x-5) - 4x = -6,解得x=24,所以兔有24只,鸡有19只。
6.题目:鸡和兔共有15只,腿共40条,鸡和兔各有多少只?答案:鸡有10只,兔有5只。
解析:设兔有x只,则鸡有15-x只。
根据题意,4x + 2(15-x) = 40,解得x=5,所以兔有5只,鸡有10只。
7.题目:鸡比兔多8只,鸡腿比兔腿多12条,鸡和兔各有多少只?答案:鸡有20只,兔有12只。
解析:设兔有x只,则鸡有x+8只。
根据题意,2(x+8) - 4x = 12,解得x=12,所以兔有12只,鸡有20只。
8.题目:笼子里有若干只鸡和兔。
从上面数,有28个头,从下面数,有76只脚,鸡和兔各有多少只?答案:鸡有10只,兔有18只。
小学奥数。鸡兔同笼问题(三) 精选练习例题 含答案解析(附知识点拨及考点)
小学奥数。
鸡兔同笼问题(三) 精选练习例题含答案解析(附知识点拨及考点)本文介绍了鸡兔同笼问题的砍足法和假设法,并提到了解决实际问题需要将多个对象组合成两个对象。
鸡兔同笼问题最早出现在《孙子算经》中,是一个有趣的问题。
解决思路是砍去每只鸡、每只兔一半的脚,将鸡和兔的脚的总数减半,然后用脚的总数减去头的总数求出兔子的数量,再用总头数减去兔子的数量求出鸡的数量。
另外,假设法也是解决鸡兔同笼问题的经典思路,可以通过假设里面全是鸡或者全是兔来求解。
在研究过程中,需要注重假设法的运用和重要性,因为在以后的专题中也会接触到假设法。
最后,文章通过一个例题来展示了如何用假设法解决鸡兔同笼问题。
假设有14只动物,全都是犀牛,这时有14个犄角。
但实际上只有20只动物,因此缺少了6只动物,这说明犀牛太多了,羚羊太少了,需要减少犀牛,增加羚羊。
每增加一只羚羊,就需要减少一只犀牛,这样犄角的数量就会增加1只。
因此,羚羊的数量为6只,犀牛的数量为8只。
总结一下,这道题出现了三种动物,需要找到它们之间的相同点,将它们分为两类。
可以先使用“鸡兔同笼”问题的解法将其中一种动物区分出来,再使用其他条件区分具有相同点的动物。
最终得出答案为:犀牛8只,羚羊6只,孔雀12只。
例2:一个食品店上午卖出了每千克20元、25元、30元的三种糖果,共计100千克,收入2570元。
已知售出每千克25元和30元的糖果共收入了1970元。
问每千克25元的糖果售出了多少千克?解析:已知售出每千克25元和30元的糖果共收入了1970元,那么每千克20元的糖果收入为:2570-1970=600元。
因此,卖出了600/20=30千克的20元糖果。
那么售出每千克25元和30元的糖果共计70千克,相当于将问题转化为“鸡兔同笼”问题。
如果假设全部都是25元的糖果,那么售出的30元糖果就是44千克。
因此,售出的25元糖果数量为70-44=26千克。
所以每千克25元的糖果售出了26千克。
[24068175]三年级下册数学试题-奥数:鸡兔同笼(下)(练习含答案)全国通用
鸡兔同笼(下)一、教学内容:1.解决一般的鸡兔同笼问题.2.假设法在其它实际问题中的应用。
3.涉及多种动物的鸡兔同笼引申问题。
二、教学重点:用假设法来解决鸡兔同笼系列问题。
三、鸡兔同笼问题的基本公式1.如果假设全是兔,那么则有鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数2.如果假设全是鸡,那么就有兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数四、鸡兔同笼专题可以分为以下三大题型:⑴一鸡一兔⑵一鸡一兔变形⑶多量鸡兔及变形例1在一个停车场上,现有车辆41辆,其中汽车有4个轮子,三轮车有3个轮子,这些车共有127个轮子,那么三轮车有多少辆?例2体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?例3三⑴班有象棋、飞行棋共14副,恰好可供全班40名同学同时进行活动。
象棋要2人下一副,飞行棋要4人下一副,则飞行棋和象棋各有几副?例4某工人与老板签订了一份30天的劳务合同:工作一天可得报酬48元,休息一天则要从所得报酬中扣掉12元。
该工人合同到期后并没有拿到报酬,则他最多工作了多少天?例5犀牛、羚羊、孔雀三种动物共有头26个,脚80只,犄角20只。
已知犀牛有4只脚、1只犄角,羚羊有4只脚,2只犄角,孔雀有2只脚,没有犄角。
那么,犀牛、羚羊、孔雀各有几只呢?例6某场足球赛赛前售出甲、乙、丙三类门票共400张,甲类票50元/张,乙类票40元/张,丙类票30元/张,共收入15500元,其中乙类、丙类门票张数相同。
则甲类、乙类、丙类门票分别售出多少张?拓展有红、黄、绿3种颜色的卡片共有100张,其中红色卡片的两面上分别写有1和2,黄色卡片的两面上分别写着1和3,绿色卡片的两面上分别写着2和3。
现在把这些卡片放在桌子上,让每张卡片写有较大数字的那面朝上,经计算,各卡片上所显示的数字之和为234。
鸡兔同笼的练习题及答案
鸡兔同笼的练习题及答案鸡兔同笼问题是一种经典的数学问题,通常用于训练学生的逻辑推理能力。
这种问题要求学生通过已知的头和脚的总数来确定鸡和兔子的数量。
以下是一些练习题及答案,供学生练习。
练习题1:一个笼子里有鸡和兔子共35个头,94只脚。
问鸡和兔子各有多少只?答案1:设鸡有x只,兔子有y只。
根据题目,我们有以下两个方程:x + y = 35 (头的总数)2x + 4y = 94 (脚的总数)通过解方程组,我们可以得到:2x = 94 - 4yx = (94 - 4y) / 2将x的表达式代入第一个方程:(94 - 4y) / 2 + y = 3594 - 4y + 2y = 70y = 24将y的值代入x的表达式:x = (94 - 4 * 24) / 2x = 11所以,鸡有11只,兔子有24只。
练习题2:笼子里有鸡和兔子共40个头,100只脚。
鸡和兔子各有多少只?答案2:设鸡有a只,兔子有b只。
我们有以下方程:a +b = 402a + 4b = 100解这个方程组,我们得到:2a = 100 - 4ba = (100 - 4b) / 2将a的表达式代入第一个方程:(100 - 4b) / 2 + b = 40100 - 4b + 2b = 80b = 20将b的值代入a的表达式:a = (100 - 4 * 20) / 2a = 20所以,鸡有20只,兔子也有20只。
练习题3:一个笼子里有鸡和兔子共50个头,脚的总数是140只。
问鸡和兔子各有多少只?答案3:设鸡有c只,兔子有d只。
我们有以下方程:c +d = 502c + 4d = 140解这个方程组,我们得到:2c = 140 - 4dc = (140 - 4d) / 2将c的表达式代入第一个方程:(140 - 4d) / 2 + d = 50140 - 4d + 2d = 100d = 20将d的值代入c的表达式:c = (140 - 4 * 20) / 2c = 30所以,鸡有30只,兔子有20只。
鸡兔同笼典型例题10道
鸡兔同笼典型例题10道一、基础型例题1. 鸡和兔在一个笼子里,从上面数,有8个头,从下面数,有26只脚。
问鸡和兔各有几只?- 逻辑:我们先假设笼子里全是鸡,那么8个头就应该有8×2 = 16只脚。
但实际有26只脚,多出来的脚就是兔子比鸡多的脚。
每只兔子比鸡多2只脚,多出来的26 - 16 = 10只脚,10÷2 = 5只就是兔子的数量,鸡就是8 - 5 = 3只。
2. 一个笼子里有鸡和兔共12只,它们一共有34只脚。
求鸡和兔各多少只?- 逻辑:假设全是鸡,12只鸡就有12×2 = 24只脚。
实际34只脚,多了34 - 24 = 10只脚。
因为每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是12 - 5 = 7只。
3. 鸡兔同笼,头共10个,脚共30只。
鸡兔各几只?- 逻辑:要是全是鸡,10只鸡就有20只脚。
30 - 20 = 10只脚是多出来的,这是兔子的脚多出来的部分。
每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是10 - 5 = 5只。
二、数字变化型例题4. 鸡兔同笼,共有15个头,46只脚。
问鸡和兔各有多少只?- 逻辑:先当全是鸡,15只鸡有15×2 = 30只脚。
46 - 30 = 16只脚是多的,每只兔比鸡多2只脚,兔就有16÷2 = 8只,鸡就是15 - 8 = 7只。
5. 笼子里有鸡和兔,一共20个头,56只脚。
鸡和兔分别有多少?- 逻辑:假设都是鸡,20只鸡有20×2 = 40只脚。
56 - 40 = 16只脚多出来了,这是兔子的。
每只兔比鸡多2只脚,兔有16÷2 = 8只,鸡有20 - 8 = 12只。
三、特殊条件型例题6. 鸡兔同笼,鸡比兔多2只,共有脚28只。
鸡兔各多少只?- 逻辑:设兔有x只,那鸡就有x + 2只。
兔脚有4x只,鸡脚有2(x + 2)只。
可列方程4x+2(x + 2)=28,4x+2x + 4 = 28,6x = 24,x = 4。
三年级奥数金典讲义第十一讲鸡兔同笼问题通用版(含答案)
三年级奥数金典讲义(jiǎngyì)第十一讲鸡兔同笼问题通用版(含答案)例1(古典(gǔdiǎn)题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析(fēnxī) 如果 46只都是兔,一共(yīgòng)应有 4×46=184只脚,这和已知的128只脚相比(xiānɡ bǐ)多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。
我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。
例2鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
鸡兔同笼经典例题10道及答案
1.鸡和兔共49只,一共有100条腿,问鸡和兔各有多少只?2.一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题.3.二元和五元的人民币共40张,面值合计125元,二元和五元的人民币各有多少张?4.一辆汽车参加拉力赛,9天行了5000公里,已知他晴天平均每天行688公里,雨天平均每天行390公里,在这次比赛期间共有几天晴天?几天雨天?5.丰台二中进行小测(数学),一共10道题.每做对一道得8分,错一道扣5分.一位同学得了41分.问那位同学对几道,错几道?6.一辆汽车给瓷器厂运瓷器100件,运到1件给运费2元,损坏1件不但不给运费,反而赔偿厂方8元.结果只得运费170元,他损坏了几件?7.今有鸡与兔同在一个笼子里,已知头的总数是20,腿的总数是70,问鸡与兔各有多少只?8.在全国足球甲级A组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?9.刘畅同学去参加数学竞赛,共有20道题,做对一道得5分,做错一道题倒扣2分.结果刘畅同学考了72分,问他做对了几道题?10.老师出了25个填空题,规定填对一个给4分,不填或填错倒扣1分,小华得了70分.那么,他共填对多少个题?11.小兔子采蘑菇,晴天每天可以采30个,有雨的天每天只能采15个.它一连几天采了360个松籽,平均每天采18个.那么,这几天中有几天有雨?12.全班一共有38人,共租8条船(大船每只乘6人,小船每只乘4人),每条船都刚好坐满.大小船个租了几条?13.全班46人去划船,共乘12只船,其中大船每船均坐5人,小船每船均坐3人,其中大船有几只?14.某快递公司为客户托运200箱玻璃,按合同规定每箱运费30元,若损坏一箱不给运费并赔偿200元,运到后结算时共得运费4160元,共损坏了多少箱?15.在一个大会议室里有一些圆桌子和方桌子,数一数,发现共有22张桌子,每张圆桌子有3条腿,每张方桌子有4条腿,所有的桌子共有76条腿,问:圆桌子和方桌子各有多少张?16.中原陶瓷公司委托搬运公司运送3000个陶瓷花瓶,双方签订合同,每个运费是1.5元.如果打破一个,这一个不但不计运费,而且还要赔偿每个运费2倍的价钱.结果搬运公司共得运费4468.5元,问搬运过程中打破了几个陶瓷花瓶?17.有龟和鹤共50只,龟和鹤的腿(腿均健全)共132条,龟和鹤各有几只?18.现有五角和一元的硬笔共20个,小军数了数,刚好16元,一元的硬笔有多少枚?19.小红买6角和8角的邮票一共13张,用去8元4角钱.这两种邮票各买了多少张?(用“假设”的策略进行思考)20.动物们进行100米比赛,羚羊和鸵鸟分在一组,依次从01号编到16号,共有50条腿.羚羊和鸵鸟各有多少只?21.全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?22.甲、乙两种管子共25根,已知甲种管长8米,乙种管长5米,甲种管比乙种管总长短21米,两种管子各有多少根?23.有鸡、兔共20只,脚44只,鸡、兔各几只?24.鸡兔同笼,共100个头,320只脚,鸡、兔各多少只?25.自行车和三轮车共10辆,总共有26个轮子,自行车和三轮车各有多少辆?26.已知笼子里有鸡、兔两种动物,共72条腿,30个头,你知道有多少只兔吗?27.小强有三角形、长方形的卡片共40张,这些卡片共有145个角,两种卡片各有多少张?28.鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?29.鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?30.有20张5元和10元的人民币,一共是175元,5元和10的人民币各有多少张?31.笼子里有数量相同的鸡和兔,两种动物的腿加起来共有54条.鸡和兔各有多少只?32.鸡兔同笼,共有51个头,172只腿.鸡兔各有多少只?33.一个足球60元,一个篮球15元,王老师买回足球和篮球共25个,用去825元.王老师买回多少个篮球?34.有25名同学一共植了145棵树,男生平均每人植7棵,女生平均每人植4棵,参加植树的男生有多少人?女生有多少人?35.现有100kg油,共装满了大、小油壶32个,大壶每壶装4kg,小壶每壶装2kg.问:大、小油壶各有多少个?36.鸡兔同笼,鸡兔只数相同,腿加起来共有60条.鸡和兔各有多少只?(用算术和方程两种方法解答)37.鸡兔同笼,鸡比兔多20只,共有256条腿,问鸡多少只?兔多少只?38.螃蟹和青蛙共11只,共有56条腿,螃蟹和青蛙各有多少只?39.光明学校车棚存放着自行车和小汽车共16辆,共有轮子50个,那么有几辆小汽车?有几辆自行车?40.鸡兔同笼,从上数,有18个头,从下数有46条腿,你知道笼里的鸡和兔各有多少只吗?41.学校秋游共用20辆客车,已知大客车每辆坐50人,小客车每辆坐30人,大客车和小客车共坐了720人,大、小客车各用了几辆?42.笼子里有鸡和兔40个头,有112只脚.鸡和兔各有多少只?43.鸡兔同笼,有8个头,20只脚.笼里有多少只鸡?有多少只兔?44.小明家共养鸡和兔29只,它们共有100只脚.鸡和兔各有多少只?45.一只蚂蚱6条腿,一只蜘蛛8条腿.现有蚂蚱和蜘蛛共14只,100条腿.蚂蚱和蜘蛛各有几只?46.一个车棚里有自行车和四轮车,自行车比四轮车多15辆,数一下轮子共有282个,自行车和四轮车各有多少辆?47.有龟和鹤共50只,龟的腿鹤和鹤的腿共有180条.龟鹤各有几只?48.鸡兔同笼共有28只,共有脚86只,那么共有几只鸡?几只兔?49.李明和王刚进行口算比赛,两人做题的总时间是12分钟,共做了l95道题,做完后统计发现:李明每分钟做15道口算题,王刚每分钟做了l8道口算题.你知道李明和王刚各做了几分钟吗?50.停车场一共停放了自行车和小汽车36辆,共有126个轮子,自行车和小汽车各停放了多少辆?51.六年级同学制做了200件蝴蝶标本,分别在13块展板上展出.每块小展板贴8件,每块大展板贴20件.两种展板各有多少块?52.小英和小刚分别从相距5公里的两家去学校,学校在两家之间,两人共走了55分钟,已知小英每分钟走0.08公里,小刚每分钟走0.12公里,小英和小刚各走了多少分钟?53.动物100米赛跑比赛,羚羊和鸵鸟分在第一组,它们的编号从001到018,它们共有52条腿.羚羊和鸵鸟各有多少只?54.学校文体活动中心有象棋和跳棋共32副.2人下一副象棋,6人下一副跳棋,恰好可供120名学生进行活动,象棋与跳棋各有多少副?55.一个军队行军,晴天能走30千米,雨天每天只能走25千米.10天一共走了280千米,问晴天和雨天各有多少天?56.有一队猎人后面跟着一队猎狗,数头有23个,数腿有68条;人、狗各站多少?57.鸡兔一共有腿110条,若交换鸡和兔的数量,则腿变成100条,问鸡兔各多少只?58.10张乒乓球桌上一共有32个同学在比赛.正在单打和双打的球桌各有几张?59.鸡兔一共有腿130条,若交换鸡和兔的数量,则腿变成110条,问鸡兔各有几只?60.李师傅开车从甲地到乙地送货,晴天每天可往返l0次,雨天只能往返6次,他连续几天共往返了48次,平均每天往返8次,这几天中晴天和雨天各几天?参考答案:1.假设全是兔子,则鸡就有:(49×4﹣100)÷(4﹣2),=(196﹣100)÷2,=96÷2,=48(只);所以兔有49﹣48=1(只);答:鸡有48只,兔子有1只2.设该同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=90,4x﹣25+x=90,5x=115,x=23,答:他做对了23道.3.假设全是5元的人民币,则2元的人民币有:(5×40﹣125)÷(5﹣2),=75÷3,=25(张),则5元的有:40﹣25=15(张),答:2元的有25张,5元的有15张.4.假设全是晴天,则雨天有:(9×688﹣5000)÷(688﹣390),=(6192﹣5000)÷298,=1192÷298,=4(天),则晴天有9﹣4=5(天),答:这次比赛期间共有5天晴天,4天雨天5.设该同学答对了x道,则错了(10﹣x)道,根据题意得:8x﹣5(10﹣x)=41,8x﹣50+5x=41,13x=91,x=7,10﹣7=3(道),答:该同学答对7道,答错3道6.(100×2﹣170)÷(2+8),=30÷10,=3(件),答:他损坏了3件.7.设鸡有x只,则兔有(20﹣x)只,2x+(20﹣x)×4=70,2x+80﹣4x=70,2x=10,x=5;则兔的只数为:20﹣5=15(只);答:鸡有5只,兔有15只.8.假设11场比赛全是平,则胜了:(23﹣11×1)÷(4﹣2),=12÷2,=6(场),答:一共胜了6场.9.做错:(20×5﹣72)÷(5+2),=28÷7,=4(道)‘做对:20﹣4=16(道).答:他做对了16道.10.假设25道题全部做对,则做错:(25×4﹣70)÷(1+4),=30÷5,=6(道),则做对:25﹣6=19(道).答:他共填对19道.11.一共采了:360÷18=20(天),假设全是晴天,则雨天有:(20×30﹣360)÷(30﹣15),=240÷15,=16(天),答:这几天当中有16个雨天12.根据分析,假设全是大船,则小船的只数为:(6×8﹣38)÷(6﹣4),=10÷2,=5(只),大船有:8﹣5=3(只),答:小船有5只,大船有3只.13.设大船有x只,小船有(12﹣x)只,5x+(12﹣x)×3=46,5x+36﹣3x=46,2x=10,x=5;答:大船有5只14.(6000﹣4160)÷(30+200),=1840÷230,=8(箱).答:共损坏了8箱15.假设全是方桌子,圆桌子:(4×22﹣76)÷(4﹣3),=12÷1,=12(条);方桌子:22﹣12=10(条);答:圆桌子有12条,方桌子有10条16.1.5×2=3(元),(1.5×3000﹣4468.5)÷(1.5+3),=(4500﹣4468.5)÷4.5,=31.5÷4.5,=7(个);答:在搬运过程中打破了7个陶瓷花瓶17.假设全是龟,鹤:(50×4﹣132)÷(4﹣2),=68÷2,=34(只);龟:50﹣34=16(只);答:龟有16只,鹤有34只18.假设全部为1元的,5角:(20×1﹣16)÷(1﹣0.5),=4÷0.5,=8(枚);1元:20﹣8=12(枚);答:一元的硬笔有12枚19.8元4角=84角,6角的张数:(13×8﹣84)÷(8﹣6),=20÷2,=10(张);8角的张数:13﹣10=3(张);答:他买了6角邮票10张,8角的邮票3张20.假设全是羚羊,鸵鸟:(4×16﹣50)÷(4﹣2),=14÷2,=7(只);羚羊:16﹣7=9(只);答:羚羊有9只,鸵鸟有7只21.根据分析,假设全是大船,则小船的只数为:(12×5﹣46)÷(5﹣3),=14÷2,=7(只),大船有:12﹣7=5(只),答:大船有5只,小船有7只22.设乙种管子有x根,则甲种管子就有25﹣x根,根据题意可得方程:5x﹣8(25﹣x)=21,5x﹣200+8x=21,13x=221,x=17,则甲种管子有25﹣17=8(根),答:甲种管子有8根,乙种管子有17根23.假设全是兔,则鸡有:(4×20﹣44)÷(4﹣2),=36÷2,=18(只),则兔有20﹣18=2(只),答:鸡有18只,兔有2只24.设鸡有x只,则兔有(100﹣x)只,2x+(100﹣x)×4=320,2x+400﹣4x=320,2x=400﹣320,2x=80,x=40;兔有:100﹣40=60(只);答:鸡有40只,兔有80只25.假设全是三轮车,则自行车有:(3×10﹣26)÷(3﹣2),=4÷1,=4(辆),则三轮车有10﹣4=6(辆),答:自行车有4辆,三轮车有6辆26.假设全是鸡,则兔有:(72﹣30×2)÷(4﹣2),=12÷2,=6(只).答:有6只兔27.假设都是三角形卡片,长方形:(145﹣3×40)÷(4﹣3),=25÷1,=25(张);三角形:40﹣25=15(个);答:长方形卡片有25张,三角形卡片有15张28.根据题干分析可得,兔子有:(132﹣15×2)÷(2+4),=102÷6,=17(只),则鸡有17+15=32(只),答:鸡有32只,兔有17只29.设兔有x只,则鸡有100﹣x只,(100﹣x)×2﹣4x=80,200﹣2x﹣4x=80,6x=120,x=20,100﹣20=80(只),答:鸡有80只,兔有20只30.(175﹣100)÷(10﹣5),=75÷5,=15(元);20﹣15=5(张).答:5元和10的人民币分别有5张、15张31.54÷3÷2=9(只);答:鸡和兔各有9只.32.(172﹣51×2)÷(4﹣2),=(172﹣102)÷2,=70÷2,=35(只),51﹣35=16(只).答:有鸡16只,兔35只.33.假设全是买的足球,则篮球买了:(60×25﹣825)÷(60﹣15),=675÷45,=15(个),答:王老师买了15个篮球.34.假设25名同学全是男生,则女生有:(25×7﹣145)÷(7﹣4),=30÷3,=10(人),则男生有:25﹣10=15(人),答:参加植树的男生有15人,女生有10人35.设大油壶x个,则小油壶为(32﹣x)个,4x+(32﹣x)×2=100,64+2x=100,2x=36,x=18;则小油壶为:32﹣18=14(个);答:大油壶18个,小油壶14个.36.方法一:60÷3÷2=10(只);答:鸡和兔各有10只.方法二:设鸡兔各有x只,根据题意可得方程:2x+4x=60,6x=60,x=10,答:鸡兔各有10只.37.兔子:(256﹣20×2)÷(4+2),=216÷6,=36(只),鸡:36+20=56(只);答:鸡有56只,兔子有36只38.假设全是青蛙:56﹣4×11=12(只),8﹣4=4(只),螃蟹:12÷4=3(只),青蛙:11﹣3=8(只)答:螃蟹有3只,青蛙有8只39.设自行车有x辆,则汽车有(16﹣x)辆,2x+(16﹣x)×4=50,2x+16×4﹣4x=50,2x=64﹣50,2x=14,x=7;小汽车的数量为:16﹣7=9(辆);答:有9辆小汽车,7辆自行车40.兔有:(46﹣18×2)÷(4﹣2),=10÷2,=5(只);鸡有:18﹣5=13(只);答:兔有5只,鸡有13只.41.假设20辆全是大客车,则小客车租了:(20×50﹣720)÷(50﹣30),=280÷20,=14(辆),则大客车租了:20﹣14=6(辆),答:大客车租了6辆,小客车租了14辆.42.假设全是兔子,则鸡就有:(40×4﹣112)÷(4﹣2),=48÷2,=24(只);则兔子有40﹣24=16(只);答:鸡有24只,兔子有16只43.设鸡有x只,则兔有(8﹣x)只,2x+(8﹣x)×4=20,2x+32﹣4x=20,2x=32﹣20,2x=12,x=6;兔有:8﹣6=2(只);答:鸡有6只,兔有2只44.假设全是鸡,则兔有:(100﹣29×2)÷2,=42÷2,=21(只),鸡有:29﹣21=8(只).答:鸡有8只,兔有21只45.蜘蛛:(100﹣14×6)÷(8﹣6),=16÷2,=8(只);蚂蚱:14﹣8=6(只);答:蜘蛛有8只,蚂蚱有6只46.设自行车有x辆,则四轮车有x﹣15辆,由题意列方程得:2x+4(x﹣15)=282,2x+4x﹣4×15=282,6x=282+60,6x=342,x=342÷6,x=57;则四轮车有:57﹣15=42(辆).答:自行车有57辆,四轮车有42辆.47.假设全是龟,(50×4﹣180)÷(4﹣2),=(200﹣180)÷2,=20÷2,=10(只),50﹣10=40(只).答:有龟40只,鹤10只.48.兔子的只数是:(86﹣28×2)÷(4﹣2),=(86﹣56)÷2,=30÷2,=15(只);鸡的只数是:28﹣15=13(只).答:共有13只鸡,15只兔.49.(195﹣15×12)÷(18﹣15),=(195﹣180)÷3,=15÷3,=5(分钟),12﹣5=7(分钟).答:李明做了7分钟,王刚做了5分钟.50.假设全是自行车,则小汽车:(126﹣2×36)÷(4﹣2),=54÷2,=27(辆),自行车:36﹣27=9(辆);答:自行车停放了9辆,小汽车停放了27辆51.(200﹣13×8)÷(20﹣8),=(200﹣104)÷12,=96÷12,=8(块);13﹣8=5(块).答:大展板有8块,小展板有5块.52.假设55分钟全是小英走的,(5﹣55×0.08)÷(0.12﹣0.08),=(5﹣4.4)÷0.04,=0.6÷0.04,=15(分钟),55﹣15=40(分钟).答:小英走了40分钟,小刚走了15分钟.53.假设全是鸵鸟,方法一:18×2=36(条),52﹣36=16(条),羚羊:16÷2=8 (只),鸵鸟:18﹣8=10(只);方法二:解设:羚羊有X只,那么鸵鸟有(18﹣X)只.4X+2(18﹣X)=52,4X+36﹣2X=52,2X=52﹣36,2X=16,X=8,18﹣X=18﹣8=10(只);答:羚羊有8只,鸵鸟有10只54.假设全部为跳棋,象棋:(32×6﹣120)÷(6﹣2),=72÷4,=18(副),跳棋:32﹣18=14(副);答:象棋有18副,跳棋有14副.55.假设10天全是晴天,则雨天有:(30×10﹣280)÷(30﹣25),=20÷5,=4(天),则晴天有:10﹣4=6(天),答:晴天有6天,雨天有4天56.假设全是狗,则猎人有:(4×23﹣68)÷(4﹣2),=24÷2,=12(人),则猎狗有23﹣12=11(只);答:猎人有12人,猎狗11只57.鸡兔共有:(100+110)÷(4+2),=210÷6,=35(只),假设全是鸡,腿的数量为:35×2=70(条),实际多:110﹣70=40(条),兔有;40÷2=20(只),鸡有:35﹣20=15(只).答:鸡有15只,兔有20只58.设正在双打的乒乓球桌有x张,则正在进行单打的乒乓球桌就有10﹣x张,根据题意可得方程:4x+2(10﹣x)=32,4x+20﹣2x=32,2x=12,x=6;10﹣6=4(张);答:正在进行双打比赛的乒乓球桌有6张,单打比赛的乒乓球桌有4张59.兔比鸡多:(130﹣110)÷2=10(只),这10只兔子的腿的数量为:10×4=40(条),则鸡的数量为:(130﹣40)÷(4+2)=15(只),兔的只数为:15+10=25(只).答:鸡有15只,兔有25只.60.一共送货的天数:48÷8=6天,假设全是雨天,则晴天的天数为:(48﹣6×6)÷(10﹣6),=12÷4,=3(天),则雨天有:6﹣3=3(天)答:这几天中有3个晴天,3个雨天.。
小学数学鸡兔同笼经典习题及答案
1.一个笼子里有若干只鸡和兔,共有35个头和94只脚,请问笼子里有多少只兔子和鸡?解答:设鸡的数量为x,兔的数量为y,则有以下方程组:x + y = 35 (头数方程)2x + 4y = 94 (脚数方程)解得x = 23,y=12,因此笼子里有23只鸡和12只兔子。
2.有一只笼子里装有鸡和兔子,共有48只脚和20个头,请问笼子里有多少只鸡和兔子?解答:设鸡的数量为x,兔的数量为y,则有以下方程组:x + y = 20 (头数方程)2x + 4y = 48 (脚数方程)解得x = 8,y=12,因此笼子里有8只鸡和12只兔子。
3.一只笼子里共有鸡和兔子46只,它们的脚数为124只,请问笼子里有几只鸡和兔子?解答:设鸡的数量为x,兔的数量为y,则有以下方程组:x + y = 46 (头数方程)2x + 4y = 124 (脚数方程)解得x = 22,y=24,因此笼子里有22只鸡和24只兔子。
4.一个笼子里面关着若干只鸡和兔子。
如果数了一下它们的头共有34个,数了一下它们的脚共有94只,那么笼子里应该有几只兔子和几只鸡?解答:设鸡的数量为x,兔的数量为y,则有以下方程组:x + y = 34 (头数方程)2x + 4y = 94 (脚数方程)解得x = 18,y=16,因此笼子里有18只鸡和16只兔子。
5.一个笼子里面有若干只鸡和兔子,如果数了一下这些动物的头一共有24个,数了一下它们的腿一共有64只,那么笼子里应该有几只兔子和几只鸡?解答:设鸡的数量为x,兔的数量为y,则有以下方程组:x + y = 24 (头数方程)2x + 4y = 64 (脚数方程)解得x = 12,y=12,因此笼子里有12只鸡和12只兔子。
6.一个笼子里面有若干只鸡和兔子,如果数了一下这些动物的头一共有27个,数了一下它们的腿一共有84只,那么笼子里应该有几只兔子和几只鸡?解答:设鸡的数量为x,兔的数量为y,则有以下方程组:x + y = 27 (头数方程)2x + 4y = 84 (脚数方程)解得x = 15,y=12,因此笼子里有15只鸡和12只兔子。
鸡兔同笼题目练习(附答案)
鸡兔同笼题目练习:1. 某农场里有鸡和兔共120只,它们的总腿数是360只。
如果每只兔子的价格是15元,每只鸡的价格是10元,请问这些鸡和兔的总价值是多少元?2. 一个笼子里有鸡和兔共80只,它们的总腿数是220只。
笼子里的所有鸡被卖出后,剩下的兔子被带到另一个笼子里。
问这个新笼子里有多少只兔子?3. 一个笼子里有鸡和兔共50只,它们的总腿数是140只。
笼子里的鸡和兔被分成两组,一组鸡和兔的总腿数是80只,另一组是60只。
问每组里各有多少只鸡和兔?4. 某农场有鸡和兔共96只,它们的总腿数是264只。
如果农场主要把鸡卖掉,可以得到1800元。
请问农场主还可以从卖兔子中得到多少元?(假设每只鸡卖10元,每只兔子卖15元)5. 一个笼子里有鸡和兔共30只,它们的总腿数是86只。
笼子里的鸡和兔被分成三组,第一组有10只,第二组有12只,第三组有8只。
问每组里各有多少只鸡和兔?6. 某养殖场有鸡和兔共45只,它们的总腿数是125只。
如果每只鸡的重量是2公斤,每只兔子的重量是3公斤,请问这些鸡和兔的总重量是多少公斤?7. 一个笼子里有鸡和兔共72只,它们的总腿数是200只。
笼子里的鸡和兔被卖掉后,得到了2400元。
已知每只鸡卖15元,每只兔子卖20元,请问笼子里有多少只鸡和兔?8. 某农场有鸡和兔共90只,它们的总腿数是260只。
如果每只兔子的重量是4公斤,每只鸡的重量是2公斤,请问这些鸡和兔的总重量是多少公斤?9. 一个笼子里有鸡和兔共40只,它们的总腿数是120只。
如果再放进10只兔子,总腿数会变成160只。
问笼子里最终有多少只鸡和兔?10. 某农场有鸡和兔共100只,它们的总腿数是280只。
如果每只鸡卖12元,每只兔子卖18元,请问农场主总共可以得到多少元?答案:1. 鸡有80只,兔有40只,总价值2400元。
2. 新笼子里有40只兔子。
3. 第一组有20只鸡和20只兔,第二组有10只鸡和10只兔。
三年级下册数学试题-奥数练习:鸡兔同笼(含答案)全国通用
假设法解鸡兔同笼(头和腿和)1.例题1.鸡兔同笼共20 只,那么它们的腿和可能是下面哪个数?__________A. 38 条B. 43 条C. 76 条D. 88 条2.鸡兔同笼共30 只,那么它们的腿和可能是下面哪个数?__________A. 69 条B. 72 条C. 30 条D. 200 条3.鸡兔同笼共40 只,那么它们的腿和可能是下面哪个数?__________A. 150 条B. 40 条C. 70 条D. 200 条4.鸡和兔共20 只,鸡腿和兔腿共50 条,那么兔有__________只。
5.鸡和兔共25 只,鸡腿和兔腿共70 条,那么兔有__________只。
6.鸡和兔共30 只,鸡腿和兔腿共70 条,那么兔有__________只。
7.草原上有20 只三脚猫和四脚蛇在聚会,它们的脚和为72 只,那么四脚蛇有__________只。
8.草原上有30 只三脚猫和四脚蛇在聚会,它们的脚和为100 只,那么四脚蛇有__________只。
9.草原上有30 只独脚兽和三脚猫在聚会,它们的脚和为42 只,那么三脚猫有__________只。
10.50 名老师和同学参加聚餐,每名同学吃了2 个包子,每名老师吃了4 个包子,共吃了180 个包子.那么共有______名老师。
11.30 名老师和同学参加聚餐,每名同学吃了2 个包子,每名老师吃了4 个包子,共吃了68 个包子.那么共有__________名老师。
12.100 名老师和同学参加聚餐,每名同学吃了2 个包子,每名老师吃了4 个包子,共吃了280 个包子.那么共有__________名老师。
答案:1.(C) 2.(B) 3.(A) 4.(5)5.(10)6.(5)7.(12)8.(10)9.(6)10.(40)11.(4)12.(40)分组法解鸡兔同笼(头倍腿和、腿倍头和)1.鸡和兔一样多,腿和为30 条,那么鸡有__________只。
三年级奥数5-0鸡兔同笼问题例题及答案 (1)
三年级奥数5-0鸡兔同笼问题例题及答案一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法板块一、两个对象的“鸡兔同笼”【例 1】 鸡兔同笼,头共46,足共128,鸡兔各几只?【解析】 假设46只都是兔,一共应有446184⨯=只脚,这和已知的128只脚相比多了18412856-=只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多422-=(只)脚,那么56只脚是我们把56228÷=只鸡当成了兔子,所以鸡的只数就是28,兔的只数是462818-=(只).当然,这里我们也可以假设46只全是鸡!鼓励学生从两个方面假设解题,更深一步理解假设法.【巩固】 点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只?【解析】 方法一:我们假设,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都是两条后腿,像人一样用两只脚站着.现在,地面上出现的脚是总数的一半,也就是94247÷=(只).在47这个数中,鸡的头数算了一次,兔子的头数相当于算了两次,因此从47减去总头数35,剩下的就是兔子头数,473512-=(只),所以有12只兔子,有351223-=(只)鸡.方法二:假设35只都是兔子,那么就有354140⨯=(只)脚,比94只脚多了1409446-=(只).每只鸡比兔子少422-=(只)脚,那么共有鸡46223÷=(只)方法三:还可以假设35只都是鸡,那么共有脚23570⨯=(只),比94只脚少了947024-=(只)脚,每只鸡比兔子少422-=(只)脚,那么共有兔子24212÷=(只).方法一可以归结为:总脚数2÷-总头数=兔子数.能够这样算,主要是利用了兔和鸡的脚数分别为4和2,而且4是2的2倍.方法二说明假设的35只兔子中有23只不是兔子,而是鸡.由此可以列出公式:鸡数=(兔脚数⨯总头数-总脚数)÷(兔脚数-鸡脚数)方法三说明假设的35只鸡中有12只是兔.由此可以列出公式:兔数=(总脚数-鸡脚数⨯总头数)÷(兔脚数-鸡脚数)【巩固】 鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只?兔子多少只?【解析】 ⑴假设法:若假设所有的45只动物都是兔子,那么一共应该有445180⨯=(条)腿,比实际多算18010080-=(条)腿.而每将一只鸡算做一只兔子会多算两条腿,所以有80240÷=(只)鸡被当作了兔子,所以共有40只鸡,有45405-=(只)兔子.注意:假设为兔子时,按照“多算的腿数”计算出的是鸡的数目;假设为鸡时,按照“少算的腿数”计算出的是兔子的数目.同学们可以自己来做一下当假设为鸡时的算法.⑵“金鸡独立”法(砍足法):假设所有的动物都只用一半的腿站立,这样就出现了鸡都变成了“金鸡独立”,而兔子们都只用两条腿站立的“奇观”.这样就有一个好处:鸡的腿数和头数一样多了;而每只兔子的腿数则会比头数多1.因此,在腿的数目都变成原来的一半的时候,腿数比头数多多少,就有多少只兔子.原来有100只腿,让兔子都抬起两只腿,鸡抬起一只腿,则此时笼中有100250÷=(条)腿,比头数多50455-=,所以有5只兔子,另外40只是鸡.【巩固】 动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【解析】 由于每只动物有两只眼睛,由题意知:动物园里鸵鸟和大象的总数为:36218÷=,假设鸵鸟和大象一样也有4只脚,则应该有(418)72⨯=只脚,多了(7252)20-=只脚,由假设引起的差值:422-=,则鸵鸟数为20210÷=(只),大象数为18108-=(头).【巩固】 鸡兔同笼,上有35头,下有94足,求笼中鸡兔各几只?【解析】 有兔(94352)(42)12-⨯÷-= (只),有鸡351223-= (只).【例 2】 动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【解析】 假设梅花鹿和鸵鸟的只数相同,则从总脚数中减去鸵鸟多的20只的脚数得:208202168-⨯=(只).这168只脚是梅花鹿的脚数和鸵鸟的脚数(注意此时梅花鹿和鸵鸟的只数相同)脚数的和,一只梅花鹿和一只鸵鸟的脚数和是:246+=(只),所以梅花鹿的只数是:168628÷=(只),从而鸵鸟的只数是:282048+=(只) (本题也可给学生讲成“捆绑法”,一鸡一兔一组,这个怎么分组时有倍数关系得到的)【巩固】 一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【解析】 已知鸡比兔多36只,如果把多的36只鸡拿走,剩下的鸡兔只数就相等了,拿走的36只鸡有23672⨯=(只)脚,可知现在剩下79272720-=(只)脚,一只鸡与一只兔有6只脚,那么兔有7206120÷=(只),鸡有12036156+=(只).【巩固】 鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【解析】 这道例题和前面的例题有所不同,前面的题是已知头数之和和脚数之和求各有几只,而这道题是已知头数之和和脚数之差,这样就比前面的例题增加了一点难度.我们用两种方法来解这道题.(方法一)考虑如果补上鸡脚少的56只的话,那么就要增加56228÷=(只)鸡.这样一来,鸡、兔共有10728135+=(只),这时鸡脚、兔脚一样多.已知一只鸡的脚数是一只兔的一半,而现在鸡脚、兔脚相同,可知鸡的只数是兔的2倍,根据和倍问题有:兔有:135(21)45÷+=(只)鸡有:135452862--=(只)或者1074562-=(只)(方法二)不妨假设107只都是兔,没有鸡,那么就有兔脚:1074428⨯=(只),而鸡的脚数为零.这样兔脚比鸡脚多428只,而实际上只多56只,这说明假设的兔脚比鸡脚多的数比实际上多:42856372-=(只).现在以鸡换兔,每换一只,兔脚减少4只,鸡脚增加2只,即兔脚与鸡脚的总数差就会减少426+=(只).鸡的只数:372662÷=(只)兔的只数:1076245-=(只)【巩固】 鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【解析】 假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零.这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多20020180-=(只).现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少426+=(只),而180630÷=,因此有兔子30只,鸡1003070-=(只).【巩固】鸡、兔共60只,鸡脚比兔脚多60只.问:鸡、兔各多少只?【解析】假设60只都是鸡,没有兔,那么就有鸡脚120只,而兔的脚数为零.这样鸡脚比兔脚多120只,而实际上只多60只,这说明假设的鸡脚比兔脚多的数比实际上多1206060-=(只).现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少426+=(只),而60610-=(只).÷=,因此有兔子10只,鸡601050【巩固】鸡、兔同笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?【解析】这道例题是已知鸡、兔的脚数和,鸡比兔多的只数,求鸡、兔各几只.我们假设鸡与兔只数一样多,那么现在它们的足数一共有:274226222-⨯=(只),每一对鸡、兔共有足:246+=(只),鸡兔共有对数(也就是兔子的只数):222637+=(只).÷=(对),则鸡有 372663【巩固】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?【解析】解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是(100+28÷2)÷(2+1)=38(只).鸡是100-38=62(只).当然也可以去掉兔28÷4=7(只).兔的只数是(100-28÷4)÷(2+1)+7=38(只).也可以用任意假设一个数的办法.解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是4×50-2×50=100, 比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是(100-28)÷(4+2)=12(只). 兔只数是50-12=38(只).【例3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?【分析】假设都是三轮摩托车,应有341123-=(个)轮子.每把一辆汽车假设⨯=(个)轮子,少了1271234为三轮摩托车,会减少431÷=(辆);从而求出三轮摩托车有-=(个)轮子.汽车有414-=(个)轮子;⨯=(个)轮子,多了16412737-=(辆).或者假设都是汽车,应有44116441437所以摩托车有37(43)37÷-=(辆).【巩固】体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?【解析】假设买的都是上衣,那么裤子的件数为:(2421439)(2419)13⨯-÷-=(件),上衣:21138-=(件).【巩固】小建和小雷做仰卧起坐,小建先做了3分钟,然后两人各做了5分钟,一共做仰卧起坐136次.已知每分钟小建比小雷平均多做4次,那么小建比小雷多做了多少次?【解析】假设小建每分钟做仰卧起坐的次数与小雷一样多,这样两人做仰卧起坐的总次数就减少了()()(次),进而可以分别求出-÷++=43532()(次),由此可知小雷每分钟做了136323558⨯+=小建每分钟做的次数以及两人分别做仰卧起坐的总次数之差.假设小建每分钟做仰卧起坐的次数与小雷一样多,两人做仰卧起坐的总次数就减少:43532⨯+=()(次)小雷每分钟做:136323558()()(次);小建每分钟做:8412+=(次)-÷++=小建一共做:123596⨯=(次)()(次);小雷一共做:8540⨯+=小建比小雷多做:964056-=(次)【例4】(中国古代僧粥问题)一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?【解析】我们把大碗换小碗,换小碗盛粥!把一大碗粥分成三小碗粥,则原题变为一百个和尚喝三百碗粥,一个大和尚喝九碗粥,一个小和尚喝一碗粥.然后仍然用假设法:假设都是小和尚,只能喝1100100-=(碗)⨯=(碗)粥,有一个大和尚被当成小和尚会少918粥,一共少了300100200-=÷=(个);小和尚有1002575-=(碗)粥.所以大和尚有200825(个).【巩固】 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?【解析】 本题由中国古算名题“百僧分馍问题”演变而得.如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解.假设100人全是大和尚,那么共需馍300个,比实际多300140160-=(个).现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少312-=(个),因为160280÷=,故小和尚有80人,大和尚有1008020-=(人).同样,也可以假设100人都是小和尚,这里不再作说明.【巩固】 100个和尚160个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?【解析】 本题由中国古算名题“百僧分馍问题”演变而得.如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解.假设100人全是大和尚,那么共需馍300个,比实际多300160140-=(个).现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少312-=(个),因为140270÷=,故小和尚有70人,大和尚有1007030-= (人).同样,也可以假设100人都是小和尚,同学们不妨自己试试.【解析】 从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水?多少个挑水?【解析】 假设全是抬水,38根扁担应担38个桶,而实际上是58个桶,为什么少了583820-=(个)桶呢?因为当我们把一个挑水的当作抬水的就会少算211-=(个)桶,所以有20120÷=(人)在挑水,拾水的扁担数是382018-=(根),抬水的人数是18236⨯=(人).【例 5】 工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【解析】 本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差10020120+=(元),即损1个花瓶不但得不到20元的运费,而且要付出120元.本例可假设250个花瓶都完好,这样可得运费202505000⨯=(元).这样比实际多得50004400600-=(元).就是因为有损坏的瓶子,损坏1个花瓶相差120元.现共相差600元,从而求出共损坏多少个花瓶.根据以上分析,可得损坏了202504400100205()()(个).⨯-÷+=【巩固】乐乐百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶?【解析】假设100只花瓶在搬运过程中一只也没有打破,那么应得运费1100100⨯=(元).实际上只得到92元,少得100928-=(元).搬运站每打破一只花瓶要损失112+=(元).因此共打破花瓶824÷=(只).【巩固】有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只【解析】如果没有破损,运费应是400元.但破损一只要减少1+0.2=1.2(元).因此破损只数是(400-379.6)÷(1+0.2)=17(只).【例6】(2008年第八届“春蕾杯”小学数学邀请赛决赛)甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10发,共得208分,最后甲比乙多得64分,乙打中发。
鸡兔同笼的练习题及答案
鸡兔同笼的练习题及答案鸡兔同笼的练习题及答案很多同学从三年级开始接触奥数,老师讲解的第一个列题就是鸡兔同笼的问题,下面是小编收集整理的鸡兔同笼的`练习题及答案,希望对您有所帮助!例题:鸡兔一共关进一个笼子里,从外面看一共有100个头,有320只脚,请问笼子里面的鸡和兔子各自有多少只?点拨解析鸡有2只脚,兔有4只脚,如果把兔子的两只前脚用绳子捆起来,当成一只脚,两只后脚也用绳子捆起来,当成一只脚,那么兔子和鸡一样,都是2只脚。
鸡和兔的总脚数就是100×2=200(只),但比实际320只脚要少320-200=120(只),为什么会少了120只脚呢?是因为每只兔子只算一只前脚,一只后脚,而少算了一只前脚和一只后脚。
也就是说每只兔子都少算了两只脚,一共少算了120只脚,所以兔子应该有120÷2=60(只)。
解法一:2×100=200(只)320-200=120(只)120÷2=60(只)100-60=40(只)解法二:4×100=400(只)400-320=80(只)80÷2=40(只)100-40=60(只)答:鸡有40只,兔有60只。
数量关系解析:1.如果假定全部是兔,则鸡的只数=(每只兔的足数×总头数-总足数)÷(每一只鸡与兔足数的差)简单理解就是:鸡的只数=(4 ×总头数-总足数)÷2兔的只数=总头数-鸡的只数2.如果假定全部是鸡,则兔的只数=(总足数-每只鸡的足数×总头数)÷(每一只鸡与兔足数的差)简单写就是兔的只数=(总足数-2 ×总头数)÷2鸡的只数=总头数-兔的只数。
经典奥数鸡兔同笼问题例题
1.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个.它一连几天采了112个松籽,平均每天采14个.问这几天当中有几天有雨?[分析与解]松鼠妈妈一共采了112÷14=8天的松子,如果全部都是晴天,那么应该采20×8=160个,现在只采有112个是因为有雨天,所以而(160-112)÷(20-12)=6,这几天当中6天有雨.2.甲、乙两个车间共有94名工人,每天共生产1998把竹椅.由于设备和技术的不同,甲车间平均每名工人每天只能生产15把竹椅,而乙车间平均每名工人每天可以生产43把竹椅.甲车间每天竹椅的产量比乙车间多多少把?[分析与解]如果94全部都是甲车间的,那么每天应生产94×15=1410把竹椅,而实际上每天生产1998把,这是因为乙车间的存在,所以乙车间有(1998-1410)÷(43-15)=21人,那么甲车间有94-21=73人.所以甲车间每天生产竹椅73×15=1095把,乙车间每天生产21×43=903把.那么甲车间每天竹椅的产量比乙车间多1095-903=192把.3.三年级一班的40名同学参加植树,男生每人种3棵树,女生每人种2棵树.已知男生比女生多种30棵树,问男、女生各有多少人?[分析与解]如果男、女生一样多,那么男生比女生多种(3-2)×20=20棵树,实际男生比女生多种30棵树,是因为男生比女生多,男生每增加1名女生就减少1名,这样每增加1名男生,男生就是女生多种3+2=5棵树,所以男生的人数比20多(30-20)÷5=2名.则男生22名,女生18名.4.集体劳动时,一些人抬土(即两个人用一根扁担抬一个筐),其余的人挑土(即一个人用扁担挑两个筐),结果共用27根扁担和44个筐.那么挑土、抬土的各有多少人?[分析与解]如果全部是挑土,那么27根扁担需要27×2=54个筐,现在只需44个筐,这是因为有人抬土,所以抬土的筐有(54-44)÷(2-1)=10个,那么挑土的筐有44-10=34个.所以挑土的有34÷2=17人,抬土的有10×2=20人.5.在一次数学竞赛共有20道题,规定答对一题得10分,答错一题倒扣5分.五年级一班有45名同学参加,共得5625分,那么这个班共答对多少道题?[分析与解]如果这个班全部答对应得20×45×10=9000分,现在只得到了5625分,是因为有人答错,而答错一道题较答对一道题要差10+5=15分.所以共答错(9000-5625)÷15=225,那么共答对了20×45-225=675题.6.托运玻璃仪器250箱,合同规定每箱运费20元,若有损坏,被损坏的箱不仅不给运费,还要每箱赔偿损失费100元.那么运后结算时要想获得运费,最多只能损坏多少箱?如果没有损坏那么250箱可以获得运费20×250=5000元,但是如果损坏一箱较没有损坏要少100+20=120元钱,5000÷120≈41.7.所以最多只能损坏41箱才能在结算时获得运费.7.某杂志每期定价2元5角,全年共出12期.某班一些学生订半年,其余学生订全年,共需订费1320元;如果订半年的改订全年,而订全年的改订半年,那么共需订费1245元.问这个班共有多少名学生?[分析与解]如果订全年的学生和订半年的学生人数一样多,那么调换前后的订费不变,现在调换后减少了1320-1245=75元,说明开始的时候订全年的比订半年的多.这些人调换为半年的后,每调换1人,订费减少2.5×6=15元,那么开始订全年的学生比订半年的学生多75÷15=5人.如果先除去5人,在剩下的人订半年的与订全年的一样多,订费为1320-5×2.5×12=1170元,则剩下的学生为1170÷[2.5×(12+6)]×2=52名,所以共有学生52+5=57人.方法二:我们把调换前后的情况相加,则每人都订了1年半的杂志,每人需2.5×(12+6)=45元,订费共1320+1245=2565元,则有学生2565÷45=57人.8.食品店上午卖出每千克为20元、25元、30元的3种糖果共100千克,共收入2570元.已知其中售出每千克25元和每千克30元的糖果共收入了1970元,那么每千克25元的糖果售出了多少千克?由题中条件知,卖出每千克20元的糖果所得的收入为2570-1970=600元,那么卖出了600÷20=30千克.则每千克25元和30元的糖果卖出了100-30=70千克,所得收入为1970元,如果全部是每千克30元的糖果,那么卖出70千克所得的收入应为70×30=2100元,现在实际为1970元,这是因为还有每千克25元的糖果.所以每千克25元的糖果卖出了(2100-1970)÷(30-25)=26千克.9.某造纸厂在100天里共生产2000吨纸.开始阶段,每天只能生产10吨纸.中间阶段,由于改进了生产规程,每天的产量提高了一倍.最后阶段,由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有多少天?[分析与解]中间阶段每天生产10×(1+1)=20吨,最后阶段每天生产20×(1+1.5)=50吨.如果多加上13天的开始阶段阶段,那么中间阶段生产的天数的2倍与开始阶段相等.这时变成生产100+13=113天,生产了2000+13×10=2130吨.如果全部都是开始和中间阶段,那么每3天生产10×2+20×1=40吨,而全部都是最后阶段,则每3天生产50×3=150吨.如果全部是最后阶段则113天生产113×50=5650吨,现在为2260吨是因为还有开始、中间阶段,所以开始、中间阶段为(5650-2130)÷(150-40)×3=96天,所以最后阶段为113-96=17天.10.某校购买了大、中、小3种型号的投影仪共47台,它们的单价分别是700元、300元、200元,共支出21200元.已知中型投影仪的台数为小型投影仪台数的2倍,问购买了多少台大型投影仪?如果只有中、小型投影仪,则每3台种中,中型有2台,小型有1台.于是价格为300×2+200=800台,而3台大型投影仪的价格为700×3=2100元,所以有大型投影仪(21200-47×800÷3)÷(2100-800)×3=20台.11.有红、黄、绿3种颜色的卡片共l00张,其中红色卡片的两面上分别写有l和2,黄色卡片的两面上分别写有1和3,绿色卡片的两面上分别写有2和3.现在把这些卡片放在桌子上,让每张卡片写有较大的数字的那面朝上,经计算,各卡片所显示的数字之和为234.若把所有的卡片正反面翻转一下,各卡片所显示的数字之和则变为123.问黄色卡片有多少张?[分析与解]开始的时候为红2,黄3,绿3,后来为红1,黄1,绿2;如果开始的时候全部都是黄、绿颜色的卡片,那么100张的和应该是100×3=300,而实际为234,这是因为含有红色的卡片,所以有红色卡片(300-234)÷(3-2)=66张,黄、绿卡片共有100-66=34张.于是在翻转之后,黄、绿卡片上的数字和为123-66×1=57,为34张,如果全部是绿色卡片那么应该34张的和为34×2=68,所以黄色卡片有(68-57)÷(2-1)=11张.所以五道题共做对的人次是:48+46+42+32+13=181做对2题、3道、4道题的人次和181—7×1—5×6=144.又因为做对2道题和3道题的人数一样多,所以2人做对2+3=5道题.做对2、3道题及4道题的人数为:52-7-6=39人.如果每人都做对4道题,则共做对39×4=156人题次,所以做对2、3道题的人有:(156-144)÷(8-5)×2=8人.那么做对4道题的人有39-8=31人.13.有鸡兔若干只,其中总腿数比总头数的3倍多8,而鸡数的5倍比兔数的4倍少19只.问共有鸡兔多少只?[分析与解]注意到如果鸡、兔的只数相等,那么它们的总腿数是总头数的3倍,如果总数不变,兔每增加1只,鸡就减少1只,则腿就较变换前增加4-2=2个,而兔就比鸡多2只,也就是说兔比鸡多1只,则总腿数比总头数的3倍多1只,现在多8只,所以兔比鸡多8只.于是兔的4倍相当与鸡的4倍多32只,有5倍鸡=4倍鸡+32-19,所以鸡有13只,那么兔有13+8=21只,所以鸡、兔共有13+21=34只.14.某工厂生产甲、乙、丙3种产品,它们的单价分别是11元、7元和2元.若把甲种产品的件数与乙种产品的件数互换,则产值增加28000元;若把乙种产品的件数与丙种产品的件数互换,则产值减少30000元.如果把甲种产品的件数与丙种产品的件数互换,那么产值增加或减少多少元?[分析与解]甲、乙调换后产值增加了,说明开始的时候甲产品比乙产品少,少28000÷(11-7)=7000件;乙、丙调换后产值减少了,说明开始的时候乙产品比丙产品多,多30000÷(7-2)=6000件;所以丙比甲多7000-6000=1000件,于是甲、乙调换后,产值增加,增加1000×(11-2)=9000元.15.已知甲、乙、丙3位同学共解出100道数学题,且他们3人每人都解出其中的60道题.若将其中只有1人解出的题叫做“难题”,3人都解出的题叫做“容易题”,则“难题”比“容易题”多多少道?[分析与解]我们把有2人解出的题叫做“中档题”,而可以将1道“难题”和1道“容易题”视为2道“中档题”,那么如果全部都是“中档题”则3人共解出2×100=200道题,现在只解出60×3=180道,说明合并后仍然有“难题”,“难题”有(200-180)÷(3-2)=20道.于是,合并后剩下的20道“难题”即为“难题”比“容易题”多的道数,即“难题”比“容易题”多20道。
鸡兔同笼的奥数题大全
1、某玩具店新购进飞机和汽车模型共30个,其中飞机模型每个有5个轮子,汽车模型每个有6个轮子,这些玩具模型共有160个轮子。
则新购进的飞机模型有多少个?A. 10个B. 15个C. 20个D. 25个(答案:C)2、小福奥数考试,一共15题,每题5分,错一题或者不答一题倒扣3分,小福一共得了51分,他对了多少题?A. 10题B. 11题C. 12题D. 13题(答案:B)3、动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤。
该动物园共有这两类动物100头,每次需喂肉100斤,问大、小动物各多少?A. 大动物20头,小动物80头B. 大动物25头,小动物75头C. 大动物30头,小动物70头D. 大动物35头,小动物65头(答案:B)4、自行车和三轮车共5辆,总共13个轮子,三轮车有:A. 2辆B. 3辆C. 4辆D. 5辆(答案:B)5、乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损毁,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。
问:搬运过程中共打破了几只花瓶?A. 5只B. 10只C. 15只D. 20只(答案:A)6、鸡兔同笼有23个头,有62条腿.兔有多少只?A. 10只B. 11只C. 12只D. 13只(答案:D)7、鸡比兔多13只,鸡腿比兔腿多16条,鸡和兔各有多少只?A. 鸡23只,兔10只B. 鸡20只,兔10只C. 鸡15只,兔10只D. 鸡25只,兔12只(答案:D)8、小福奥数考试,一共10题,每题2分,错一题或者不答一题倒扣1分,小福一共得了15分,他对了多少题?A. 8题B. 9题C. 10题D. 11题(答案:B)9、鸡兔同笼共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡有多少只.A. 10只B. 12只C. 14只D. 16只(答案:D)10、动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤。
三年级奥数鸡兔同笼问题例题及答案
三年级奥数5-1鸡兔同笼训练题【例 1】鸡兔同笼,头共,足共,鸡兔各几只?12846【巩固】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有个头,只脚.问:9435点点家养的鸡和兔各有多少只?【巩固】鸡兔共有只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有条腿.试10045计算,笼中有鸡多少只?兔子多少只?【巩固】动物园里有一群鸵鸟和大象,它们共有只眼睛和只脚,问:鸵鸟和大象各有多少?5236【巩固】鸡兔同笼,上有头,下有足,求笼中鸡兔各几只?9435【例 2】动物园里养了一些梅花鹿和鸵鸟,共有脚只,鸵鸟比梅花鹿多只,梅花鹿和鸵鸟各有多20208少只?【巩固】一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【巩固】鸡兔同笼,鸡、兔共有只,兔的脚数比鸡的脚数多只,问鸡、兔各多少只?56107【巩固】鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【巩固】鸡、兔共只,鸡脚比兔脚多只.问:鸡、兔各多少只?6060【巩固】鸡、兔同笼,鸡比兔多只,足数共只,问鸡、兔各几只?27426【巩固】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?【例 3】在一个停车场上,现有车辆辆,其中汽车有个轮子,摩托车有个轮子,这些车共有个1273441轮子,那么三轮摩托车有多少辆?【巩固】体育老师买了运动服上衣和裤子共件,共用了元,其中上衣每件元、裤子每件元,194392421问老师买上衣和裤子各多少件?【巩固】小建和小雷做仰卧起坐,小建先做了分钟,然后两人各做了分钟,一共做仰卧起坐次.已13635知每分钟小建比小雷平均多做次,那么小建比小雷多做了多少次?4【例 4】(中国古代僧粥问题)一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?【巩固】100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?【巩固】个和尚个馍,大和尚人分个馍,小和尚人分个馍.问:大、小和尚各有多少人?3160100111【解析】从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水?多少个挑水?【例 5】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【巩固】乐乐百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶?【巩固】有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只【例 6】(2008年第八届“春蕾杯”小学数学邀请赛决赛)甲、乙两人进行射击比赛,约定每中一发得脱靶一发扣分,两人各打发,共得分,最后甲比乙多得分,乙打中发。
鸡兔同笼应用题100道及解法
题目1:一个笼子里共有15头鸡,20只兔子,头数总共有多少?
答案:头数总共有35头。
题目2:一个笼子里共有10头鸡,16只兔子,脚数总共有多少?
答案:脚数总共有60只。来自题目3:一个笼子里共有13头鸡,19只兔子,如果把这些动物全部出售,可以获得多少元钱?
答案:可以获得952元钱(13头鸡×5元/只=65元,19只兔子×4元/只=76元,65元+76元=952元)。
题目4:一个笼子里共有14头鸡,20只兔子,如果把这些动物全部出售,可以获得多少元钱?
答案:可以获得980元钱(14头鸡×5元/只=70元,20只兔子×4元/只=80元,70元+80元=980元)。
鸡兔同笼三年级奥数题
鸡兔同笼三年级奥数题例题一鸡兔同笼,共38个头,112只脚,那么鸡有多少只?兔有多少只?解析:先把38个头全看成兔子,就应有4×38=152只脚,但是题目中告诉只有112只脚,为何多了152-112=40只因为把鸡看成4只脚,每只鸡多数了4-2=2只脚,所以40÷2=20只鸡,最后用总头数减去鸡的只数就是兔子的只数38-20=18只。
例题二在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?解析:假设都是三轮摩托车,应有3×41=123轮子,少了127-123=4个轮子。
每把一辆汽车假设为三轮摩托车,会减少4-3=1个轮子,汽车有4÷1=4辆,从而求出三轮摩托车有41-4=37辆,同理可假设都是汽车。
例题三有100个和尚和140个馍,大和尚1人分3个馍,小和尚1人分1个馍,问:大、小和尚各有多少人?解析:如果将大和尚,小和尚,分别看作鸡和兔,馍看做腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多160个。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2个,因为160÷2=80,故小和尚有80人,大和尚有100-80=20人,同样也可以假设100人都是小和尚,请孩子们自己作答。
例题四工人运青瓷花瓶250个,规定完整运到目的地,1个给运费20元,损坏1个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少个?解析:这道题中“损坏了一个倒赔100元”的意思是,运一个完好的花瓶与损坏一个花瓶相差,100+20=120元,即损一个花瓶,不但得不到20元的运费,而且要赔偿100元本题可假设250个花瓶都完好,这样可得运费20×250=5000元,这样比实际多得5000-4400=600元,就是因为有损坏的瓶子,损坏1个花瓶相差120元。
三年级奥数5_1鸡兔同笼问题例题和答案
三年级奥数5-1鸡兔同笼训练题【例 1】鸡兔同笼,头共46,足共128,鸡兔各几只【巩固】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只【巩固】鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只兔子多少只【巩固】动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少【巩固】鸡兔同笼,上有35头,下有94足,求笼中鸡兔各几只【例 2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只【巩固】一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只【巩固】鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只【巩固】鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只【巩固】鸡、兔共60只,鸡脚比兔脚多60只.问:鸡、兔各多少只【巩固】鸡、兔同笼,鸡比兔多26只,足数共274只,问鸡、兔各几只【巩固】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只【例 3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆【巩固】体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、【巩固】小建和小雷做仰卧起坐,小建先做了3分钟,然后两人各做了5分钟,一共做仰卧起坐136次.已知每分钟小建比小雷平均多做4次,那么小建比小雷多做了多少次【例 4】(中国古代僧粥问题)一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个【巩固】100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人【巩固】100个和尚160个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人【解析】从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水多少个挑水【例 5】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个【巩固】乐乐百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶【巩固】有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费元,问这次搬运中玻璃瓶破损了几只【例 6】(2008年第八届“春蕾杯”小学数学邀请赛决赛)甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10发,共得208分,最后甲比乙多得64分,乙打中发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级奥数5-1鸡兔同笼训练题【例 1】鸡兔同笼,头共46,足共128,鸡兔各几只?【巩固】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只?【巩固】鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只?兔子多少只?【巩固】动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【巩固】鸡兔同笼,上有35头,下有94足,求笼中鸡兔各几只?【例 2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【巩固】一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【巩固】鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【巩固】鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【巩固】鸡、兔共60只,鸡脚比兔脚多60只.问:鸡、兔各多少只?【巩固】鸡、兔同笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?【巩固】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?【例 3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?【巩固】体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?【巩固】小建和小雷做仰卧起坐,小建先做了3分钟,然后两人各做了5分钟,一共做仰卧起坐136次.已知每分钟小建比小雷平均多做4次,那么小建比小雷多做了多少次?【例 4】(中国古代僧粥问题)一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?【巩固】100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?【巩固】100个和尚160个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?【解析】从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水?多少个挑水?【例 5】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【巩固】乐乐百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶?【巩固】有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只【例 6】(2008年第八届“春蕾杯”小学数学邀请赛决赛)甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10发,共得208分,最后甲比乙多得64分,乙打中发。
【巩固】某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?【巩固】数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【巩固】东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?【巩固】(第八届“祖冲之杯”数学邀请赛填空题)一张数学试卷,只有25道选择题.做对一题得4分,做错一题倒扣1分;如不做,不得分也不扣分.若小明得了78分,那么他做对题,做错题,没做题.【巩固】春风小学3名云参加数学竞赛,共10道题,答对一道题得10分,答错一道题扣3分,这3名同学都回答了所有的题,小明得了87分,小红得了74分,小华得了9分,他们三人一共答对了_____道题.【巩固】某次考试有52人参加,共考5道题,每题做错人数的统计表如下图.还知道每人都至少做对1道题,做对1道题的有7人,5道题全对的有6人,做对2道题和3道题的人数一样多.那么做对4道题的人数是多少?【例 7】(小学数学奥林匹克初赛试题)孙阿姨有贰元人民币和伍元人民币共62张,合计226元,孙阿姨这两种人民币各有多少张?【巩固】小华用二元五角钱买了面值二角和一角的邮票共17张,问两种邮票各买多少张?【巩固】有1元和5元的人民币共17张,合计49元,两种面值的人民币各有多少张?【巩固】小同有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.小同共存了多少钱?【巩固】买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张【巩固】四年级的同学们去春游,按团体购票120张,共432元,其中单程票每张2元,往返票4元,那么单程票和往返票相差多少张?【巩固】李明和张亮轮流打一份稿件,李明每天打15页,张亮每天打10页,他们一连打了25天,平均每天打12页,问李明、张亮各打了多少天?【解析】某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【巩固】(2000年北京市“迎春杯”决赛)使用甲种农药每千克要兑水20千克,使用乙种农药每千克要千克,要配药水1400千克,那么,其中甲种农药用了多少千克?【例 8】小红家养了一些鸡,黄鸡比黑鸡多13只,比白鸡少18只.白鸡的只数是黄鸡的2倍,白鸡、黄鸡、黑鸡一共有多少只?【巩固】现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?【巩固】三(1)班有象棋、飞行棋共14副,恰好可供全班40名同学同时进行活动.象棋要2人下一副,飞行棋要4人下一副,则飞行棋和跳棋各有几副?【巩固】一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆.已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?【巩固】王老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?【巩固】松鼠妈妈采松果,晴天每天可以采20个,雨天每天只能采14个.它一连几天采了112个松果,平均每天采14个.问这几天中有几个雨天?【巩固】小松鼠采松果,晴天每天可以采10个,雨天每天只能采6个.它一连几天采了80个松果,平均每天采8个.那么其中有几天是雨天呢?【例 9】某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40元,如果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各买各的少花120元,问这个旅游团一共有多少人?【巩固】有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?【例 10】大、小猴共35只,它们一起去采摘水蜜桃.猴王不在时,一只大猴一个小时可采摘15千克,一只小猴子一小时可摘11千克;猴王在场监督的时候,每只猴子不论大小每小时都可以多采摘12千克.一天,采摘了8小时,其中第一小时和最后一小时猴王在监督,结果共采摘了4400千克水蜜桃.在这个猴群中,共有小猴子多少只?【例 11】今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?【例 12】一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?【例 13】有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?【巩固】食品店上午卖出每千克为20元、25元、30元的3种糖果共100千克,共收入2570元.已知其中售出每千克25元和每千克30元的糖果共收入了1970元,那么,每千克25元的糖果售出了多少千克?【例 14】(希望杯培训题)在一次考试中有选择题、填空题和解答题三类题共22道.选择题和填空题每题4分,解答题每题10分.这次考试总分是100分,其中选择题和解答题的分值比填空题多4分,这次考试有多少道选择题?多少道填空题?多少道解答题?【例 15】犀牛、羚羊、孔雀三种动物共有头26个,脚80只,犄角20只.已知犀牛有4只脚、1只犄角,羚羊有4只脚,2只犄角,孔雀有2只脚,没有犄角.那么,犀牛、羚羊、孔雀各有几只呢?【巩固】某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?【巩固】有红、黄、绿3种颜色的卡片共有100张,其中红色卡片的两面上分别写有1和2,黄色卡片的两面上分别写着1和3,绿色卡片的两面上分别写着2和3.现在把这些卡片放在桌子上,让每张卡片写有较大数字的那面朝上,经计算,各卡片上所显示的数字之和为234.若把所有卡片正反面翻转一下,各卡片所显示的数字之和则变成123.问黄色卡片有多少张?【例11】箱子里红、白两种玻璃球,红球数是白球数的3倍多2只,每次从箱子里取出7只白球、15只红【例 16】商店出售大,中,小气球,大球每个3元,中球每个1.5元,小球每个1元.张老师用120元共买了55个球,其中买中球的钱与买小球的钱恰好一样多.问每种球各买几个?【例 17】从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米【例 18】某商场为招揽顾客举办购物抽奖.奖金有三种:一等奖1000元,二等奖250元,三等奖50元.共有100人中奖,奖金总额为9500元.问二等奖有多少名?【例 19】有50位同学前往参观,乘电车前往每人1.2元,乘小巴前往每人4元,乘地下铁路前往每人6元.这些同学共用了车费110元,问其中乘小巴的同学有多少位?【例 20】一些奇异的动物在草坪上聚会.有独脚兽(1个头、1只脚)、双头龙(2个头、4只脚)、三脚猫(1个头、3只脚)和四脚蛇(1个头、4只脚).如果草坪上的动物共有58个头、160只脚,且四脚蛇的数量恰好是双头龙的2倍,那么其中独脚兽有几只?【例 21】学校组织新年游艺晚会,用于奖品的铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔的4倍.已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元.问三种笔各有多少支?。