《反比例函数》教学课件

合集下载

反比例函数-ppt课件

反比例函数-ppt课件

读 范围.
27.1 反比例函数
归纳总结


由于反比例函数表达式中只有一个待定系数 k,因此求

单 反比例函数的表达式只需一组对应值或一个条件即可.


27.1 反比例函数
对点典例剖析


典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4

单 .


(1)求 y 与 x 之间的函数表达式;


题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.


27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型

例 2 某公司将特色农副产品运往邻市市场进行销售,

型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶

破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=


时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=


清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与



读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+


.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与

反比例函数ppt课件免费课件ppt课件

反比例函数ppt课件免费课件ppt课件

反比例函数的性质
反比例函数具有无限递减或无限递增的性质,即随着$x$的增大或减小,$f(x)$的值 会无限接近于0但永远不会等于0。
反比例函数在自变量$x$等于0时没有定义,因为分母不能为0。
反比例函数具有对称性,即当$x$取正值时和取负值时的函数值是相等的。
02
反比例函数的应用
反比例函数在生活中的应用
反比例函数与正比例函数的比较
定义域
正比例函数和反比例函数的定义 域均为$x in R$,即实数集。
函数图像
正比例函数图像是一条过原点的直 线,而反比例函数的图像是双曲线 。
增减性
正比例函数随着$x$的增大而增大或 减小,而反比例函数在$x>0$时, 随着$x$的增大而减小,在$x<0$时 ,随着$x$的增大而增大。
反比例函数与其他数学知识的结合
与一次函数的结合
反比例函数与一次函数的结合可 以用于解决一些复杂的数学问题 ,例如求解方程的根。
与指数函数的结合
反比例函数与指数函数的结合可 以用于描述一些复杂的数学关系 ,例如人口增长与时间的关系。
03
反比例函数的解析式
反比例函数的解析式
反比例函数的一般形式为 $f(x) = frac{k}{x}$,其中 $k$ 是常数且 $k neq 0$。
反比例函数在数学问题中的应用01Fra bibliotek0203
解决几何问题
在几何问题中,反比例函 数可以用于描述两个点之 间的距离与它们之间的角 度之间的关系。
解决物理问题
在物理问题中,反比例函 数可以用于描述物体的运 动规律,例如物体的加速 度与时间之间的关系。
解决概率问题
在概率问题中,反比例函 数可以用于描述事件的概 率与样本空间的大小之间 的关系。

《反比例函数》教学课件

《反比例函数》教学课件

m 346.2 n
3、y是x的反比例函数,下表给出了x与y的一些值
x
-3 -2
-1
1 2
1 2
1
2
y 31 24
-4 -2
(1)写出这个反比例函数的表达式;
解:∵ y是x的反比例函数, 把x=-1,y=2代入上式得: 2
y
k
k
x .
1
.
得k 2.
y2. x
(2)根据函数表达式完成上表.
23
-1
特别地,当常数b=0时,一次函数y=kx+b(k≠0) 就成为:y=kx(k是常数,k≠0),称y是x的正比例函数.
正比例函数是特殊的一次函数.
小结
拓展
一次函数 y=kx+b(k,b是常数,k≠0)
正比例函数 y=kx(k是常数,k≠0)
反比例函数 y k k为常数, k 0
x
★表示形式
yk x
2 3
随堂练习
1.在下列函数表达式中,x均为自变量,哪些是反比 例函数?每一个反比例函数相应的k值是多少?
1y 5 ;2y 0.4 ;3y x ;4xy 2.
x
x
2
是 k=5 是 k=0.4
不是
是 k=2
5y
6x 3;6xy
7; 7 y
5 x2
;8y
1 5x
不是
是 k=-7
不是

k=
1 5
变量t与v的关系式为:t 1318 v
变量t是v的函数吗?
I 220 , t 1318,
R
v
反映了两个变量之间的某种关系.
一般地,如果两个变量x,y之间的关系

《反比例函数》PPT优秀教学课件

《反比例函数》PPT优秀教学课件

观察思考 北京市的总面积为1.68×104 km2,人均占有面积S km2/人,全市总 人口n人,那么S与n有何关系.
n ·S = 11..6688× ×110044 n
1000 t=
v
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考 某住宅小区要种植一块面积为2 000 m2的矩形,草坪的长为y m,宽 为x m,那么y与x有何关系.
典型例题
例1.指出下列函数中的反比例函数:
k
(1)
y
=
1 x﹢1
(2)
y =﹣
3
﹣3 =4
4x x
(3) y =
k x
(k≠0)
y与x+1成反比例
y
﹣2
=x
k
(4)
y=
k2﹢1 x

1

0
(5) xy =﹣2
1 y= x
k
(6) y = x﹣1
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
26.1.1 反比例函数
学习目标
1. 经历在实际问题中提炼出具有反比例变化规律的数学表达式;

比 例
2. 能识别反比例函数的常见形式;


3. 利用待定系数法求解反比例函数的解析式;
4. 理解反比例函数在描述现实世界中的重要意义.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考
观察思考
反比例函数
v · t = 1000
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考
反比例函数
1000 v · t = 10v00

初中数学反比例函数ppt课件ppt课件

初中数学反比例函数ppt课件ppt课件
深化对反比例函数的理解和应用
详细描述
在基础练习题的基础上,设计一些难度稍高的练习题,如计算题、作图题等,引导学生运用反比例函 数解决实际问题,提高解题能力和思维灵活性。
综合练习题
总结词
全面考察学生对反比例函数的掌握程度 和应用能力
VS
详细描述
设计一些综合性的练习题,涉及反比例函 数的多个知识点,要求学生综合运用所学 知识解决问题。通过这类题目,可以检验 学生对反比例函数的整体理解和应用水平 。
反比例函数在实际问题中的拓展应用
经济领域
在经济学中,反比例函数可以用于描 述一些经济现象,如供需关系、边际 效用等。
物理领域
在物理学中,反比例函数可以用于描 述一些物理量之间的关系,如电荷与 电场、电流与电阻等。
反比例函数与其他数学领域的联系
与几何学的联系
反比例函数的图像是双曲线,双曲线 在平面几何中有重要的应用,如面积 计算、角度计算等。
通过观察图像的形状、趋势和 特点,可以直观地理解函数的 性质和特点,从而快速找到解 决问题的方法。
图象法适用于解决一些较为复 杂的问题,例如求函数的极值 、判断函数的奇偶性等。
反比例函数的代数法
代数法是通过代数运算和方程求解来解决问题的方法。
在解题过程中,需要熟练掌握代数运算的规则和方法,能够根据问题的具体情况建 立方程并求解。
与一次函数的结合
反比例函数与一次函数常 常一起出现在问题中,例 如在研究速度与距离的关 系时。
与二次函数的结合
在解决一些实际问题时, 反比例函数可能会与二次 函数一起出现,例如在研 究物体的运动轨迹时。
与三角函数的结合
在物理学和工程学中,反 比例函数可能会与三角函 数一起出现,例如在研究 振动和波动时。

《反比例函数》PPT课件

《反比例函数》PPT课件

些这样的实际例子吗?
问题4:
若y =(m + 1)xm 2-2 是关于x的反比例
函数,确定m的值,并求其函数关系式。
说说收获
1.通过本节课的学习,你有哪些收获? 2.你还存在什么疑问?
课后作业
1.课本:习题1,2,3,4 2.举两个生活中有关反比例函数
的例子。Biblioteka 问题4: 一个面积为6400㎡的长方形,那么花坛
的长a(m)与宽b(m)之间的关系式为
问题5:京沪高速公路长1262km,汽车沿京沪 高速公路从上海驶往北京,汽车行完
全程所需的时间t(h)与行驶的平均
速度v(km/h)之间的函数关系式为
反比例函数的定义
成一般地y ,=如xk(果k两为个常变数量,xk,≠y之0)间的的形关式系,可那以么表示
物理中的数学
例1:电流I、电阻R、电压U之间满足关系式
U=IR。在照明电路中,正常电压U=220V。
(1)求I与R之间的函数关系式 ? (2)变量I是R的反比例函数吗? (3)利用写出的关系式完成下表:
R(Ώ)
20
60
I(A)
2.2
例2:在某一电路中,保持电压U(伏)不变, 电流I(安)是电阻R(欧)的反比例函 数,当电阻R=5欧时,电流I=2安。
称y是x的反比例函数。
注意:变量x,y都不能等于0.
基础练习
下列函数表达式中,x表示自变量,哪些是反比 例函数?若是,请指出相应的k值。
(1)y
=
4
x
(2)
y
=
-
1
2x
(3)
y
=
1-x
(4)xy = 1
(5)y
=

27.1 反比例函数课件(共16张PPT)

27.1 反比例函数课件(共16张PPT)
1.要制作容积为15 700 cm3的圆柱形水桶,水桶的底面积为S cm2,高为h cm,则Sh= ,用h表示S的函数表达式为 .2.自行车运动员在长为10 000 m的路段上进行骑车训练,行驶全程所用时间为t s,行驶的平均速度为v m/s,则vt= ,用t表示v的函数表达式为 .3.y与x的乘积为-2,用x表示y的函数表达式为 .
2.下列函数是y关于x的反比例函数的是( ) A. B. C. D.3.若函数 是反比例函数,则m的值是_____.
C-1ຫໍສະໝຸດ 展提升答案:解:2. 已知y与x2成反比例,并且当x=3时,y=4. (1)写出y关于x的函数表达式; (2)当x = 1.5时,求y的值; (3)当y = 6时,求x的值.
第 二十七章 反比例函数
27.1 反比例函数
学习目标
1.认识反比例函数的概念.2.能够根据已知条件,确定反比例函数的表达式.
学习重难点
重点
理解反比例函数的概念;能根据已知条件写出函数表达式.
难点
理解反比例函数的概念.
情景引入
若将成正比例的两个量视为变量,则这两个量之间具有正比例函数关系.那么,当将两个成反比例的量视为变量时,它们之间又具有怎样的函数关系呢?
做一做
新知引入
知识点1 反比例函数的定义
15 700
10 000
归纳总结
k≠0
自变量 x 的取值范围是不等于 0 的实数.
典型例题
例1
写出下列问题中y与x之间的函数关系式,指出其中的正比例函数和反比例函数,并写出它们的比例系数k.(1)y与x互为相反数.(2)y与x互为负倒数.(3)y与2x的积等于a(a为常数,且a≠0).
k≠0
知识点2 确定反比例函数的表达式

反比例函数ppt课件

反比例函数ppt课件
本节课我们开始学习反比例函数.
探究新知
知识点1 反比例函数的概念
问题1 京沪线铁路全程为 1 463 km,某次列车的平均速度 v(单位:km/h)随此次列车的全程运行时间 t(单位:h) 的变化而变化. (1)平均速度 v,运行时间 t 存在什么数量关系?
(2)这两个变量间有函数关系吗?试说明理由. (3)你能写出 v 关于 t 的解析式吗?
位:m)随宽 x(单位:m)的变化而
变化.
y 1 000 x
问题3 已知北京市的总面积为 1.68×104 km2 ,人均占有面 积 S(单位: km2 /人)随全市总人口 n(单位:人)的变化 而变化.
1.68 104 S
n
v 1 463 t
y 1 000 x
S 1.68104 n
y k(k ≠ 0) x
高 h(单位:cm)随底面积 S(单位:cm2)的变化
而变化;
h 1 000 S
k = 1 000
(3)一个物体重 100 N,物体对地面的压强 p
(单位:Pa)随物体与地面的接触面积 S(单位:
m2)的变化而变化.
p 100 S
k = 100
2.下列哪些关系式中的 y 是 x 的反比例函
数?并指出比例系数.
的比例系数 k 是
____2_____.
练习
1.用函数解析式表示下列问题中变量间的对应 关系,并指出比例系数 k 的值.
(1)一个游泳池的容积为 2 000 m3,游泳池注 满水所用时间 t(单位:h)随注水速度 v(单位: m3/h)的变化而变化;
t 2 000 k = 2 000 v
(2)某长方体的体积为 1 000 cm3,长方体的

26.1.1 反比例函数课件(共22张PPT)

26.1.1  反比例函数课件(共22张PPT)
x
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x

x, y可以表示单独字母,

x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2

0
),

y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.

反比例函数ppt课件

反比例函数ppt课件

x
y

.

∴y=
∴当菱形的面积一定时,它的一条对角线长y是另一条对角线长x的反比
例函数.
典例精析
例3 已知y 是关于 x 的反比例函数,当 x =0.3时,y = -6. 求 y 关于
x 的函数表达式和自变量 x 的取值范围.
解:∵ y 是关于 x 的反比例函数,
∴可设

y=

( k 为常数, k ≠0).
x和y不为反比例关系
是.

k= ,x≠0

不是
⑤y=3x-1 x和y的积为3,为反比例关系 是. k=, x≠0
知识要点
1.判断一个函数为反比例函数的条件:

①函数表达式形如y=

(一般式)或y=kx-1 (乘积式)
或xy=k(判别式)的等式.
②比例系数k是常数,且k≠0.

2.反比例函数y= 的取值范围:
第一章 反比例函数
1.1 反比例函数
复习导入
1.什么是函数?
如果变量y随着变量x而变化,并且对于x所取的每一个值,y
都有 唯一 的一个值和它对应,那么称y是x的函数.其中
x 叫
做自变量, y 叫做因变量.
2.什么是一次函数?
一般形式: y=kx+b
(k、b为常数,k ≠0),y称作x的
一次函数.
特别地,当b=0时,称y是x的 正比例 函数,即y= kx (k为常数,

求解析式方法:待定系数法
设、列、解、代
k≠0).
复习导入
3.反比例关系:
如果两个量x和y的积k是一个常数,即满足
xy=k
为常数,k≠0),那么x、y就成反比例关系.

反比例函数ppt免费课件

反比例函数ppt免费课件

与一次函数的结合
一次函数和反比例函数结合可以 形成复合函数,这种复合函数在 解决实际问题中具有广泛的应用

与二次函数的结合
在解决最值问题时,可以利用反比 例函数和二次函数的性质进行求解 。
与对数函数的结合
在解决增长率问题时,可以利用反 比例函数和对数函数的性质进行求 解。
CHAPTER 03
反比例函数的性质和特点
CHAPTER 02
反比例函数的应用
反比例函数在实际问题中的应用
01
02
03
物理问题
电流与电阻的关系、压强 与压力的关系等都可以用 反比例函数表示。
经济问题
例如,商品销售量与价格 的关系,当价格一定时, 销售量与价格成反比。
地理问题
例如,人口密度与土地面 积的关系,在一定条件下 ,人口密度与土地面积成 反比。
反比例函数的单调性
01
反比例函数在各自象限内单调递 减,随着x的增大,y值逐渐减小 。
02
在第一象限和第三象限,当x增大 时,y值减小;在第二象限和第四 象限,当x增大时,y值也减小。
反比例函数的奇偶性
反比例函数是奇函数,满足f(-x)=-f(x)。 在坐标系中,反比例函数的图像关于原点对称。
反比例函数的周期性和对称性
探讨两者图像的交点、单调性以及函数值的变化规律。
反比例函数与二次函数的结合
研究如何利用反比例函数的性质解决二次函数问题,如求最值等。
反比例函数在微积分中的应用
导数与反比例函数
理解反比例函数的导数形式,掌 握利用导数研究函数的单调性、 极值等问题。
积分与反比例函数
掌握对反比例函数进行积分的计 算方法,理解积分在解决实际问 题中的应用。

初中数学反比例函数ppt课件ppt

初中数学反比例函数ppt课件ppt
难点
如何理解反比例函数的实际应用,以及如何利用反比例函数解决实际问题。
THANKS
感谢观看
高难度练习
综合应用
给出一些多个反比例函数的问题,让学生综合运用所学知识 解决。
探索性题目
让学生自己探索反比例函数的性质和表达式的规律,提出自 己的猜想并加以验证。
06
总结与回顾
反比例函数的主要内容
定义和表达式
应用和实际意义
图像和性质
重点和难点回顾
重点
反比例函数的图像和性质,特别是当k>0和k<0时函数的图像和性质的变化。
04
反比例函数的难点与易错 点
反比例函数的难点
函数表达式理解
理解反比例函数的表达式 和系数含义,区分正比例 函数和反比例函数。
图像绘制
掌握反比例函数的图像绘 制方法,理解图像的形状 、趋势和与坐标轴的交点 。
实际问题应用
能够将实际问题转化为反 比例函数问题,并利用反 比例函数解决实际问题。
反比例函数的易错点
奇偶性
由于反比例函数是奇函数,因此 其图像关于原点对称。
单调性
在某个区间内,如果函数的导数大 于0,则函数是单调递增的;如果 函数的导数小于0,则函数是单调 递减的。
曲线的渐近线
反比例函数的图像没有水平渐近线 ,但有垂直渐近线。当函数趋向于 无穷大时,函数值会趋向于0。
反比例函数的单调性
单调递增区间
定义域和值域:x≠0,y≠0
反比例函数的基本形式
y=k/x(k为常数,k≠0)
图像:双曲线
变化规律:当k>0时,图像在第一、三象限,y值随x的增大而减小;当k<0时,图像在第二 、四象限,y值随x的增大而增大。

《反比例函数》优秀教学课件

《反比例函数》优秀教学课件

关键知识点回顾总结
反比例函数的定义和性质
01
回顾了反比例函数的基本概念,包括定义域、值域、图像等,
以及反比例函数的基本性质,如单调性、奇偶性等。
反比例函数与直线的交点问题
02
总结了反比例函数与直线交点的求解方法,包括联立方程求解
、图像法等。
反比例函数在实际问题中的应用
03
回顾了反比例函数在实际问题中的应用,如电阻、电流、电压
例题3
已知反比例函数 $y = frac{m}{x}$($m neq 0$)的图 像与一次函数 $y = -x + b$ 的图像交于点 $A(1,2)$ 和 $B(-2,-1)$,求这两个函数的解析式。
思路点拨
将点 $A(1,2)$ 和 $B(-2,-1)$ 分别代入两个函数的解析 式,得到关于 $m$ 和 $b$ 的方程组,解方程组即可 求出 $m$ 和 $b$ 的值。
课堂互动环节:小组讨论和分享
01
02
03
小组讨论
让学生分组讨论反比例函 数的性质和应用,分享自 己的理解和思路。
分享交流
每组选派一名代表上台分 享本组的讨论成果,其他 同学可以提问或补充。
教师点评
教师对每组的分享进行点 评和总结,强调反比例函 数的重要性和应用广泛性 。
06
课程总结与拓展延伸内容
学生自主练习题目推荐
练习1
已知反比例函数 $y = frac{k}{x}$ ($k neq 0$)的图像经过点
$P(3,-2)$,求该函数的解析式。
练习2
已知反比例函数 $y = frac{4}{x}$ ,当 $-2 < x < -1$ 时,求 $y$ 的取值范围。
练习3

《反比例函数》PPT课件

《反比例函数》PPT课件

(来自《点拨》)
1 列说法不正确的是( )
1
A.在y= x -1中,y+11与x成反比例
x
B.在xy=-12中,y与 成正比例
2x2
C.在y=
中,y与x成反比例
知2-练
(来自《典中点》)
知识点 2 确定反比例函数的表达式
知2-讲
1. 求反比k例函数的表达式,就是确定反比例函数表达式
y = x (k≠0)中常数k的值,它一般需经历:
知3-练
(来自《典中点》)
知3-练
2 一司机驾驶汽车从甲地去乙地,他以80 千米/小
时的平均速度用了4个小时到达乙地,当他按原
路匀速返回时,汽车的速度v千米/小时与时间t小
时的函数关系是( )
A.v=320t C.v=20t
B.v=
320 t
D.v=
20 t
(来自《典中点》)
一般地形如y= (k为k常数, ⑴“反比例关系”与“反比例函数”:成反 x
(来自《点拨》)
总结
知3-讲
建立反比例函数的模型,首先要找出题目中的
等量关系,然后把未知量用未知数表示,列出等式,
转化为反比例函数的一般式即可.同时注意未知数的
取值范围.
(来自《点拨》)
1 在下列选项中,是反比例函数关系的是( ) A.多边形的内角和与边数的关系 B.正三角形的面积与边长的关系 C.直角三角形的面积与边长的关系 D.三角形的面积一定时,它的底边长a与这边上 的高h之间的关系
速地求出反比例函数解析式中的k.从而得到反比例函数的 解析式.两个变量的积均是一个常数(或定值).这也是识别两 个量是否成反比例函数关系的关键.
用待定系数法确定反比例函数表达的“四步骤”:

反比例函数PPT课件

反比例函数PPT课件

x、y值代入
y
k x
中得到关于k的方程.(3)解,即解
方程,求出k的值.(4)定,即将k值代入 确定函数解析式.
y
k x
中,
10
【针对练二】
4. 当m=__-_2__时,函数 y (m 2)x3m2
是反比例函数.
5.已知y与x2成反比例,并且当x=3时y=4.
(1)写出y和x之间的函数解析式为_y___3_x6_2 _;
6
【针对练一】
1. 已知游泳池的容积为a m3,向池内注满水所需时间t(h)
,随注水速度v(m3/h),那么a= vt ,当 a 为定值时 ,t、v成__反__比__例___关系.
2. 已知下列函数:(1)y x ,(2)y 3
2 x
,(3)xy

21
,(4)y
x
5
2
,(5)y
3 2x
,(6)y
( ≠0) ,
3
• 1.使学生理解并掌握反比例函数的概念.
• 2.能判断一个给定的函数是否为反比例函数,并会 用待定系数法求函数解析式.
• 3.能根据实际问题中的条件确定反比例函数的解析 式,体会函数的模型思想.
4
合作探究 达成目标
活动1:阅读教材第2页思考中的三个问题,并写出这 三个问题的函数解析式分别为__________,__________, __________.
1 x
3
,(7)y=x-4 ,其中是反比例函数的是_(_2_)(_3_)_(5__) .
7
合作探究 达成目标
例1 已知y是x的反比例函数,并且当x=2时, y=6.
(1)写出y关于x的函数解析式;
(2)求x=4时,求y的值.

初三反比例函数ppt课件ppt课件

初三反比例函数ppt课件ppt课件

反比例函数是具有极限的函数,当x趋 近于无穷大或无穷小时,y的值趋近于 0。
反比例函数的图像是关于原点对称的 。
02CHBiblioteka PTER反比例函数的应用生活中的反比例现象
总结词
生活中常见的反比例现象
详细描述
在日常生活中,许多现象可以用反比例函数来描述。例如,当两个量之间的比例保持恒定时,其中一个量增加, 另一个量会相应减少,形成反比例关系。这种现象在很多场合都可以观察到,如物体的质量和体积、电路中的电 流和电阻等。
提高练习题解析
总结词
提升解题能力
详细描述
提高练习题相对于基础练习题难度有所增加,题目设计更加灵活,需要学生具备一定的数学思维和解 题技巧。这些题目通常涉及到反比例函数与其他数学知识的综合运用,如与一次函数、二次函数等知 识的结合。
竞赛练习题解析
总结词
挑战高难度
详细描述
竞赛练习题是针对数学竞赛和数学特长生设计的题目,难度较大,题目设计更加复杂和 综合。这些题目不仅要求学生掌握反比例函数的知识,还需要具备较高的数学素养和解 题能力。通过解答这些题目,学生可以挑战自己的数学思维和解题能力,提升数学学习
对未来学习的展望
学生可以在反比例函数的基础上,进一 步学习其他类型的函数,如幂函数、对 数函数等,以拓展数学知识的广度和深
度。
学生可以尝试将反比例函数与其他学科 的知识点进行结合,例如与物理中的电 流、电压等概念进行联系,加深对相关
概念的理解。
学生可以通过参加数学竞赛、科研项目 等活动,进一步提高自己的数学素养和 解决问题的能力,为未来的学习和职业
总结词
掌握实际应用题的解题技巧是提高解 题效率的关键。
详细描述
在解决反比例函数实际应用题时,需 要将问题转化为数学模型,并运用适 当的解题技巧,如排除法、比较法等 ,以简化问题并快速找到答案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32、任何业绩的质变,都来自于量变 的积累 。 33、空想会想出很多绝妙的主意,但 却办不 成任何 事情。 34、不大可能的事也许今天实现,根 本不可 能的事 也许明 天会实 现。 35、再长的路,一步步也能走完,再 短的路 ,不迈 开双脚 也无法 到达。
36、失败者任其失败,成功者创造成 功。 37、世上没有绝望的处境,只有对处 境绝望 的人。
()
()
()
()
()
()
反比例函数的三种表示形式

2、 y = kx -1 、 y = k(为常数, ≠)
x
检测练习
下列函数中,均为自变量,那么哪些是的 反比例函数?值是多少?
() ;
2
(()2); y = - 3 x
(4)y
=
5
x
+
1
(5)y =
n
x
例: 是的反比例函数,下图给出了与的 一些值:
8、有些事,不可避免地发生,阴晴圆缺 皆有规 律,我 们只能 坦然地 接受;有些事 ,只要 你愿意 努力, 矢志不 渝地付 出,就 能慢慢 改变它 的轨迹 。
9、与其埋怨世界,不如改变自己。管好 自己的 心,做 好自己 的事, 比什么 都强。 人生无 完美, 曲折亦 风景。 别把失 去看得 过重, 放弃是 另一种 拥有;不要经 常艳羡 他人, 人做到 了,心 悟到了 ,相信 属于你 的风景 就在下 一个拐 弯处。
章反比例函数
反比例函数
函数的定义
一般地.在某个变化中,有两个 变量和,如果给定一个的值自,变相 应地因变就确定了的一个值,那么我 们称是的函数,其中叫 量, 请叫回忆我量们学. 过哪些函数?
回顾与思考
如果 (、为常数,≠),那么 是 的一次 函数.
如果 (为常数,≠), 那么 是的正比例函数.
问题:若每天背个单词,那么所掌握的 单词总(个)与时间(天)之间的 关系函数式为 。




① 求出这个反比例函数的表达式; ② 根据函数表达式完成上表。
物理中的数学
例:电流、电阻、电压之间满足关系式
。在照明电路中,正常电压。
()求与之间的函数关系式 ? ()变量是的反比例函数吗? ()利用写出的关系式完成下表: (Ώ)
()
例:在某一电路中,保持电压(伏)不变, 电流(安)是电阻(欧)的反比例函 数,当电阻欧时,电流安。
46、有志者自有千计万计,无志者只 感千难 万难。 47、苟利国家生死以,岂因祸福避趋 之。 48、不要等待机会,而要创造机会。
49、如梦醒来,暮色已降,豁然开朗 ,欣然 归家。 痴幻也 好,感 悟也罢 ,在这 青春的 飞扬的 年华, 亦是一 份收获 。犹思 “花开 不是为 了花落 ,而是 为了更 加灿烂 。 50、人活着要呼吸。呼者,出一口气 ;吸者 ,争一 口气。 51、如果我不坚强,那就等着别人来 嘲笑。
26、没有退路的时候,正是潜力发挥 最大的 时候。 27、没有糟糕的事情,只有糟糕的心 情。
28、不为外撼,不以物移,而后可以 任天下 之大事 。 29、打开你的手机,收到我的祝福, 忘掉所 有烦恼 ,你会 幸福每 秒,对 着镜子 笑笑, 从此开 心到老 ,想想 明天美 好,相 信自己 最好。
30、不屈不挠的奋斗是取得胜利的唯 一道路 。 31、生活中若没有朋友,就像生活中 没有阳 光一样 。
52、若不给自己设限,则人生中就没 有限制 你发挥 的藩篱 。 53、希望是厄运的忠实的姐妹。 54、辛勤的蜜蜂永没有时间悲哀。 55、领导的速度决定团队的效率。
56、成功与不成功之间有时距离很短 只要后 者再向 前几步 。 57、任何的限制,都是从自己的内心 开始的 。
58、伟人所达到并保持着的高处,并 不是一 飞就到 的,而 是他们 在同伴 誉就很 难挽回 。 59、不要说你不会做!你是个人你就 会做!
62、一切的一切,都是自己咎由自取 。原来 爱的太 深,心 有坠落 的感觉 。 63、命运不是一个机遇的问题,而是 一个选 择问题 ;它不 是我们 要等待 的东西 ,而是 我们要 实现的 东西。
64、每一个发奋努力的背后,必有加 倍的赏 赐。 65、再冷的石头,坐上三年也会暖。
6、无论你正遭遇着什么,你都要从落魄 中站起 来重振 旗鼓, 要继续 保持热 忱,要 继续保 持微笑 ,就像 从未受 伤过一 样。
7、生命的美丽,永远展现在她的进取之 中;就 像大树 的美丽 ,是展 现在它 负势向 上高耸 入云的 蓬勃生 机中;像 雄鹰的 美丽, 是展现 在它搏 风击雨 如苍天 之魂的 翱翔中;像江河 的美丽 ,是展 现在它 波涛汹 涌一泻 千里的 奔流中 。
问题:京沪高速公路长,汽车沿京沪 高速公路从上海驶往北京,汽车行完 全程所需的时间()与行驶的平均 速度()之间的函数关系式为
ห้องสมุดไป่ตู้比例函数的定义
一般地,如果两个变量,之间的关
系可以表示成
(为常数, ≠)
的形式,那么
称是的反比例函数。
注意:变量都不能等于.
基础练习
下列函数表达式中,表示自变量,哪些是反比例 函数?若是,请指出相应的值。
问题:小明原来掌握了个单词,以后每 天背个单词,那么他所掌握单词总 量(个)与时间(天)之间的关系式为
问题: 九年级英语全册约有单词个,小
明同学计划用(天)全部掌握,那么平
均每天需要记忆的单词量(个)与时
间(天)之间的关系式为

问题: 一个面积为㎡的长方形,那么花坛 的长()与宽()之间的关系式为
问题: 若y =(m + 1)xm 2-2 例
是关于的反比
函数,确定的值,并求其函 数关系式。
说说收获
.通过本节课的学习,你有哪些收获? .你还存在什么疑问?
课后作业
1.课本:习题1,2,3,4 2.举两个生活中有关反比例函数
的例子。
18、我终于累了,好累,好累,于是 我便爱 上了寂 静。 19、只有收获,才能检验耕耘的意义 ;只有 贡献, 方可衡 量人生 的价值 。
20、赚钱之道很多,但是找不到赚钱 的种子 ,便成 不了事 业家。 21、追求让人充实,分享让人快乐。
22、世界上那些最容易的事情中,拖 延时间 最不费 力。 23、上帝助自助者。
24、凡事要三思,但比三思更重要的 是三思 而行。 25、如果你希望成功,以恒心为良友 ,以经 验为参 谋,以 小心为 兄弟, 以希望 为哨兵 。
60、生活本没有导演,但我们每个人 都像演 员一样 ,为了 合乎剧 情而认 真地表 演着。 61、所谓英雄,其实是指那些无论在 什么环 境下都 能够生 存下去 的人。5、心情 就像衣 服,脏 了就拿 去洗洗 ,晒晒 ,阳光 自然就 会蔓延 开来。 阳光那 么好, 何必自 寻烦恼 ,过好 每一个 当下, 一万个 美丽的 未来抵 不过一 个温暖 的现在 。
38、天助自助者,你要你就能。 39、我自信,故我成功;我行,我一 定能行 。 40、每个人都有潜在的能量,只是很 容易: 被习惯 所掩盖 ,被时 间所迷 离,被 惰性所 消磨。
41、从现在开始,不要未语泪先流。 42、造物之前,必先造人。
43、富人靠资本赚钱,穷人靠知识致 富。 44、顾客后还有顾客,服务的开始才 是销售 的开始 。 45、生活犹如万花筒,喜怒哀乐,酸 甜苦辣 ,相依 相随, 无须过 于在意 ,人生 如梦看 淡一切 ,看淡 曾经的 伤痛, 好好珍 惜自己 、善待 自己。
() 求与之间的函数关系式。
() 当电流安时,求电阻的值。
互动的课堂
问题:关系式中是的反比例 函数吗?若是,相应的值等于 多少?若不是,请说明理由。
问题:

y
=
m- x
1
是反比例函数,则应
满足的条是
.
问题:
函数关系式 y
=
100
x
可以表示许多
生活中变量之间的关系,你能举出一
些这样的实际例子吗?
相关文档
最新文档