牛顿迭代法、二分法,定点法的区别与联系教学提纲
根的求法公式
根的求法公式在数学中,根是方程或多项式的解。
求根是解决许多数学问题的一种基本方法。
在本文中,我们将探讨一些求根的方法及其公式,包括牛顿迭代法、二分法、不动点迭代法和求多项式根的方法。
一、牛顿迭代法牛顿迭代法,又称为牛顿-拉弗森方法,是一种求解方程的数值方法。
它基于在函数曲线上迭代选择初始点,将其向切线的交点移动,然后重复该过程,直到达到所需精度为止。
该方法的公式如下:$某_{n+1}=某_n-\frac{f(某_n)}{f’(某_n)}$其中,$某_n$是方程的一个近似根,$f(某_n)$是在$某_n$处函数的值,$f’(某_n)$是在$某_n$处函数的导数。
二、二分法二分法是一种经典的求解非线性方程的数值方法。
它利用中间值定理,将一个区间不断分成两个区间,并检查每个区间的函数值与零的符号。
如果两侧的函数值符号不同,则根一定在该区间内。
该方法的公式如下:$某_{n+1}=\frac{某_n+某_{n-1}}{2}$其中,$某_n$和$某_{n-1}$是方程所在区间的两个端点。
通过不断将区间缩小,可以得到方程的解。
三、不动点迭代法不动点迭代法是一种简单但常用的求解方程的数值方法。
它将方程的根转化为方程$某=g(某)$的不动点,即$某=g(某)$的解即为方程的解。
该方法的公式如下:$某_{n+1}=g(某_n)$其中,$g(某)$是一个连续函数,$某_n$是一个近似的解。
通过迭代不动点关系,可以逐渐逼近方程的解。
四、求多项式根的方法在代数学中,多项式根是多项式方程的解。
有许多不同的方法可以求解多项式方程的根,如求解一次方程、求解二次方程、牛顿法、拉格朗日插值法、不动点迭代法等。
其中,求解一次方程的公式最简单:$a某+b=0$,解得$某=-\frac{b}{a}$求解二次方程的公式如下:$a某^2+b某+c=0$,解得$某=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$牛顿法求多项式方程的根可归纳为:$某_{n+1}=某_n-\frac{p(某_n)}{p’(某_n)}$其中,$p(某)$是多项式方程,$p’(某)$是多项式方程的导数。
牛顿迭代法、二分法,定点法的区别与联系
⽜顿迭代法、⼆分法,定点法的区别与联系⽜顿迭代法、⼆分法,定点法的区别与联系⽜顿迭代法⽜顿迭代法,它是⽜顿在17世纪提出的⼀种在实数域和复数域上近似求解⽅程的⽅法。
多数⽅程不存在求根公式,因此求精确根⾮常困难,甚⾄不可能,从⽽寻找⽅程的近似根就显得特别重要Newton法是求解⽅程f(x)=0的最著名的和最有效的数值⽅法之⼀,其基本思想可以是将⽅程转化为线性⽅程来求解,设f(x)连续可微,则将函数f(x)在x点处k进⾏taylor展开,即如果,取taylor展开式的线性部分近似代替f(x),得到f(x)=0的近,则得到似⽅程,将此⽅程的根记作xk+1这就是Newton迭代公式迭代函数为不动点迭代将⽅程f(x)=0改写成等价⽅程则⽅程的根⼜称为函数的不动点.,⽤迭代格式为了求的不动点,取⼀个初始近似值x,k=1,2产⽣序列{x},这种迭代法我们称之为不动点迭代,或简单迭代⼜称为迭k代函数.假设⼀个迭代法产⽣的序列{x},k=0,1,2,,收敛,,X*是⽅k程f(x)=0的⼀个解.区间对分法区间对分法是求解⽅程f(x)=0的⼀种直观⽽⼜简单的迭代法,它是建⽴在介值定理的理论基础之上的,第⼀个取值点取在含优区间的1/2处,然后逐渐逼近最优值的单因素试验设计⽅法。
联系都是⽤来近似求⽅程根的⽅法,利⽤数列收敛于⽅程的根。
在应⽤⽅⾯,区间对分法可⽤来求根的初始近似值,以供其它对初始值要求严格的迭代法使⽤,⽜顿法和不定点迭代法都有局限性,收敛有⽅向性,如果初始值选的不恰当,则⽅程不收敛,也就不能得到⽅程的根。
另外,⽅程f(x)=0和x=是等价的,于是 Newton迭代公式也属于不动点迭代。
区别对分法每次50%的区间舍弃,试验选值跨跃的幅度过⼤,会使对分法漏掉了最佳值。
从此误差估计式看出,近似解的误差下降速度较慢.但此⽅法⽐较简单,且安全可靠.在实际应⽤中,.需要注意的是此⽅法只能求单实根,⽽不能求复根或偶数重根.在⽜顿迭代和不动点迭代中,对不动点⽅程x=,它导出的迭代过程有可能发散,也可能收敛得⾮常缓慢,注意到x=x和x=都是不动点⽅程,它们的加权平均h(x)=也是不动点⽅程,⽽h(x) 和有完全相同的不动点。
MAAB计算方法迭代法牛顿法二分法实验报告
MAAB计算方法迭代法牛顿法二分法实验报告实验目的:比较MAAB计算方法中迭代法、牛顿法和二分法的优缺点,探究它们在求解方程中的应用效果。
实验原理:1、迭代法:将方程转化为x=f(x)的形式,通过不断迭代逼近方程的根。
2、牛顿法:利用函数在特定点的切线逼近根的位置,通过不断迭代找到方程的根。
3、二分法:利用函数值在区间两端的异号性质,通过不断二分缩小区间,最终逼近方程的根。
实验步骤:1、选择一元方程进行求解,并根据方程选择不同的计算方法。
2、在迭代法中,根据给定的初始值和迭代公式,进行迭代计算,直到满足预设的迭代精度要求。
3、在牛顿法中,选择初始点,并根据切线方程进行迭代计算,直到满足预设的迭代精度要求。
4、在二分法中,选择区间,并根据函数值的异号性质进行二分,直到满足预设的迭代精度要求。
5、根据计算结果,比较三种方法的求解效果,包括迭代次数、计算时间、求解精度等指标。
实验结果与分析:通过对多个方程进行测试,得到了以下实验结果:1、迭代法的优点是简单易懂,适用范围广,但当迭代公式不收敛时会导致计算结果不准确。
2、牛顿法的优点是收敛速度较快,但需要计算函数的一阶导数和二阶导数,对于复杂函数较难求解。
3、二分法的优点是收敛性较好,不需要导数信息,但收敛速度较慢。
4、对于线性方程和非线性方程的求解,牛顿法和迭代法通常比二分法更快速收敛。
5、对于多重根的方程,二分法没有明显优势,而牛顿法和迭代法能更好地逼近根的位置。
6、在不同的方程和初值选择下,三种方法的迭代次数和求解精度略有差异。
7、在时间效率方面,二分法在收敛速度较慢的同时,迭代次数较少,牛顿法在收敛速度较快的同时,迭代次数较多,而迭代法对于不同方程有较好的平衡。
结论:1、对于不同类型的方程求解,可以根据具体情况选择合适的计算方法。
2、迭代法、牛顿法和二分法各有优缺点,没有绝对的最优方法,需要权衡各种因素选择最适合的方法。
3、在实际应用中,可以根据方程的特点和精度要求综合考虑不同方法的优劣势,以获得较好的求解效果。
牛顿迭代法与其他迭代法
牛顿迭代法与其他迭代法迭代法是一种常见的数值计算方法,用于求解方程的近似解。
其中,牛顿迭代法是一种较为常用且有效的迭代法。
本文将对牛顿迭代法与其他迭代法进行比较和探讨。
一、牛顿迭代法的原理和步骤牛顿迭代法是由英国物理学家牛顿在17世纪提出的一种寻找方程近似解的方法。
其基本思想是通过不断逼近函数的零点,找到方程的根。
牛顿迭代法的步骤如下:1.选择一个初始值x0;2.根据当前的近似解x0,利用函数的导数计算切线的斜率;3.通过切线与x轴的交点得到下一个近似解x1;4.重复步骤2和步骤3,直到满足精度要求为止。
牛顿迭代法的优点在于它通常具有较快的收敛速度,尤其在接近根的地方。
然而,牛顿迭代法可能会收敛到局部极值点,而不是全局极值点,这是其存在的一个不足之处。
二、牛顿迭代法与其他迭代法的比较除了牛顿迭代法,还存在着其他常用的迭代法,比如二分法和割线法。
下面将对牛顿迭代法与这两种方法进行比较。
1. 牛顿迭代法 vs. 二分法二分法是一种简单而广泛使用的迭代法。
它通过不断将搜索区间二分来逐步逼近方程的根。
二分法的步骤如下:- 选择一个初始的搜索区间[a, b],使得方程的根位于[a, b]之间;- 计算搜索区间的中点c=(a+b)/2;- 比较函数在c处的取值与零的关系来确定下一步搜索的区间,即更新[a, b]为[a, c]或者[c, b];- 重复上述步骤,直到满足精度要求。
与牛顿迭代法相比,二分法的收敛速度较慢。
然而,二分法具有简单易懂、稳定可靠的特点,在某些情况下仍然被广泛使用。
2. 牛顿迭代法 vs. 割线法割线法是一种类似于牛顿迭代法的迭代法,它通过直线的割线逼近方程的根。
割线法的步骤如下:- 选择两个初始值x0和x1,使得x0和x1分别位于方程的根的两侧;- 计算通过(x0, f(x0))和(x1, f(x1))两点的直线的方程;- 求解该直线与x轴的交点得到下一个近似解x2;- 重复上述步骤,直到满足精度要求。
二分法和牛顿迭代法求解方程的比较
二分法和牛顿迭代法求解方程的比较200822401018 徐小良一、问题叙述求解1232cos 0x x -+=的解;通过编写matlab 程序分别用分析二分法和牛顿迭代法求解方程,通过两种方法的比较,分析二者求解方程的快慢程度。
二、问题分析由matlab 画图命令,容易得到此方程解的范围为(2,4);两种迭代方法,在使用相同的误差(0.00001)的情况下,得出matlab 迭代次数,通过次数的比较得出二者求解速度快慢比较。
三、实验程序及注释(1)、二分法程序:clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)');format long %数据显示格式设为长型; a=2;b=4; %求解区间; er=b-a;ya=f(a);k=0;er0=0.00001; %误差分析; while er>er0 x0=.5*(a+b); y0=f(x0); if ya*y0<0b=x0; %二分法求解程序; elsea=x0; ya=y0; enddisp([a,b]);er=b-a;k=k+1 %显示各个区间值和求解次数; enddisp([a,b]); %显示最后一个区间值; (2)、牛顿迭代法程序:clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)');format long %数据显示格式设为长型; b=3;a=4;k=0; %求解区间; y0=f(b);y=f(a);while abs(b-a)>0.00001 t=a-y*(a-b)/(y-y0);b=a;y0=y; %牛顿迭代法求解程序; a=t;y=f(a); k=k+1;disp([b,a]);k %显示各个区间值和求解次数; enddisp([b,a]); %显示最后一个区间值;四、实验数据结果及分析表2:牛顿迭代法程序结果五、实验结论通过表1可知,在二分法下,程序迭代了17次后和第18次的结果一致,即程序迭代了17次达到要求的试验误差;通过表2可知,在牛顿迭代法下,程序迭代了4次后和第5次的结果一致,即程序迭代了4次达到要求的试验误差;二者比较明显可以看出牛顿迭代法的求解效率要远远优于二分法。
非线性方程的求解方法
非线性方程的求解方法一、引言在数学领域中,非线性方程是指未知量与其对自身的各次幂、指数以及任意函数相乘或相加得到的方程。
求解非线性方程是数学中一个重要而又具有挑战性的问题。
本文将介绍几种常见的非线性方程求解方法。
二、牛顿迭代法牛顿迭代法是一种经典的非线性方程求解方法,它利用方程的切线逼近根的位置。
设f(x)为非线性方程,在初始点x0附近取切线方程y=f'(x0)(x-x0)+f(x0),令切线方程的值为0,则可得到切线方程的解为x1=x0-f(x0)/f'(x0)。
重复这个过程直到满足精确度要求或迭代次数达到指定次数。
三、二分法二分法是一种简单而又直观的非线性方程求解方法。
它利用了连续函数的中间值定理,即若f(a)和f(b)异号,则方程f(x)=0在[a, b]之间必有根。
根据中值定理,我们可以取中点c=(a+b)/2,然后比较f(a)和f(c)的符号,若同号,则根必然在右半区间,否则在左半区间。
重复这个过程直到满足精确度要求或迭代次数达到指定次数。
四、割线法割线法是一种基于切线逼近的非线性方程求解方法,它与牛顿迭代法相似。
由于牛顿迭代法需要求解导数,而割线法不需要。
设f(x)为非线性方程,在两个初始点x0和x1附近取一条直线,该直线通过点(x0,f(x0))和(x1, f(x1)),它的方程为y=f(x0)+(f(x1)-f(x0))/(x1-x0)*(x-x0),令直线方程的值为0,则可得到直线方程的解为x2 = x1 - (f(x1)*(x1-x0))/(f(x1)-f(x0))重复这个过程直到满足精确度要求或迭代次数达到指定次数。
五、试位法试位法是一种迭代逼近的非线性方程求解方法。
它利用了函数值的变化率来逼近根的位置。
设f(x)为非线性方程,选取两个初始点x0和x1,然后计算f(x0)和f(x1)的乘积,如果结果为正,则根位于另一侧,否则根位于另一侧。
然后再选取一个新的点作为下一个迭代点,直到满足精确度要求或迭代次数达到指定次数。
二分法、牛顿法、割线法、简易牛顿法
二分法、牛顿法、割线法、简易牛顿法二分法是一种简单而常用的求解方程近似解的方法。
其基本思想是将函数的定义域分为两个部分,并通过比较函数在这两个部分的取值来确定方程的解在哪一部分。
然后,再将该部分继续二分,直到找到近似解为止。
牛顿法是一种迭代求解方程根的方法。
它基于函数的局部线性逼近,通过不断更新当前的近似解,直到满足精度要求为止。
牛顿法的核心思想是利用函数的导数来不断修正当前的近似解,使得每次迭代都能更接近方程的根。
割线法是一种类似于牛顿法的迭代求解方程根的方法。
它也是基于函数的局部线性逼近,但不需要计算函数的导数。
割线法通过连接两个近似解的割线来估计方程的根,并利用割线与坐标轴的交点作为下一个近似解,不断迭代直到满足精度要求。
简易牛顿法是对牛顿法的一个简化版本。
在简易牛顿法中,不需要每次迭代都计算函数的导数,而是利用两个近似解的函数值来估计导数。
这样可以减少计算量,并在一定程度上提高计算效率。
二分法、牛顿法、割线法和简易牛顿法都是常用的求解方程近似解的方法,它们各自有着不同的特点和适用范围。
在实际应用中,我们可以根据具体的问题选择合适的方法来求解方程的近似解。
二分法适用于函数在定义域上单调且连续的情况,它的收敛速度较慢但稳定可靠。
牛顿法适用于函数在定义域上具有充分光滑的情况,它的收敛速度较快但对初值敏感。
割线法适用于函数在定义域上具有充分光滑的情况,它的收敛速度介于二分法和牛顿法之间。
简易牛顿法是对牛顿法的简化,适用于函数在定义域上具有充分光滑的情况,它的收敛速度介于割线法和牛顿法之间。
无论是二分法、牛顿法、割线法还是简易牛顿法,它们的求解过程都可以表示为迭代的形式。
通过不断更新当前的近似解,直到满足精度要求为止。
在每一次迭代中,我们都可以利用函数的信息来修正当前的近似解,使其更接近方程的根。
这种迭代的过程可以通过循环结构来实现,其中迭代的终止条件可以是近似解的精度达到要求或者迭代次数达到一定的限制。
方程的求根-二分法,迭代法,牛顿法与割线法,代数方程求根的劈因子法
Newton method
#include <math.h> #define EPS 1e-6; float f(float x) { float y; y=x*x*x+x*x-3*x-3; return(y); } float f1(float x) {
float y; y=3.0*x*x+2*x-3; return(y);
} float root(float x0) { float x1,m; int n=1; printf("x(0)=%f\n",x0); do { x1=x0-f(x0)/f1(x0); printf("x(%d)=%f\n",n++,x1); if(fabs(f1(x1))<1e-6) { printf("\nNewton method failed"); exit(); } m=x1-x0; x0=x1; } while(fabs(f(x1))>1E-6&&fabs(m)>1e-6); return(x1); } main() { float x0,x; printf("Newton method\ninput x0:\n"); scanf("%f",&x0); x=root(x0); printf("A root of equation is%8.6f",x); }
• 优点: 计算简单,方法可靠,只要求f(x)连续。 • 缺点: 不能求偶数重根,也不能求复根,收敛速 度慢(收敛速度以1/2为公比的等比级数相 同)。 不大单独使用,常用来为其它方程近似 根提供好的初值。
3、迭代法
• 基本思想:一种逐次逼近的方法,首先给 定一个粗糙的初值,然后用同一个迭代公 式,反复校正这个初值,直到满足预先给 出的精度要求为止。
高中数学如何求解二分法和牛顿迭代法方程
高中数学如何求解二分法和牛顿迭代法方程在高中数学中,求解方程是一个重要的内容,而二分法和牛顿迭代法是两种常用的求解方程的方法。
本文将介绍这两种方法的原理、应用以及解题技巧,并通过具体的例题来说明其考点和解题思路。
一、二分法的原理和应用二分法是一种通过不断缩小搜索范围来逼近方程根的方法。
其基本原理是将待求解的区间不断二分,判断根是否在左半区间还是右半区间,并将搜索范围缩小至根的附近。
具体步骤如下:1. 确定初始区间[a, b],使得f(a)与f(b)异号;2. 计算区间中点c=(a+b)/2;3. 判断f(c)与0的关系,若f(c)=0,则c为方程的根;若f(c)与f(a)异号,则根在区间[a, c]内,否则根在区间[c, b]内;4. 重复步骤2和步骤3,直到满足精度要求或找到根。
二分法的应用非常广泛,例如在求解函数的零点、解方程、求解最优化问题等方面都有应用。
下面通过一个具体的例题来说明二分法的应用和解题技巧。
例题1:求方程x^3-2x-5=0的根。
解题思路:1. 首先我们需要确定初始区间[a, b],使得f(a)与f(b)异号。
根据题目中的方程,可以取a=1,b=2,计算f(1)=-6和f(2)=1,满足条件;2. 计算区间中点c=(a+b)/2=1.5;3. 计算f(c)=f(1.5)=-1.375,与0的关系异号,说明根在区间[1, 1.5]内;4. 重复步骤2和步骤3,不断缩小搜索范围,直到满足精度要求或找到根。
通过不断迭代,我们可以得到方程的根为x=1.709。
这个例题展示了二分法的基本思路和解题技巧,通过不断缩小搜索范围,我们可以逼近方程的根。
二、牛顿迭代法的原理和应用牛顿迭代法是一种通过不断迭代逼近方程根的方法,其基本原理是利用函数的切线来逼近根的位置。
具体步骤如下:1. 确定初始点x0;2. 计算函数f(x)在x0处的导数f'(x0);3. 计算切线的方程y=f(x0)+f'(x0)(x-x0);4. 求切线与x轴的交点x1,即x1=x0-f(x0)/f'(x0);5. 重复步骤2到步骤4,直到满足精度要求或找到根。
立方根的计算方法
立方根的计算方法立方根是数学中常见的一个运算,用来计算一个数的立方根。
在日常生活和工程领域中,计算立方根的需求也十分常见。
本文将介绍两种常用的计算立方根的方法:二分法和牛顿迭代法。
一、二分法计算立方根二分法是一种简单而有效的数值计算方法,可以用来求解函数的根。
对于立方根的计算,也可以借助二分法的思想。
1. 确定区间首先,我们需要确定一个区间,该区间内的数的立方根与待求数最接近。
例如,要计算数x的立方根,我们可以选择一个区间[a, b],使得a^3小于等于x,b^3大于等于x。
2. 二分查找在确定了区间之后,我们可以使用二分查找的方法逐步缩小范围。
首先,计算区间的中点m,然后判断m的立方是否等于x,如果相等,则m就是x的立方根;否则,判断m的立方是否大于x,如果大于x,说明待求数的立方根在区间[a, m]内,否则在区间[m, b]内。
不断缩小区间,直到满足精度要求即可。
3. 代码示例下面是使用二分法计算立方根的示例代码(使用Python语言表示):```pythondef binary_search_cube_root(x, epsilon):a = 0b = max(1, x)while abs(b**3 - x) >= epsilon:m = (a + b) / 2if m**3 < x:a = melse:b = mreturn m```二、牛顿迭代法计算立方根牛顿迭代法是一种常用的数值计算方法,可以用来求解方程的根。
对于立方根的计算,也可以借助牛顿迭代法进行逼近。
1. 初值选择首先,我们需要选择一个初始值作为计算的起点。
该初始值越接近最终结果,计算的迭代次数就越少。
2. 迭代计算在初始值的基础上,使用牛顿迭代公式进行迭代计算。
对于求解立方根的情况,迭代公式可以表示为:x = (2 * x + n / x^2) / 3,其中n为待求数。
3. 收敛条件迭代过程中,我们需要设定一个收敛条件。
牛顿迭代法与二分法
牛顿迭代法与二分法数学中,有用的方法和技术有很多,其中牛顿迭代法和二分法是两种经典的数值计算方法。
这两种方法都可以用于求解各种类型的方程和问题,在不同场合下往往有不同的适用范围和性质。
在本文中,我们将对这两种方法进行简单介绍和比较,以加深读者对它们的理解和应用。
一. 牛顿迭代法牛顿迭代法,又称牛顿-拉夫逊方法(Newton-Raphson method),是一种用于寻找函数零点的一种迭代算法。
它的基本思想是从一个初始近似值开始,使用函数的导数来逐步改进这个近似值,直到满足所需的精度要求为止。
具体步骤如下:1. 选定一个初始值 $x_0$ ,计算函数 $f(x)$ 在这个点的值和导数 $f'(x)$;2. 计算迭代公式 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$,即用当前点的函数值和导数值确定一个切线,并将其与 $x$ 轴交点作为下一个近似值;3. 如果迭代满足要求,则停止,否则返回第二步。
牛顿迭代法的优点是迭代速度较快,可以高效地求解接近函数原始根的方程。
例如,如果要求 $\sqrt{a}$ 的值,可令 $f(x) = x^2 - a$,则零点为 $\sqrt{a}$。
经过一定次数的迭代,可以得到很高精度的近似值。
然而,牛顿迭代法也有一些局限性,如收敛性和迭代次数等问题,需要根据具体问题和条件进行评估和调整。
二. 二分法二分法(bisect method)是一种寻找函数零点的一种简单算法,其基本思想是不断缩小区间,直到找到目标区间的根。
具体步骤如下:1. 选定一个有根区间 $[a, b]$,并计算函数 $f(a)$ 和 $f(b)$ 在两个端点的值;2. 计算区间中点$c = \frac{a+b}{2}$,并计算函数$f(c)$ 的值;3. 判断函数值的符号,并用二分法将 $[a, b]$ 划分为两个子区间,其中一个包含了零点,另一个不包含,即更新区间 $[a, b]$ 为$[a, c]$ 或 $[c, b]$;4. 重复步骤 2-3 直到找到满足误差要求的近似根。
平方根计算方法
平方根计算方法平方根是数学中常用的一个概念,求一个数的平方根可以帮助我们理解数的大小关系以及解决一些实际问题。
在计算平方根的过程中,我们常常用到各种不同的方法和公式。
本文将介绍几种常用的平方根计算方法。
一、牛顿迭代法牛顿迭代法是一种求函数零点的数值逼近方法,也可以用来计算平方根。
以下是使用牛顿迭代法计算平方根的步骤:1. 我们要求解的平方根是x,我们先随意猜测一个近似值y。
2. 计算出y的平方,如果y的平方接近于x,那么y就是x的平方根。
3. 如果y的平方与x相差较大,我们可以利用牛顿迭代法进行改进。
a. 我们可以通过求函数f(y)=y^2-x的导数f'(y)来得到曲线的切线斜率。
b. 曲线上的一点(x, f(x))和曲线的切线交点(x', f(x'))可以近似地代表函数f(y)的零点。
c. 利用切线和x轴的交点求出新的近似值,再通过重复步骤3,直到y的平方接近于x。
牛顿迭代法是一种快速高效的平方根计算方法,但在实际应用中可能会出现收敛性问题。
因此,当使用牛顿迭代法时,我们需要注意收敛性的检验。
二、二分法二分法是一种基于区间逼近的方法,也可以用来计算平方根。
以下是使用二分法计算平方根的步骤:1. 我们要求解的平方根是x,我们先确定一个范围[a, b],其中a为x的下界,b为x的上界。
2. 计算出区间的中点c,即c=(a+b)/2。
3. 如果c的平方接近于x,那么c就是x的平方根。
4. 如果c的平方大于x,说明平方根落在区间[a, c]内,那么我们将b更新为c。
5. 如果c的平方小于x,说明平方根落在区间[c, b]内,那么我们将a更新为c。
6. 重复步骤2到5,直到区间的长度足够小或满足精度要求。
三、连分数法连分数法是一种用连分数表示平方根的方法,每一项都是一个有理数。
以下是使用连分数法计算平方根的步骤:1. 将待求的平方根表示为一个连分数形式:√x = a0 + 1/(a1 + 1/(a2 + 1/(a3 + ...)))。
非线性方程的求解方法
非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。
然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。
本文将介绍几种非线性方程的求解方法。
一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。
该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。
牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。
牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。
二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。
与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。
割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。
三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。
该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。
二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。
二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。
四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。
它和二分法类似,都是通过缩小根所在的区间来逼近根。
不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。
牛顿,二分法,弦接法比较
牛顿,二分法,弦接法比较牛顿法、二分法和弦接法都是求解线性方程组的方法,但它们在求解过程中的表现和适用范围有所不同。
牛顿法是一种迭代法,它通过不断逼近方程组的解来求解。
在牛顿法中,我们首先将方程组转化为标准形式,然后找到一个未知数的近似值,使其与其他未知数的系数乘积等于常数项。
接着,我们更新未知数的近似值,使其更接近真实解。
这个过程重复进行,直到误差达到要求。
牛顿法的优点是能够快速求解非线性方程组,并且可以处理具有复杂特征的方程组。
但是,它的缺点是需要计算大量的矩阵操作,因此计算成本较高。
二分法是一种直接求解线性方程组的方法。
在二分法中,我们首先找到方程组中两个未知数之间的中点,然后计算这两个中点之间的距离。
我们将这个距离的二分之两倍作为未知数的值,并将其代入方程组中求解其他未知数的值。
二分法的优点是可以处理较大规模的问题,并且不需要计算大量的矩阵操作。
但是,它的缺点是需要较长的计算时间,并且对于复杂特征的方程组表现较差。
弦接法是一种近年来被广泛应用于求解线性方程组的方法。
在弦接法中,我们首先将方程组转化为标准形式,然后找到一组未知数的系数矩阵的行列式为零。
接着,我们将这个行列式为零的矩阵分解成两个矩阵的乘积,并分别求解这两个矩阵的逆矩阵。
最后,我们将这两个逆矩阵相乘,得到求解方程组的解。
弦接法的优点是可以处理大规模和复杂特征的方程组,并且具有较低的计算成本。
但是,它的缺点是需要较长的计算时间,并且需要对矩阵进行奇异值分解,因此可能不适合处理大规模问题。
牛顿法、二分法和弦接法都是求解线性方程组的方法,各有优缺点。
在实际应用中,需要根据具体情况选择最适合的方法。
二分法,不动点迭代法和牛顿迭代法
二分法、不动点迭代法和牛顿迭代法是数值计算中常用的三种求根方法。
它们在不同的数学领域及实际问题中有着广泛的应用。
本文将对这三种方法进行介绍和比较。
一、二分法1. 原理二分法是一种基于区间不断缩小的求根方法。
其原理是通过在函数值的两个不同点处得到异号的情况下缩小区间来逼近实根。
具体过程为:首先确定一个区间[a,b],使得f(a)和f(b)异号,然后将区间一分为二,取中点c=(a+b)/2,若f(c)为零或在一定误差范围内,则c即为所求的根;否则,根据f(a)和f(c)的符号确定新的区间[a,c]或[c,b],重复上述步骤,直到满足要求。
2. 特点二分法的优点是简单易实现,对于连续且单调函数一定能收敛。
但其缺点是收敛速度较慢,尤其在根附近时迭代次数较多。
二、不动点迭代法1. 原理不动点迭代法是求解方程f(x)=0的一种迭代方法,通过将方程变换为x=g(x),其中g(x)为连续函数,然后通过不断地迭代计算得到方程的根。
具体过程为:给定一个初始近似值x0,通过不断迭代计算xn+1=g(xn)来逼近实根。
2. 特点不动点迭代法的优点是迭代过程简单,不需要对函数进行求导。
但其缺点是收敛性有一定要求,不是所有的g(x)函数都能得到收敛结果。
三、牛顿迭代法1. 原理牛顿迭代法是一种通过不断线性化函数来逼近方程根的方法。
其原理是通过对函数f(x)进行泰勒展开,并取展开式的线性部分来进行迭代计算。
具体过程为:给定一个初始近似值x0,通过不断迭代计算xn+1=xn-f(xn)/f'(xn)来逼近实根。
2. 特点牛顿迭代法的优点是收敛速度较快,在根附近有二次收敛性。
但其缺点是需要对函数进行求导,且初始值的选取对迭代结果有一定影响。
二分法、不动点迭代法和牛顿迭代法都是求解方程根的有效方法,各有其优缺点和适用范围。
在实际应用中,根据问题的特性和计算要求来选择适当的方法,以达到准确和高效的求解目的。
4. 比较与应用通过对二分法、不动点迭代法和牛顿迭代法的介绍,我们可以对它们进行比较与应用。
计算立方根的方法
计算立方根的方法计算立方根是数学中常见的问题之一,很多人在学习数学或处理实际问题时都会遇到这个需求。
在本文中,我们将介绍几种计算立方根的常见方法,并给出详细步骤和示例。
一、开方法开方法是一种简单而常用的计算立方根的方法。
它通过将立方根的问题转化为平方根的问题来求解。
具体步骤如下:1. 将要求解的数记为x,假设其立方根为y。
2. 建立等式y^3 = x,即求y使得y的立方等于x。
3. 对等式两边同时开3次方根,得到y = x^(1/3)。
4. 计算x^(1/3)的值即可得到立方根。
举例说明:假设要计算27的立方根,按照开方法的步骤进行计算:1. 将x设为27,y为所求的立方根。
2. 建立等式y^3 = 27。
3. 对等式两边同时开3次方根,得到y = 27^(1/3)。
4. 计算27^(1/3)的值为3,所以27的立方根为3。
二、牛顿迭代法牛顿迭代法是一种数值逼近的方法,可以用来计算方程的根。
对于立方根的计算,也可以使用牛顿迭代法。
具体步骤如下:1. 假设要求解的数为x,立方根为y。
2. 假设初始解为y0。
3. 利用牛顿迭代公式进行迭代,直到满足迭代精度要求。
4. 得到的迭代结果即为所求的立方根。
牛顿迭代公式:y = y0 - (y0^3 - x) / (3 * y0^2)举例说明:假设要计算8的立方根,按照牛顿迭代法的步骤进行计算:1. 假设初始解为y0 = 2。
2. 迭代计算:第一次迭代:y = 2 - (2^3 - 8) / (3 * 2^2) = 2 - (8 - 8) / (3 * 4) = 2第二次迭代:y = 2 - (2^3 - 8) / (3 * 2^2) = 2 - (8 - 8) / (3 * 4) = 2第三次迭代:y = 2 - (2^3 - 8) / (3 * 2^2) = 2 - (8 - 8) / (3 * 4) = 2...满足迭代精度要求后停止迭代,得到的结果为2,所以8的立方根为2。
二分法和牛顿迭代法
⼆分法和⽜顿迭代法先说⼀个⾯试题:问 1.2 - 0.2 == 1 ? 答案是False!为什么?其原因在于⼗进制和⼆进制的转换上,计算机先要把⼗进制的数转化为⼆进制,然后再计算。
但是,在转化中,浮点数转化为⼆进制,就出问题了,例如:⼗进制的 0.1,转化为⼆进制是:0.0001100110011001100110011001100110011001100110011…(不能精确)也就是说,转化为⼆进制后,不会精确等于⼗进制的 0.1。
同时,计算机存储的位数是有限制的,所以,就出现上述现象了。
这种问题不仅仅是 Python 中有,所有⽀持浮点数运算的编程语⾔都会遇到,它不是 Python 的 bug求⼀个数的平⽅根函数sqrt(int num),在⼤多数语⾔中都提供实现。
那么要求⼀个数的平⽅根,是怎么实现的哪? 实际上求平⽅根的算法⽅法主要有两种:⼆分法( binary search)和⽜顿迭代法( Newton iteration):说到这两种⽅法,⼼⾥就感慨重重,记得⼤学开了⼀门叫《计算⽅法》的课程,后来就忘了,直到有⼀天⽼师讲到这⾥的时候才想起这种计算⽅法⾃⼰曾⼏何时学过!1、⼆分法:(夹逼法) 以求根号5为例: a:折半: 5/2=2.5 b:平⽅校验: 2.5*2.5=6.25>5,并且得到当前上限2.5 c:再次向下折半:2.5/2=1.25 d:平⽅校验:1.25*1.25=1.5625<5,得到当前下限1.25 e:再次折半:2.5-(2.5-1.25)/2=1.875 f:平⽅校验:1.875*1.875=3.515625<5,得到当前下限1.875每次得到当前和5进⾏⽐较,并且记下下限和上线,依次迭代,逐渐逼近我们设好的误差范围:import mathfrom math import sqrtdef sqrt_binary(num):x=sqrt(num) # 求出系统给我们的准确值y=num/2.0 #中分low=0.0up=num*1.0count=1while abs(y-x)>0.00000001:print count,ycount+=1if (y*y>num):up=y #⼆分后中间值⽐预期⼤了y=low+(y-low)/2else:low=yy=up-(up-y)/2 #⼆分后中间值⽐预期⼩了return yprint(sqrt_binary(5))print(sqrt(5))运⾏结果: 1 2.5 2 1.25 3 1.875 4 2.1875 5 2.34375 6 2.265625 7 2.2265625 8 2.24609375 9 2.236328125 10 2.2314453125 11 2.23388671875 12 2.23510742188 13 2.23571777344 14 2.23602294922 15 2.23617553711 16 2.23609924316 17 2.23606109619 18 2.23608016968 19 2.23607063293 20 2.23606586456 21 2.23606824875 22 2.23606705666 23 2.2360676527 24 2.23606795073 25 2.23606809974 26 2.23606802523 27 2.236067987982.236067969352.2360679775经过27次⼆分迭代,得到的值和系统sqrt()差别在0.0000001,2、⽜顿迭代法:仔细思考⼀下就能发现,我们需要解决的问题可以简单化理解。
数值分析——二分法和牛顿法
数值分析——二分法和牛顿法二分法和牛顿法的比较二分法的基本思想是对有根区间[a,b]逐次分半,首先计算区间[a,b]的中间点x0,然后分析可能出现的三种情况:如果f(x0)f(a)<0,则f(x)在区间[a,x0]内有零点;如果f(x0)f(b)<0,则f(x)在区间[x0,b]内有零点;如果f(x0)=0,则x0是f(x)在区间[a,b]内所求零点。
但是二分法的缺点是收敛速度慢且不能求复根。
牛顿迭代法的基本思想是将方程f(x)=0中函数f(x)线性化,以线性方程的解逼近非线性方程的解其迭代函数为)(')()(x f x f x x -=?。
牛顿迭代法的缺点是可能发生被零除错误,且可能出现死循环。
用二分法和牛顿法分别计算多项式024323=-+-x x x 的解。
该多项式的解为1、1+i 和1-i ,使用二分法计算时,区间为(-1,2),使用牛顿法计算时取初始值为0。
误差都为0.0001。
编程如下二分法(erfen.m):syms x ;fun=x^3-3*x^2+4*x-2; a=-1; b=2;d=0.0001; f=inline(fun); e=b-a; k=0;while e>d c=(a+b)/2; if f(a)*f(c)<0 b=c; elseif f(a)*f(c)>0a=c; elsea=c;b=c; end e=e/2; k=k+1; end k x=(a+b)/2牛顿法(newton.m):function [k,x,wuca] = newton() k=1; x0=0; tol=0.0001; yx1=fun(x0); yx2=fun1(x0); x1=x0-yx1/yx2; while abs(x1-x0)>tol x0=x1; yx1=fun(x0); yx2=fun1(x0); k=k+1; x1=x1-yx1/yx2; end kx=x1wuca=abs(x1-x0)/2 endfunction y1=fun(x) y1=x^3-3*x^2+4*x-2; endfunction y2=fun1(x)y2=3*x^2-6*x+4; end 分析结果得知,在相同的误差精度下,二分法需要计算15次,而牛顿法只需计算5次,得知牛顿法比二分法优越。
二分法和牛顿法的比较
学院
理学院
专业班
信息10-2班
日期
2012-3-13
学号
10071228
姓名
王绍梅
成绩
实验题目
非线性方程求根: 算法设计与比较
指导老师
申淑谦
实验目的:
编写牛顿法和二分法的matlab程序,探讨这两种方法的计算效果
实验内容:
分别编写牛顿法和二分法的matlab程序
实验要求:
用上述两种方法计算函数x^3+4x^2-10=0。
在达到相同精度的前提下,比较其迭代次数等。
实验步骤
牛顿迭代法
function [x,i]=newtonmethod(x0,f,ep,Nmax)
% 牛顿法求非线性方程根
% x0是输入初始值, f是输入函数, 精度要求ep, Nmax为最大迭代次数
% x是输出迭代序列,i是迭代次数
二分法
function [x,k]=bisection(a,b,f,ep)
% 二分法解非线性方程
% 输入区间[a,b],函数f和误差ep, Nmax为最大二分次数
% x为输出近似根, k为二分次数
运行结果及分析
1.牛顿法选初始值1.5,二分法的含根区间为[1,2],分析二者的收敛速度,并选择自己喜欢的图表表示;
牛顿法的迭代速度要远远快于二分法
2. 对牛顿法选不同的初始值,分析初值的选取对牛顿法收敛速度的影响。
当x0=1.1时
当x0=2.1时
源程序
(见附件)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿迭代法、二分法,定点法的区别与联系
牛顿迭代法、二分法,定点法的区别与联系
牛顿迭代法
牛顿迭代法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要
Newton法是求解方程f(x)=0的最著名的和最有效的数值方法之一,其基本思想可以是将方程转化为线性方程来求解,设f(x)连续可微,则将函数f(x)在x k点处进行taylor展开,即
如果,取taylor展开式的线性部分近似代替f(x),得到f(x)=0的近似方程
,将此方程的根记作x k+1,则得到
这就是Newton迭代公式
迭代函数为
不动点迭代
将方程f(x)=0改写成等价方程
则方程的根又称为函数的不动点.
为了求的不动点,取一个初始近似值x0,用迭代格式
,k=1,2
产生序列{x k},这种迭代法我们称之为不动点迭代,或简单迭代又称为迭代函数.假设一个迭代法产生的序列{x k},k=0,1,2,,收敛,,X*是方程f(x)=0的一个解.
区间对分法
区间对分法是求解方程f(x)=0的一种直观而又简单的迭代法,它是建立在介值定理的理论基础之上的,第一个取值点取在含优区间的1/2处,然后逐渐逼近最优值的单因素试验设计方法。
联系
都是用来近似求方程根的方法,利用数列收敛于方程的根。
在应用方面,区间对分法可用来求根的初始近似值,以供其它对初始值要求严格的迭代法使用,牛顿法和不定点迭代法都有局限性,收敛有方向性,如果初始值选的不恰当,则方程不收敛,也就不能得到方程的根。
另外,方程f(x)=0和x=是等价的,于是 Newton迭代公式也属于不动点迭代。
区别
对分法每次50%的区间舍弃,试验选值跨跃的幅度过大,会使对分法漏掉了最佳值。
从此误差估计式看出,近似解的误差下降速度较慢.但此方法比较简单,且安全可靠.在实际应用中,.需要注意的是此方法只能求单实根,而不能求复根或偶数重根.
在牛顿迭代和不动点迭代中,对不动点方程x=,它导出的迭代过程有可能发散,也可能收敛得非常缓慢,注意到x=x和x=都是不动点方程,它们的加权平均h(x)=也是不动点方程,而h(x) 和有完全相同的不动
点。
适当选取的值,可以使发散的迭代过程变得收敛,使收敛慢的迭代过程变得收敛迅速。