随机过程知识点汇总
(完整版)随机过程知识点汇总
第一章随机过程 的基本概念与基本类型 一.随机变量及其分布X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)p kf (t)dt分布函数kxX 的概率分布用概率密度 f (x)F(x)分布函数连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)其联合分布函数 1 2 n 1 1 2 离散型联合分布列连续型联合概率密度3.随机变量 的数字特征 数学期望:离散型随机变量 XEX x p kkXEX xf (x)dx连续型随机变量2DX E(X EX) 2 EX (EX) 2方差:反映随机变量取值 的离散程度协方差(两个随机变量 X ,Y ):B E[( X EX)(Y EY)] E(XY) EX EYXYB XY相关系数(两个随机变量X,Y ):0,则称 X ,Y 不相关。
若XYDX DY独立不相关itXg(t) E(e )itxe p k 连续 g(t)ke itxf (x)dx4.特征函数离散 g(t) 重要性质: g(0) 1,g(t) 1 g( t) g(t),, g (0) i EX kk k5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布P( X 1) p,P( X 0) qEX pDX pqP(X k) C p q n kk kEX npDX n p qnk泊松分布P( X k) ek!EXDX均匀分布略( x a)21 2N(a, ) f (x)222EX a正态分布eDX2xe ,x 0 0, x 011指数分布f (x)EXDX2X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量1 2 n11 2T 1(x a) B (x a)}f (x , x , , x n ) exp{ 11 2n 2(2 ) | B |2a (a ,a , ,a ), x (x , x , ,x ), B (b ) 正定协方差阵 1 2 n 1 2 n ij n n二.随机过程 的基本概念 1.随机过程 的一般定义设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是P)上 的随机过程。
随机过程知识点总结
知识点总结第1章 概率论基础1.1概论空间随机试验,它是指其结果不能事先确定且在相同条件下可以重复进行的试验。
其中,一个试验所有可能出现的结果的全体称为随机试验的样本空间,记为Ω,试验的一个结果称为样本点,记为ω,即}{ω=Ω. 样本空间的某个子集称为随机事件,简称事件.定义1.1.1 设Ω样本空间,是Ω的某些子集构成的集合,如果:(1)∈Ω (2)若∈A ,则∈A(3)若∈n A ,,, ,21n =则∈∞= 1n nA那么称为一事件域,也称为σ域.显然,如果是一事件域,那么(1)∈φ(2)若∈B A ,,则∈-B A(3)若∈n A , ∞==1n n 2,1n A ,则,,定义 1.1.2 设Ω是样本空间,是一事件域,定义在上的实值函数)(⋅P 如果满足:(1)∈∀A 0)(,≥A P ,(2)1)(=ΩP , (3)若∈n A ,,2,1, =n 且,,2,1,,, =≠=j i j i A A j i φ则∞=∞=∑=11)()(n n n n A P A P那么称P 是二元组(,Ω)上的概率,称P (A )为事件A 的概率,称三元组,(Ω),P 为概率空间。
关于事件的概率具有如下性质:(1);0)(=φP(2)若∈nA ,,,2,1,,,,,,2,1,n j i j i A A n i j i =≠==φ 则ni ni i i A P A P 11)()(==∑=(3)若∈B A ,,,B A ⊂则)A P B P A B P ()()(-=-(4)若∈B A ,)()(,,B P A P B A ≤⊂则; (5)若∈A ;1)(,≤A P 则(6)若∈A );(1)(,A P A P -=则(7)若∈n A ,,2,1, =n 则∞=∞=∑≤11)()(n n n i A P A P(8)若∈i A ,,,2,1,n i =则-===∑ ni ni i i A P A P 11)()(∑∑≤<≤≤<<≤--+-+nj i nk j i n n kj ij i A A A P A A A P A A P 11211)()1()()(一列事件∈n A ,2,1,=n 称为单调递增的事件列,如果;,2,1,1 =⊂+n A A n n 一列事件∈n A ,2,1,=n 称为单调递减的事件列,如果,2,1,1=⊃+n A A n n .定理1.1.1 设 ∈n A ,2,1,=n(1)若 ,2,1,=n A n 是单调递增的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P (2)若 ,2,1,=n A n 是单调递减的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P 定义1.1.3.设,(Ω),P 为一概率空间,∈B A ,.且,0)(>A P 则称)()()(A P AB P A B P =为在事件A 发生的条件下事件B 发生的条件概率.不难验证,条件概率)|(A P ⋅符合定义1.1.2中的三个条件,即 (1)∈∀B , 0)|(≥A B P ;(2);1)|(=ΩA P (3)设∈n B ,,2,1,,,,2,1, =≠==j j i B B n j i φ则∞=∞=∑=11)|()|(n n n n A B P A B P定理 1.1.2. 设,Ω( ),P 是一概率空间,有: (1)(乘法公式)若∈i A ,,,,2,1n i =且0)(121>-n A A A P ,则)|()()(12121A A P A P A A A P n =(2)(全概率公式)设∈A ,∈iB ,,2,1,0)(, =>i B P i 且∞=⊃=≠=1,,,2,1,,,,i i j i A B j i j i B B φ则∑∞==1)|()()(i i i B A P B P A P(3)(贝叶斯(Bayes)公式)且∈A ∈>i B A P ,0)(,,,,2,1,0)( =>i B P i且 ∞=⊃==1,,,2,1,,i i j i A B j i B B φ则,2,1,)|()()|()()|(1==∑∞=i B A P B P B A P B P A B P j jji i i定义 1.1.4设,(Ω ),P 为一概率空间,,,,2,1,n i F A i =∈如果对于任意的)1(n k k ≤<及任意的,12n i i i k i ≤<<<≤ 有)()()()(2121k k i i i i i i A P A P A P A A A P =则称n 21,,,A A A 相互独立。
第二章 随机过程总结
图2-2-3 随机过程的均方值、方差
方差、均方值和均值有数学关系式:
(2.2.18) • 方差描述在该时刻对其数学期望的偏离程度。
• 数学期望、均方值和均方差只能描述随机过程孤 立的时间点上的统计特性。
• 随机过程孤立的时间点上的统计特性不能反映随 机过程的起伏程度。
图2-2-4 随机过程的起伏程度
注:一维概率分布描述了随机过程在各个孤 立时刻的统计特性。 3、二维分布函数
与 , , 和 都有直接的关系, 是 ,, 和 的四元函数,记为: (2.2.4) 被称为随机过程的二维分布函数。
4、二维概率密度函数
如果存在四元函数
ቤተ መጻሕፍቲ ባይዱ
,使
(2.2.5)
成立,则称 为随机过程的二维概率密 度函数,是 ,,和 的四元函数,且满足 (2.2.6)
§2.3
平稳随机过程
• 平稳随机过程的定义
• 严平稳随机过程及其性质 • 宽平稳随机过程及其性质
图2-3-1 初相角随机的正弦信号
图2-3-2 幅度随机的正弦信号
图2-3-3 频率随机的正弦信号
图2-3-4 频率、相位和幅度随机的正弦信号
图2-3-5 云层背景下的飞机
2.3.1 随机信号 的统计特性(如概率密度函 数、相关函数),部分或全部在观察点或观察 点组的位置变化时,保持不变或变化。在随机 信号理论中就称该随机信号的相应统计特性具 有平稳或非平稳性。 2.3.2 随机信号统计平稳性有多种情况: (1)对整个观察点位置 变化的平稳性; (2)对观察点中时间位置 变化的时间平稳性; (3)对观察点空间位置 变化的平稳性; (4)对观察点中空间位置的部分坐标变化的平 稳性。
例2.8 设有随机过程 ,式中A是高斯 随机变量, 为确定的时间函数。试判断 是否为严平稳过程。 解:已知A的概率密度函数
随机过程知识点汇总
随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。
2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。
连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。
3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。
均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。
自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。
4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。
弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。
强平稳随机过程的概率分布在时间上是不变的。
5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。
高斯随机过程的均值函数和自相关函数可以唯一确定该过程。
6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。
马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。
7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。
泊松过程的重要性质是独立增量和平稳增量。
8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。
例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。
t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。
复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。
协方差函数和相关函数也可以类似地计算得到。
复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。
随机过程知识点总结
∈
且
∑ = 1
∈
矩阵表示
= ()
3、 各状态平均返回时间
=
1
第五章 连续时间马尔可夫链
1、 转移概率 (, ) = {( + ) = |() = }
齐次转移概率 (, ) = ()
2、 转移速率
()
() = ∑ , ≥ 0
=1
[()] = [1 ];[()] =
[12]
第四章 马尔可夫链
4.1 马尔可夫链概念与状态转移概率
1、
2、
马尔可夫过程:未来状态只与当前状态有关,而与过去状态无关。
时间、状态都是离散的,称为马尔可夫链。
马尔可夫链的统计特性完全由条件概率{+1 = +1 | = }确定。
随机矩阵:各元素非负且各行元素之和为 1;
步转移矩阵是随机矩阵;
闭集 C 上所有状态构成的步转移矩阵仍是随机矩阵。
周期为的不可约马氏链,其状态空间可唯一地分解为个互不相交的子集之和,即
−1
= ⋃ , ∩ = ∅, ≠
=0
且使得自 中任一状态出发,经一步转移必进入+1 中( = 0 )。
[ ( + ) − ()] −[ (+)− ()]
!
+
( + ) − () = ∫
()
相较与齐次泊松过程 → ( + ) − ()
5、 复合泊松过程(独立增量过程)
是由对泊松过程的每一点赋予一独立同分布的随机变量而得的随机过程。
=1
′′ (0)(− 2 )
随机过程复习提纲汇总
随机过程复习提纲汇总随机过程是概率论中研究随机现象的一种数学工具,它描述了随机事件或变量在时间或空间上的演化规律。
随机过程在概率论、统计学以及各个科学领域中都有广泛的应用。
在复习随机过程的过程中,可以按照以下提纲进行系统地总结和复习:一、随机过程的定义和基本概念1.随机过程的定义和基本性质2.随机变量和随机过程的关系3.有限维分布和无限维分布4.随机过程的连续性和可测性二、随机过程的分类1.马尔可夫链和马尔可夫过程2.马尔可夫链的平稳分布和细致平衡条件3.各类随机过程的特性和应用(如泊松过程、布朗运动等)三、随机过程的数学描述1.随机过程的表示方法(如状态空间表示、样本函数表示等)2.随机过程的独立增量性质3.随机过程的平稳性质和相关函数四、随机过程的统计特性1.随机过程的均值和方差2.随机过程的相关函数和自相关函数3.随机过程的功率谱密度和自相关函数之间的关系五、随机过程的极限理论1.强大数定律和中心极限定理在随机过程中的应用2.极限理论在随机过程中的应用(如大数定律、中心极限定理等)六、马尔可夫过程的统计推断1.马尔可夫链的参数估计2.马尔可夫过程的参数估计3.马尔可夫过程的隐马尔可夫模型和参数估计七、随机过程的应用1.随机过程在金融领域的应用2.随机过程在电信领域的应用3.随机过程在信号处理领域的应用以上是一个较为全面的随机过程复习提纲,按照这个提纲进行复习可以帮助系统地回顾和学习随机过程的各个重要概念、定理和应用。
在复习的过程中,可以结合课本、教材以及相关资料进行深入学习和巩固。
同时,通过解答题目、做习题和实际应用案例的分析,可以提高对随机过程的理解和应用能力。
复习随机过程时,要注意理论和实践相结合,注重理论概念的理解和应用技巧的掌握。
第一讲随机过程的概念
随机过程的基本知识
引例:热噪声电压
一、随机过程的定义
定义1 设E是一随机实验,样本空间S={e},T为参数集
若对每个eS ,X(e,t)都是实值函数, 则称{X(e,t),t T}
为随机过程,简记为X(t),t T 或X(t),也可记为X(t).
称族中每一个函数称为这个随机过程的样本函数。
样本函数: xi (t ) a cos( t i ) , i (0 , 2 )
状态空间:I=(-a,a)
例3: 掷骰子试验
伯努利过程 (伯努利随机序列)
以上都是随机过程,状态空间都是:I={1,2,3,4,5,6}
二、随机过程的分类
离散型随机过程
1. 依状态离散还是连续分为:
s, t 0, C X ( s, t ) DX [min{s, t }].
④ C X ( s, t ) Cov( X ( s), X (t ))
E[ X ( s) X ( s)][X (t ) X (t )]
为{X(t),tT}的协方差函数.
⑤ Rx(s,t)=E[X(s)X(t)]为{X(t),tT}的自相关函数, 简称相关函数
诸数字特征的关系:
X (t ) f ( x, t )
称 f ( x, t ) 为随机过程的一维密度函数 称{ f ( x, t ), t T } 为一维密度函数族.
X t 0 ,其中 X Y ( t ) te 例4 设随机过程
e( ) ,求
{Y (t ),t 0}的一维密度函数
y P( X ln ) , t 解: F ( y; t ) P[Y (t ) y ] P(te y ) 0 ,
第二章 随机过程汇总
第 2 章 随机过程2.1 引言•确定性信号是时间的确定函数,随机信号是时间的不确定函数。
•通信中干扰是随机信号,通信中的有用信号也是随机信号。
•描述随机信号的数学工具是随机过程,基本的思想是把概率论中的随机变量的概念推广到时间函数。
2.2 随机过程的统计特性一.随机过程的数学定义:•设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t)是第i 次试验的样本函数或实现,每次试验得到一个样本函数,所有可能出现的结果的总体就构成一随机过程,记作)(t g 。
随机过程举例:二.随机过程基本特征其一,它是一个时间函数;其二,在固定的某一观察时刻1t ,)(1t g 是随机变量。
随机过程具有随机变量和时间函数的特点。
● 随机过程)(t g 在任一时刻都是随机变量; ● 随机过程)(t g 是大量样本函数的集合。
三.随机过程的统计描述设)(t g 表示随机过程,在任意给定的时刻T t ∈1, )(1t g 是一个一维随机变量。
1.一维分布函数:随机变量)(t g 小于或等于某一数值x 的概率,即})({);(1x t g P t x P ≤= 2.2.12.一维概率密度函数:一维概率分布函数对x 的导数.xt x P t x p ∂∂=);(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的二维分布})(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.34.二维分布密度定义为212121221212),;,(),;,(x x t t x x P t t x x p ∂∂∂=2.2.4四.随机过程的一维数字特征设随机过程)(t g 的一维概率密度函数为),(1t x p .1.数学期望(Expectation)dx t x xp t g E t g );()]([)(1⎰∞∞-==μ 2.2.52.方差(Variance)dx t x p t x t t g E t g Var t g g g ),()]([]))()([()]([)(1222μμσ-=-==⎰∞∞- 2.2.6五.随机过程的二维数字特征1.自协方差函数(Covariance)•21212122211221121),;,())())((())]()())(()([(),(dx dx t t x x p t x t x t t g t t g E t t C g g g g g μμμμ--=--=⎰⎰∞∞-∞∞- 2.2.72. 自相关函数(Autocorrelation)•2121212212121),;,()]()([),(dx dx t t x x p x x t g t g E t t R g ⎰⎰∞∞-∞∞-== 2.2.83.自相关函数和自协方差函数的关系)]([)]([),(),(212121t g E t g E t t R t t C g g •-= 2.2.9 4.设两个随机过程分别为)(),(t h t g ,在时刻1t 和2t ,对)(),(t h t g 抽样,两个随机过程的互相关函数(Cross-correlation)定义为)]()([),(2121t h t g E t t R gh = 2.2.105.两个随机过程的互协方差函数(Cross-covariance)定义为)]()())(()([(),(221121t t h t t g E t t C h g gh μμ--= 2.2.112.3 平稳随机过程一.狭义平稳的随机过程(严平稳的随机过程)对于任意的正整数n 和实数τ,若随机过程)(t g 的n 维概率密度函数满足),,;,,(),,;,,,(21212121n n n n n n t t t x x x p t t t x x x p ⋅⋅⋅⋅⋅⋅=+⋅⋅⋅++⋅⋅⋅τττ 2.3.1则称)(t g 为狭义平稳的随机过程.统计特性不随时间的推移而变化的随机过程称为平稳随机过程。
概率统计与随机过程 知识点总结--最终版
《概率统计与随机过程》知识总结第1章 随机事件及其概率一、随机事件与样本空间 1、随机试验我们将具有以下三个特征的试验称为随机试验,简称试验, (1)重复性:试验可以在相同的条件下重复进行;(2)多样性:试验的可能结果不止一个,并且一切可能的结果都已知; (3)随机性:在每次试验前,不能确定哪一个结果会出现。
随机试验一般用大写字母E 表示,随机试验中出现的各种可能结果称为试验的基本结果。
2、样本空间随机试验E 的所有可能结果组成的集合称为试验的样本空间,记为S ,样本空间中的元素,即E 的每个基本结果,称为样本点。
3、随机事件称随机试验E 的样本空间S 的子集为E 的随机事件,简称事件。
随机事件通常利用大写字母A 、B 、C 等来表示。
在一次试验中,当且仅当这一子集(事件)中的某个样本点出现时,称这一事件发生。
特别地,将只含有一个样本点的事件称为基本事件;样本空间S 包含所有的样本点,它在每次试验中都发生,称S 为必然事件;事件∅(S ∅⊂)不包含任何样本点,它在每次试验中都不发生,称∅为不可能事件。
4、随机事件间的关系及运算(1)包含关系:若B A ⊂,则称事件A 包含事件B ,也称事件B 含在事件A 中,它表示:若事件B 发生必导致事件A 发生。
(2)相等关系:若B A ⊂且A B ⊂,则称事件A 与事件B 相等,记为A B =。
(3)事件的和:称事件{|A B x x A ⋃=∈或}x B ∈为事件A 与事件B 的和事件。
事件A B ⋃发生意味着事件A 发生或事件B 发生,即事件A 与事件B 至少有一件发生。
类似地,称1n i i A =⋃为n 个事件12n A A A ⋯、、、的和事件,称1i i A ∞=⋃为可列个事件12 A A ⋯、、的和事件。
(4)事件的积:称事件{|A B x x A ⋂=∈且}x B ∈为事件A 与事件B 的积事件。
事件A B ⋂发生意味着事件A 发生且事件B 发生,即事件A 与事件B 都发生。
(完整)随机过程总结,推荐文档
第一章随机变量基础1历史上哪些学者对随机过程学科的基础理论做出了突出贡献?答:随机过程整个学科的理论基础是由柯尔莫哥洛夫和杜布奠定的。
这一学科最早源于对物理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。
1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。
1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。
随机过程一般理论的研究通常认为开始于20世纪30年代。
1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年A·辛饮发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。
1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。
2 全概率公式的含义?答:全概率公式的含义就是各种可能发生的情况的概率之和为1。
3 概率空间有哪几个要素,其概念体现了对随机信号什么样的建模思想?答:样本空间、事件集合、概率函数称为概率空间的三要素。
概率函数建立了随机事件与可描述随机事件可能性大小的实数间的对应关系,因此,概率空间是在观测者观测前对随机事件发生的可能性大小进行了量化,其有效性是通过多次观测体现出来的,也即在多次观测中,某个随机事件发生的频率可直接认为与其发生的概率相等,所以,概率空间的建模思想实际是对大量观测中某随机事件发生频率的稳定性的描述。
4 可用哪些概率函数完全描述一个随机变量?答:概率分布函数(cdf)、概率密度函数(pdf)、特征函数(cf)、概率生成函数(gf)。
5 可用哪些数字特征部分描述一个随机变量?答:均值、方差、协方差、相关系数和高阶矩。
6 随机变量与通常意义上的变量有何区别与联系?答:随机变量具有通常意义上的变量的所有性质和特征(即变量特性),还增加了变量取每个值的可能性大小的描述(即概率特性)。
因此,描述或刻画一个随机变量时,还必须要特别考察其概率函数或各阶矩函数。
随机过程知识点汇总52047
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=kpx F )(连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k kp xEX 连续型随机变量X ⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itXeE t g = 离散 ∑=k itx p e t g k )( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0(5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX =二项分布 kn k k n q p C k X P -==)( np EX = npq DX =泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21ex p{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
随机过程例题和知识点总结
随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学理论,在通信、金融、物理等众多领域都有广泛的应用。
接下来,我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量对应于一个特定的时间点。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,股票价格就是一个随机变量。
知识点 1:随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程的时间参数是离散的,比如每天的股票收盘价;连续时间随机过程的时间参数是连续的,比如股票价格在任意时刻的取值。
知识点 2:随机过程的概率分布描述随机过程在不同时刻的概率分布是研究随机过程的重要内容。
对于离散随机过程,常用概率质量函数;对于连续随机过程,常用概率密度函数。
例题 1假设一个离散时间随机过程{Xn},n = 0, 1, 2, ,其中 Xn 取值为 0 或 1,且 P(Xn = 0) = 06,P(Xn = 1) = 04,求 X0 和 X1 的联合概率分布。
解:X0 和 X1 的可能取值组合有(0, 0)、(0, 1)、(1, 0)、(1, 1)。
P(X0 = 0, X1 = 0) = P(X0 = 0) × P(X1 = 0) = 06 × 06 = 036P(X0 = 0, X1 = 1) = P(X0 = 0) × P(X1 = 1) = 06 × 04 = 024P(X0 = 1, X1 = 0) = P(X0 = 1) × P(X1 = 0) = 04 × 06 = 024P(X0 = 1, X1 = 1) = P(X0 = 1) × P(X1 = 1) = 04 × 04 = 016二、随机过程的数字特征数字特征可以帮助我们更简洁地描述随机过程的某些重要性质。
概率统计与随机过程-知识点总结--最终版
P(Bi ) 0(i 1, 2,L , n), 则恒有全概率公式:
n
P( A) P( A B1 )P(B1 ) P( A B2 )P(B2 ) L P( A Bn )P(Bn ) P Bi P A | Bi i 1
B 发生的概率,用古典概率公式,则
P(B
A)
AB 中基本事件数
,
SA 中基本事件数
P( AB)
AB 中基本事件数
,
S 中比 P( AB) 大。
五、事件的独立性 1、事件的相互独立性
定义:设 A,B 是两事件,如果满足等式 P( AB) P( A) P(B) ,则称事件 A,B 相互独立,
结论:
若事件 A1, A2 , L , An (n 2) 相互独立,则其中任意 k (2 k n) 个事件也是相互独立的。
2、几个重要定理
定理一:设 A, B 是两事件,且 P( A) 0 ,若 A, B 相互独立,则 P(B A) P(B).反之亦
i 1
P
Bi
A
。
3、乘法公式
由条件概率的定义: P( A | B) P( AB) 即得乘法定理: P(B)
若 P(B)>0,则 P(AB)=P(B)P(A|B); 若 P(A)>0 ,则 P(AB)=P(A)P(B|A). 乘法定理可以推广到多个事件的积事件的情况,
-3-
设 A、B、C 为三个事件,且 P AB 0 ,且 P ABC P C | ABP B | AP A,
一般地,设有 n 个事件 A1,A2 , , An ,n 2 , 并且 P A1 A2 An1 0 ,则由条件概率的
随机过程知识点汇总
第一章随机过程的基本概念与基本类型一.随机变量及其分布1.随机变量,分布函数离散型随机变量的概率分布用分布列分布函数连续型随机变量的概率分布用概率密度分布函数2.n 维随机变量其联合分布函数离散型联合分布列连续型联合概率密度3 .随机变量的数字特征数学期望:离散型随机变量连续型随机变量方差:反映随机变量取值的离散程度协方差(两个随机变量):相关系数(两个随机变量):若,则称不相关。
独立不相关4•特征函数离散连续重要性质:,,,5 •常见随机变量的分布列或概率密度、期望、方差0 — 1分布二项分布泊松分布均匀分布略正态分布指数分布6.N维正态随机变量的联合概率密度,,正定协方差阵二.随机过程的基本概念1.随机过程的一般定义设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。
简记为。
含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。
另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。
当固定时,是随机变量。
当固定时,时普通函数,称为随机过程的一个样本函数或轨道。
分类:根据参数集和状态空间是否可列,分四类。
也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。
2 .随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性。
随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。
随机过程的有限维分布函数族是随机过程概率特征的完整描述。
在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。
(1)均值函数表示随机过程在时刻的平均值。
(2)方差函数表示随机过程在时刻对均值的偏离程度。
(3)协方差函数且有(4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。
(5)互相关函数:,是两个二阶距过程,则下式称为它们的互协方差函数。
,那么,称为互相关函数。
随机过程知识点总结
第一章:考试范围1.3,1.41、计算指数分布的矩母函数.2、计算标准正态分布)1,0(~N X 的矩母函数.3、计算标准正态分布)1,0(~N X 的特征函数.第二章:1. 随机过程的均值函数、协方差函数与自相关函数2. 宽平稳过程、均值遍历性的定义及定理3. 独立增量过程、平稳增量过程,独立增量是平稳增量的充要条件1、设随机过程()Z t X Yt =+,t -∞<<∞.若已知二维随机变量(,)X Y 的协方差矩阵为2122σρρσ⎡⎤⎢⎥⎣⎦,求()Z t 的协方差函数. 2、设有随机过程{(),}X t t T ∈和常数a ,()()()Y t X t a X t =+-,t T ∈,计算()Y t 的自相关函数(用(,)X R s t 表示).3、设12()cos sin X t Z t Z t λλ=+,其中212,~(0,)Z Z N σ是独立同分布的随机变量,λ为实数,证明()X t 是宽平稳过程.4、设有随机过程()sin cos Z t X t Y t =+,其中X 和Y 是相互独立的随机变量,它们都分别以0.5和0.5的概率取值-1和1,证明()Z t 是宽平稳过程.第三章:1. 泊松过程的定义(定义3.1.2)及相关概率计算2. 与泊松过程相联系的若干分布及其概率计算3. 复合泊松过程和条件泊松过程的定义1、设{(),0}N t t ≥是参数3λ=的Poisson 过程,计算:(1). {(1)3}P N ≤; (2). {(1)1,(3)3}P N N ==; (3). {(1)2(1)1}P N N ≥≥.2、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数. 假设男女顾客来商场的人数分别独立地服从每分钟2人与每分钟3人的泊松过程.(1).试求到某时刻t 时到达商场的总人数的分布;(2). 在已知t 时刻有50人到达的条件下,试求其中恰有30位女性的概率,平均有多少个女性顾客?3、某商店顾客的到来服从强度为4人/小时的Poisson 过程,已知商店9:00开门,试求:(1). 在开门半小时中,无顾客到来的概率;(2). 若已知开门半小时中无顾客到来,那么在未来半小时中,仍无顾客到来的概率。
随机过程复习指南
“随机过程”复习指南一、随机过程的基本概念随机过程的基本概念,有限维分布函数,n 维概率密度函数。
随机过程的数字特征:均值函数,方差函数,协方差函数,相关函数。
几种关系:独立,不相关,正交。
几种重要的随机过程的概念:复随机过程,二阶矩过程,正交增量过程,独立增量过程,马尔可夫过程,平稳过程,正态过程。
泊松过程的有关概念:泊松过程的定义,概率分布(泊松分布),泊松过程的数字特征,时间间隔,等待时间。
马尔可夫链有关概念:定义,无后效性,转移概率,齐次马尔可夫链,初始概率,绝对概率,首中概率;状态的周期性,常返性,平均返回时间,可达,互通,基本常返闭集,平稳分布。
平稳随机过程的有关概念:严平稳和宽平稳的定义,联合平稳,时间均值,统计均值,时间相关函数,统计相关函数,各态历经性,自相关函数,功率谱密度,互相关函数,互谱密度。
二、基本原理与方法关于运算符E 的计算方法,随机过程的几个典型的数字特征(均值函数,方差函数,协方差函数,相关函数)的计算、性质以及之间的相互关系。
泊松过程的有关性质,数字特征的计算,时间间隔与等待时间的概率分布,条件概率的计算方法。
马尔可夫链的描述方式(转移概率矩阵、状态转移图),周期的判断,常返性的判断(常返态、非常返态、正常返态、零常返态、遍历态),状态空间的分解方法,平稳分布的求解。
平稳随机过程的有关概念:平稳(包括联合平稳)的判断,各态历经性的判断,自相关(互相关)函数的性质与计算,功率谱密度(互谱密度)的性质与计算。
平稳过程通过线性时不变系统后,输出过程的数字特征、平均功率、功率谱密度等分析与计算,会在简单的电路系统中求输出过程的均值、自相关、功率谱密度、平均功率等。
三、思考题1. 各章布置的作业题和讲授的例题。
2. 设随机过程∞<<∞-Φ+=t t A t X , )cos()(ω,式中A 和ω是常数,Φ是在(0, 2π)上具有均匀分布的随机变量,求该随机过程的均值、方差和相关函数。
随机过程理论的基础知识和应用场景
随机过程理论的基础知识和应用场景随机过程是指随机事件在时间或空间维度上的演变过程,广泛应用于信号处理、经济学、物理学等领域。
而随机过程理论是研究随机过程的数学工具,主要包括随机变量、概率论、统计学、测度论等基础知识。
在本文中,将介绍随机过程理论的基础知识和应用场景,并通过实例分析展示其实际应用。
一、随机过程理论基础知识1.随机变量与概率论随机变量是指随机现象的数学表示,用来描述事件结果的不确定性。
常见的随机变量包括离散型随机变量和连续型随机变量。
概率论则是研究随机现象的分布规律和概率问题的一门数学分支,主要包括概率分布、期望、方差等内容。
在随机过程理论中,随机变量和概率论是非常基础而重要的概念。
2.统计学原理统计学是研究数据收集、分析和解释的一门学科,主要包括描述统计学和推断统计学两个部分。
前者主要是对数据进行整理、分类、图表展示等描述性统计分析,后者则是利用样本数据推断总体的参数。
在随机过程理论中,统计学原理可以用来对随机过程进行统计分析,从而更好地了解其规律和特性。
3.测度论测度论是研究度量和测量问题的一门数学学科,主要包括测度的概念、性质、测度空间等内容。
在随机过程理论中,测度论可用来定义随机过程的测度空间、概率空间等基础概念。
二、随机过程应用场景1.信号处理随机过程在信号处理中广泛应用,例如在噪声抑制、信号分析、同步定时等方面发挥着重要作用。
例如,在噪声抑制领域,随机过程可以用于描述噪声和信号的关系,进而采用滤波等方式降低噪声干扰,提高信号的质量和可靠性。
2.经济学随机过程在经济学领域中也起到了关键作用。
例如,在金融市场中,随机过程可以用于建立股票、期货、期权等金融工具的价格模型,对投资决策和风险管理具有重要意义。
另外,在经济预测、宏观调控等方面,随机过程也具有广泛的应用。
3.物理学随机过程在物理学中的应用也非常广泛。
例如,在分子动力学、核物理、天体物理等领域,随机过程可以用于描述微观粒子的运动规律和宏观物体的演化过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机过程知识点汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itXe E t g = 离散 ∑=k itx p et g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX =二项分布 kn k k nq p C k X P -==)( np EX = npq DX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21ex p{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
简记为{}T t t X ∈),(。
含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。
另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。
当t 固定时,),(e t X 是随机变量。
当e 固定时,),(e t X 时普通函数,称为随机过程的一个样本函数或轨道。
分类:根据参数集T 和状态空间I 是否可列,分四类。
也可以根据)(t X 之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。
2.随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性。
随机过程{}T t t X ∈),(的一维分布,二维分布,…,n 维分布的全体称为有限维分布函数族。
随机过程的有限维分布函数族是随机过程概率特征的完整描述。
在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。
(1)均值函数)()(t EX t m X = 表示随机过程{}T t t X ∈),(在时刻t 的平均值。
(2)方差函数2)]()([)(t m t X E t D X X -=表示随机过程在时刻t 对均值的偏离程度。
(3)协方差函数)()()]()([))]()())(()([(),(t m s m t X s X E t m t X s m s X E t s B X X X X X -=--= 且有)(),(t D t t B X X =(4)相关函数)]()([),(t X s X E t s R X = (3)和(4)表示随机过程在时刻s ,t 时的线性相关程度。
(5)互相关函数:{}T t t X ∈),(,{}T t t Y ∈),(是两个二阶距过程,则下式称为它们的互协方差函数。
)()()]()([))]()())(()([(),(t m s m t Y s X E t m t Y s m s X E t s B Y X Y X Y X -=--=,那么)]()([),(t Y s X E t s R XY =,称为互相关函数。
若)()()]()([t m s m t Y s X E Y X =,则称两个随机过程不相关。
3.复随机过程 t t t jY X Z +=均值函数t t Z jEY EX t m +=)( 方差函数]))(())([(|])([|)(2t m Z t m Z E t m Z E t D Z t Z t Z t Z --=-= 协方差函数)()(][]))(())([(),(t m s m Z Z E t m Z s m Z E t s B Z Z t s Z t Z s Z -=--=相关函数][),(t s Z Z Z E t s R =4.常用的随机过程(1)二阶距过程:实(或复)随机过程{}T t t X ∈),(,若对每一个T t ∈,都有∞<2)(t X E (二阶距存在),则称该随机过程为二阶距过程。
(2)正交增量过程:设{}T t t X ∈),(是零均值的二阶距过程,对任意的T t t t t ∈<<<4321,有0]))()(())()([(3412=--t X t X t X t X E ,则称该随机过程为正交增量过程。
其协方差函数)),(m in(),(),(2t s t s R t s B XX X σ== (3)独立增量过程:随机过程{}T t t X ∈),(,若对任意正整数2≥n ,以及任意的T t t t n ∈<<< 21,随机变量)()(,),()(),()(13412----n n t X t X t X t X t X t X 是相互独立的,则称{}T t t X ∈),(是独立增量过程。
进一步,如{}T t t X ∈),(是独立增量过程,对任意t s <,随机变量)()(s X t X -的分布仅依赖于s t -,则称{}T t t X ∈),(是平稳独立增量过程。
(4)马尔可夫过程:如果随机过程{}T t t X ∈),(具有马尔可夫性,即对任意正整数n 及T t t t n ∈<<< 21,0))(,,)((1111>==--n n x t X x t X P ,都有{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P ,则则称{}T t t X ∈),(是马尔可夫过程。
(5)正态过程:随机过程{}T t t X ∈),(,若对任意正整数n 及T t t t n ∈,,,21 ,()()(),(21n t X t X t X )是n 维正态随机变量,其联合分布函数是n 维正态分布函数,则称{}T t t X ∈),(是正态过程或高斯过程。
(6)维纳过程:是正态过程的一种特殊情形。
设{}∞<<-∞t t W ),(为实随机过程,如果,①0)0(=W ;②是平稳独立增量过程;③对任意t s ,增量)()(s W t W -服从正态分布,即0),0(~)()(22>--σσs t N s W t W 。
则称{}∞<<-∞t t W ),(为维纳过程,或布朗运动过程。
另外:①它是一个Markov 过程。
因此该过程的当前值就是做出其未来预测中所需的全部信息。
②维纳过程具有独立增量。
该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间上变化的概率。
③它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加。
(7)平稳过程: 严(狭义)平稳过程:{}T t t X ∈),(,如果对任意常数τ和正整数n 及T t t t n ∈,,,21 ,T t t t n ∈+++τττ,,,21 ,()()(),(21n t X t X t X )与()()(),(21τττ+++n t X t X t X )有相同的联合分布,则称{}T t t X ∈),(是严(狭义)平稳过程。
广义平稳过程:随机过程{}T t t X ∈),(,如果①{}T t t X ∈),(是二阶距过程;②对任意的T t ∈, 常数==)()(t EX t m X ;③对任意T t s ∈,,)()]()([),(s t R t X s X E t s R X X -==,或仅与时间差s t -有关。
则满足这三个条件的随机过程就称为广义平稳过程,或宽平稳过程,简称平稳过程。
第三章 泊松过程一.泊松过程的定义(两种定义方法)1,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}T t t X ∈),(是具有参数λ的泊松过程。
①(0)0X =;②独立增量过程,对任意正整数n ,以及任意的T t t t n ∈<<< 21)()(,),()(),()(12312----n n t X t X t X t X t X t X 相互独立,即不同时间间隔的计数相互独立;③在任一长度为t 的区间中,事件A发生的次数服从参数0t λ>的的泊松分布,即对任意,0t s >,有{}()()()0,1,!n tt P X t s X s n en n λλ-+-===[()]E X t t λ=,[()]E X t tλ=,表示单位时间内时间A发生的平均个数,也称速率或强度。
2,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}(),0X t t ≥是具有参数λ的泊松过程。
①(0)0X =;②独立、平稳增量过程;③{}{}()()1()()()2()P X t h X t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩。