发电机定子绕组端部振动监测系统

合集下载

隐极同步发电机定子绕组端部动态特性和振动测量方法及评定

隐极同步发电机定子绕组端部动态特性和振动测量方法及评定

中华人民共和国国家标准隐极同步发电机定子绕组端部动态特性和振动测量方法及评定Measurement method and evaluation criteria of dynamic characteristic and vibration on stator end windings of cylindrical synchronous generatorsGB/T 20140-2016代替GB/T 20140-2006发布日期:2016年2月24日实施日期:2016年9月1日中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会发布前言本标准按照GB/T 1.1-2009给出的规则起草。

本标准代替GB/T 20140-2006《透平型发电机定子绕组端部动态特性和振动试验方法及评定》。

与GB/T 20140-2006相比,主要差异如下:——修改了标准的名称(见封面,2006年版的封面);——修改了标准的适用范围(见第1章,2006年版的第1章);——增加了对转速为1500r/min、1800r/min的4极发电机的评定准则(见6.1);——增加了响应比的测试方法和用响应比评定动态特性的准则(见6.1);——增加了对通频(频率范围为大于或等于转频)的振动限值和评定准则(见6.2);——增加了附录A的内容(见A.3、A.4和A.5)。

本标准由中国电器工业协会提出。

本标准由全国大型发电机标准化技术委员会(SAC/TC 511)归口。

本标准起草单位:哈尔滨大电机研究所、东方电气集团东方电机有限公司、上海电气电站设备有限公司发电机厂、华北电力科学研究院有限责任公司、国网辽宁省电力有限公司电力科学研究院、国网湖北省电力公司电力科学研究院、北京四方继保自动化股份有限公司、中广核工程有限公司、北京北重汽轮电机有限责任公司、国网山东省电力公司电力科学研究院。

本标准主要起草人:阙广庆、陈昌林、胡建波、钟苏、白亚民、王健军、王劲松、阮羚、刘全、李祚滨、顾俊果、孙树敏。

发电机振动监测系统使用说明书

发电机振动监测系统使用说明书

目录第一章系统概述 (1)1.1 发电机铁芯及端部线棒振动监测系统简介 (1)1.2 系统组成 (1)1.3 Gen20系统软件功能浏览 (2)1.4 系统界面介绍 (4)第二章系统安装与初始化 (5)2.1 系统运行环境 (5)2.2 软件安装 (5)2.3 初始化设置 (6)第三章实时监测功能 (7)3.1 机组系统-棒图 (7)3.2 机组系统-2X棒图 (8)3.3 波形-频谱图 (10)3.4 综合频谱图 (11)3.5 综合极坐标图 (11)第四章振动分析功能 (13)4.1 棒状图 (13)4.2 综合频谱图 (15)4.3 波形-频谱图 (15)4.4 趋势图 (15)4.5 详细趋势图 (17)4.6 瀑布图 (18)4.7 数据选择 (18)第五章在线帮助使用说明 (21)5.1 如何使用帮助 (21)5.2 关于Gen20 (21)第六章事件列表功能 (22)第七章服务功能 (23)7.1 系统参数设置 (23)7.2 网络参数设置 (24)7.3 密码设置和修改 (25)7.4 读黑匣子数据 (25)7.5 清黑匣子数据 (25)7.6 报警限/故障限复位 (25)第一章系统概述1.1 发电机铁芯及端部线棒振动监测系统简介由浙江大学机械与能源工程学院热工及动力系统研究所研制的发电机铁芯及端部线棒振动监测系统是专为发电机铁芯及端部线棒振动监测分析而开发的。

它具有良好的可靠性、灵活的扩展性、较高的实时性和友好的用户界面,能实现多参量同时监测,并通过TCP/IP连入网络。

考虑到监测对实时性的要求,系统采用上、下位机二级结构,下位机(数采器)主要根据上位机(工控机)的指令进行等时间间隔采样或整周期同步采样,当信号超过报警或故障限时,采样结果将保存在黑匣子中以便事故追忆分析。

下位机负责数据的预处理工作,上位机负责数据的保存、数据的实时显示、分析等工作。

上位机软件采用开放式设计,便于移植和功能的扩展,用户可根据实际情况对系统进行组态;整套软件在WINDOWS中文环境中运行,采用全汉化的图形窗口界面、下拉式菜单和对话框实现人机交互,操作简便,并且还配有详细的在线帮助系统,以帮助用户熟悉和应用该系统。

发电机定子绕组端部振动监测系统概要

发电机定子绕组端部振动监测系统概要
• VibroSystM公司生产的FOA-100型光纤加速度传感器,专 门用于发电机定子绕组端部的振动监测。该光纤传感器设计 原理与美国WH公司不同,测量方法靠的是探测单个光束入 射角在一个弹性支架上的角度变化。其特点是利用光偏振原 理,反射光束穿过一个双折射板到一个光极性分析器再返回 以获得光干涉纹,振动峰-峰值之间的距离就与被测角度成 正比函数关系。 • 传感器头位于三根单股多模式光缆的一端。一根承载照射用 光,可通过调节电子装置对其控制。传感器头通过另两条光 纤返回两个强弱可变的光信号。当光纤加速度计承受振动时, 受力与引起一个弹性支架的角度偏转对应的加速度成正比。 支架角度的变化使支架上的一面镜子角度随之变化。射入镜 子的光束就随加速度幅值成比例改变角度。电子调节装置由 光电探测器回路、放大器和滤波器组成,其输出是一个被校 准的模拟加速度信号。一个带通滤波器用于衰减噪声和支架 的谐振频率。
1)传感器基本结构和工作原理(续)
• 光传感器采集的信号通过光缆送到安装在机壳上 的承压密封盒内的光电耦合器上,转变为电信号 再送入AGM-P21信号处理模块和PCU-100型可 编程信号处理器。PCU-100既可以处理普通的压 电式加速度传感器采集的电信号,也可以处理由 FOA-100光纤传感器送出的光信号转换出来的电 信号,是一种通用型数据信号处理器。
光纤测振系统的价格昂贵,制约了其在商业上的应用。现在,国外对这种 光学原理的振动传感器在发电机上的应用,已进入商品化,但总体上仍处 于快速发展和完善之中。
1 美国WH公司的光学振动监测系统 1)传感器基本结构和工作原理
• 传感器尺寸为1”×1”×3”,直接安装到被 测部位上。传感器内部结构为一个舌簧和 光栅组。光栅位于舌簧运动最高点的端部, 承受振动时可间断遮光生成光脉冲。传感 器设计为给定时间段上脉冲数量与被测振 幅成正比。光脉冲信号通过光缆送到机外 的主机中,经过数据处理在主机的液晶显 示屏上显示振动峰-峰值 。

基于光纤加速度传感技术的发电机端部振动监测系统的应用

基于光纤加速度传感技术的发电机端部振动监测系统的应用

图2光纤测振传感器安装示意基于光纤加速度传感技术的发电机端部振动监测系统的应用Generator and Vibration Monitoring System Based on Optical Fiber Acceleration Technology张俊(广东珠海金湾发电有限公司,广东珠海519050)摘要介绍了一种基于光纤加速度传感技术的发电机端部振动监测系统的构成,以及其安装、调试及应用。

经长期运行表明,该系统实施后测量准确稳定,实现了发电机端部振动实时在线监测和分析,实际应用效果良好。

关键词:光纤加速度传感,发电机,端部振动AbstractThis paper introduces the composition of a generator end vibration monitoring system based on optical fiber accelera-tion technology,and the installation,debug and application of such system.During long-time operation,the measurements of the system have remained stable and accurate,online monitoring and analyzing the generator end vibration have become a reality,and the results are good.Keywords :optical fiber acceleration sensing,generator,end vibration发电机定子绕组端部电气环境非常恶劣,目前300MW 及以上容量的发电机线棒工作电压达20kV 左右,电流在10kA 以上,是一个高电压、强交变电磁场的特殊环境。

风力发电机组在线振动监测系统及现场应用研究

风力发电机组在线振动监测系统及现场应用研究

风力发电机组在线振动监测系统及现场应用研究为了能够更好的避免和减少风力发电机故障带来的重大事故和安全隐患,并且在日常对风力发电机进行维护节省成本,在线振动监测系统必不可少。

本文介绍了在线监测系统的功能简介、工作原理、传感器测点选取和数据处理等关键技术及系统实际应用,对风电振动监测具有一定借鉴意义。

标签:风力发电机组;在线振动监测;现场应用1 系统功能简介风力发电机组工作条件通常比较艰苦,经常地处风沙四起的荒漠或海风盛行的海上,且在变速变载条件下运行。

因此,风电机组设备的相关零部件出故障的几率大大高出其他机械设备,为避免风电机组零件损坏造成的不必要经济损失,机组在线监测势在必行。

风电场中的在线监测系统,需对每一台机组都进行实时的状态监控与故障监测。

所以,监测系统采用分布式设计,主要由硬件和软件两个部分组成:硬件包括振动一体传感器、数据采集仪、现场服务器以及中心服务器等;软件部分包括数据传输和数据诊断分析与报警等功能。

系统软件设计较为复杂,数据传输功能,包括数据采集、数据存储、数据上传等单元;诊断分析功能,先进行信号提取,再进性处理,识别信号特征,接着对故障进行诊断,最后显示报警状态。

其中,采集的信号主要包括发电机前后轴承处的振动信号、发电机接地电压等信号。

2 系统工作原理目前,风力发电机组的故障检测与诊断技术有多种:振动检测、温度检测、声发射检测及润滑油分析检测等多种方法。

针对每种检测方法各有其优缺点:温度检测方法简单,但引起温度变化原因复杂多变;声发射检测技术通过故障设备本身发出的高频应力波信号检测,受周围环境噪声的干扰较小,但是相关测试设备费用贵、误报警率高,且对测试条件、测试环境以及测试信号的消噪预处理技术等环节要求较高;振动检测技术应用较为广泛,技术相对成熟,主要实时监测风电机组发电机前后轴承座表面的振动数据,这些实时的数据能够被规整在一个较长的周期内形成波形图,便于工作人员在这个周期内进行趋势分析,确定发电机前后轴承的工作情况,以及各个零件的健康状况,便于尽早发现发电机内部的零件损伤。

深度调峰下660MW燃煤发电机常见故障及改进措施

深度调峰下660MW燃煤发电机常见故障及改进措施

深度调峰下660MW燃煤发电机常见故障及改进措施摘要:当前在“双碳”目标的引领和要求,光伏、风电等清洁能源的快速发展,燃煤发电机承担的深度调峰压力越来越大,深度调峰发电机快速变负荷,转子温度、定子温度随之频繁变化,导致转子绕组、定子绕组、定子铁心等出现热疲劳、零部件磨损,其可靠性寿命加速消耗,故障率增高。

本文分析了参与深度调峰的发电机典型故障,并提出相应的改进措施。

本文的内容对参与深度调峰的机组提供了优化方案和改进措施,保证设备的安全可靠运行,以及提高电力设备运行可靠性具有十分重要的意义。

关键词:燃煤发电机;深度调峰;典型故障;改进措施1 引言2020年习近平主席在第七十五届联合国大会上郑重宣布:中国将提高国家自主贡献力度,二氧化碳排放力争于2030年前达到峰值,争取2060年前实现碳中和。

这既是不容置疑的庄严承诺,也是需要坚定不移完成的既定目标,现役煤电未来的发展重点不再是装机规模的增长,而是提高现有机组的灵活性和可靠性,承担起新能源为主体的新型电力系统安全稳定运行的重任。

随着新型电力系统对燃煤机组灵活运行要求不断深入,频繁快速深度调峰、频繁启停热备盘车、长期停备及调压调频等异常工况占比增多,已经超出燃煤电发电机的安全稳定运行能力范围。

据统计西北某电厂#1机2020-2022年运行情况,机组共参与调峰超过1500次,调峰时长接近4000小时,平均每月调峰次数超过45次,调峰范围为20%-100%。

机组在宽负荷工况下运行时,定子、转子等部件在额定负荷和深调负荷工况时的温差较大,铜、铁心和绝缘温度涨差将进一步加大。

在该工况下运行已对发电机各部件造成不同程度的损害,严重危害机组的安全稳定可靠运行,本文通过分析西北某电厂两台660MW燃煤发电机的典型故障,剖析故障原因,并提出改进措施。

2 缺陷案例一2.1基本概况西北某电厂#1发电机为东方电机股份有限公司生产的QFSN-660-2-22型同步交流发电机,额定容量733MVA,额定功率660MW,额定定子电压22kV,额定定子电流19245A,励磁电压426V,励磁电流4673A,产日期2013年。

汽轮发电机定子绕组振动的监测和干预

汽轮发电机定子绕组振动的监测和干预
径 向) 。
振 动 的试验 提供 了即 时数 据 , 技 术 人 员对 发 电 机 使 定 子 绕组振 动 的研究 得 以顺 利进 行 。
2 2 必要 性 .
图 1 广 东 珠 海 金 湾 发 电 有 限公 司 4发 电 机 测 振
探 头 安装 位 置
在汽 轮 发 电机 运行 过 程 中 , 绕组 端 部 振动 力 过 大会 导致 绝缘 件磨 损 和 固定 件 松 动 , 而 引起 定 子 进
常相 近时 , 子 绕组 产 生 的共 振 。定 子 绕 组 处 于槽 定 部 的线 棒部 分 , 由于有 槽楔 、 纹板 和适形 材料 的全 波
绕组 端部 的绝 缘 、 撑 和 固定 。每个 探 头 所 带 的光 支
缆长 1 直 径 为 5 0m, 能 够把 发 电机端 部 任何 位 mm,
图 1中 : 侧 的 1 ,1 1 汽 0 1 ,2测点 是 A, C三 相 B, 的高压端 , 由于汽侧 绕 组 端部 线 棒 的造 型都 比较 统

绕组接地故障。在发电机检修过程中, 为了了解发 电机 定子 绕组 端部 的动 态 特性 , 认 定 子绕 组 端 部 确
是否 存在 9 1 6 z的固有 频 率 及椭 圆振 型模 态 , 5~ 0 H
盖一基 座一 铁芯 最 后 传 递 到定 子 绕 组 上 , 个 力 是 这
机 械 的击振 力 , 因此 , 电机 定 子 绕 组也 存 在 5 发 0Hz
的振 动 。
影 响端部 绕组 的绝缘 , 因此 , 光纤 加 速度 传感 器 适 用
于发 电机定 子绕组端部 振动的在线监测 。
≤删一
提供 判 断依 据 , 可 为 人 为 干预 振 动 提供 即时 的效 也

大型水轮发电机端部振动在线监测

大型水轮发电机端部振动在线监测

设备管理与维修2021翼4(上)图6阴转子表面啃咬痕迹大型水轮发电机端部振动在线监测杨军1,周明1,邹洪刚1,唐李军2(1.国电大渡河大岗山水电开发有限公司,四川雅安625000;2.成都英孚德科贸有限公司,四川成都610000)摘要:大型水轮发电机定子绕组端部是发电机设计、制造和装配最复杂的部件之一,发电机组定子绝缘监测是目前公认的技术难点。

采用加速度传感器,解决在高电压、强交变电磁场的特殊环境下端部振动监测难题,介绍平台大数据分析功能,结合在线监测数据,形成智能分析诊断模型,实现对机组运行状态智能判断。

关键词:水轮发电机;定子绕组;端部振动;在线监测中图分类号:TM312文献标识码:B DOI :10.16621/ki.issn1001-0599.2021.04.710引言发电机正常运行时,定子绕组端部不停运动,振源主要是双倍频交变电磁力。

正常通过定子线圈和线棒的50Hz 或60Hz电流,会产生100Hz 或120Hz 的巨大电磁力。

若绕组端部支撑固定不足,线圈会因振动使绝缘逐渐磨损。

定子绕组端部振动是电机发生故障的一个重要原因,也是大型水轮发电机非常重要的故障机理。

绝缘故障产生机理的多样化,受外界干扰造成绝缘监测数据的非准确性,绝缘数据判读的经验性,这些因素都严重制约发电机组绝缘监测技术的发展。

1水轮发电机端部振动在线监测难点水轮发电定子绕组并联支路较多,按照目前众多振动监测技术的惯例,仅安装个别监测传感器,是无法有效监测端部振动的,给计划检修带来诸多不确定因素。

为使监测数据能够行之有效,需要一个大量、长期积累的、经过时间考验的数据库作为参考。

同时还需要有人工智能的手段,通过与数据库中数据在幅值、相位、频率和特征参数的对比,达到自动判断的效果,在机组状态检修中发挥主动作用。

发电机内部电气环境非常恶劣,是一个高电压、强交变电磁场的特殊环境。

在强电磁场的作用下,金属结构的普通传感器可能产生放电,引起磁场分布的变化,干扰自身工作。

发电机定子绕组端部机械振动模态的测量

发电机定子绕组端部机械振动模态的测量

发电机定子绕组端部机械振动模态的测量1发电机定子绕组端部结构及所受电磁力发电机绕组端部的结构设计随着发电机冷却方式以及制造厂的不同而有所不同,其固定方法基本上可分为绑线式、压板式、绑线和压板相结合式等。

由于汽轮发电机的定子绕组端部处在复杂的端部漏磁场中,而且结构上类似于悬臂梁,不易固定得像槽内线棒那样牢靠,因此无论是在正常运行状态还是在系统发生故障时,端部绕组尤其线棒鼻端处振动最大,绝缘容易受伤,特别是槽口绝缘可能出现击穿和接地现象。

因此,各制造厂很重视端部结构设计,以防止发电机因绕组端部振动过大造成绝缘损伤而引起突发的相间短路或对地短路事故。

实践表明,发电机大量的事故源于其端部绕组的振动,如澳大利亚新南威尔士某发电厂安装了4台相同型号的500mw汽轮发电机,其中3台于1981年的8个月里都发生了汽侧定子绕组端部磨损引发的短路事故,剩下的1台运行到1982年不得不更换了整个定子。

再如,石横电厂某300mw全氢冷发电机,是上海电机厂引进西屋公司制造技术的第一台产品,由于定子绕组端部固定结构不合理,接连两次发生定子绕组端部短路事故。

可以通过有限元方法计算端部复杂的漏磁场,进而算出在稳态运行和系统发生故障时端部绕组各点的受力情况。

各点受力可用下式表达:=f0+f2cos(2et+以一台1000mva汽轮发电机为例,图1、2、3给出了额定运行时(满负荷、功率因数0.95)端部绕组上、下层线棒出槽口处三个不同时刻沿周向的径向受力分布情况。

.tfi图1f时■上、F层絃*出槽口处轻向受力沿周向分布情軌图1中®t=0°时,ia=0,a相相带绕组线棒各点受力为0。

因为磁密沿周向近似正弦分布,b、c相受力沿相带也近似正弦分布。

由于n 维线性系统响应{x }可用下式计算: 图2中血=30。

时,上、下层线棒受力沿周向近似椭圆分布,两椭圆主轴基本垂直。

图3中rot =60°时,ic =O ,c 相相带绕组线棒各点受力为0。

发电机定子绕组端部振动监测系统课件

发电机定子绕组端部振动监测系统课件
以识别异常振动。
数据分析算法
数据分析算法是数据处理模块的 核心,用于对采集到的振动信号 进行深入分析,提取出与发电机 定子绕组端部振动相关的特征信
息。
报警与控制
报警功能
当监测到的振动信号超过预设阈 值时,报警模块会触发报警,向 相关人员发送报警信息。
控制功能
控制模块根据监测到的振动信号 和报警信息,采取相应的控制措 施,如调整发电机运行参数或启 动应急预案。
问题2
数据采集不准确。
解决方案
检查网络连接是否畅通,优化系 统配置,提高数据处理能力。
问题3
系统响应慢。
解决方案
检查传感器是否正常,校准传感 器,检查信号线连接。
04
系统维护与故障排除
日常维护保养
定期检查
对发电机定子绕组端部振动监 测系统的各个部件进行定期检
查,确保其正常工作。
清洁保养
定期清洁系统表面和内部部件 ,以防止灰尘和污垢影响其性 能。
发展趋势
未来,发电机定子绕组端部振动监测系统将朝着更加智能化、高精度、高稳定性 的方向发展。随着物联网、云计算等技术的引入,该系统将实现更高效的数据处 理和远程监控,进一步提高发电机的运行效率和安全性。
02
系统组成与工作原理
监测装置
监测装置概述
发电机定子绕组端部振动监测系统中 的监测装置是整个系统的核心部分, 用于实时监测发电机定子绕组端部的 振动情况。
应用领域
该系统广泛应用于电力、能源、化工、钢铁等工业领域,尤 其在需要高可靠性、高稳定性电力供应的场合,如大型电站 、核电站等。
系统发展历程与趋势
发展历程
发电机定子绕组端部振动监测系统的发展经历了从传统机械式监测到现代智能化 监测的演变。随着传感器技术、信号处理技术和计算机技术的发展,该系统的监 测精度和稳定性不断提高。

风电机组振动在线监测系统

风电机组振动在线监测系统

风电机组振动在线监测系统摘要:风电机组振动在线监测系统对于风力发电设备的正常运行具有重要意义。

本文旨在探讨风电机组振动在线监测系统的设计及其应用,通过对其原理、构成、性能进行深入分析,旨在提高风电机组的运行效率和安全性。

关键词:风电机组;在线监测引言随着可再生能源在全球范围内的持续发展,风力发电作为一种清洁、高效的能源形式,其重要性日益凸显。

然而,风力发电机组在运行过程中,由于风速的波动、机械部件的运动等多种因素,可能导致机组产生振动,进而引发设备损坏,影响电力生产。

因此,针对风电机组振动进行实时监测具有重要意义。

本文将重点介绍一种风电机组振动在线监测系统的设计及其应用情况。

关键词:风力发电机组;在线振动检测;振动;1.系统原理及相关组成部分风电机组振动在线监测系统包括振动传感器、仪表以及运行于仪表上的分析软件。

将振动传感器设置在弹性支撑的关键部位,通过电缆传输振动量至监测仪表,由仪表软件部分——“振动监测故障诊断系统”进行分析确定振动量级别,最后根据振动级别判断是否发生故障。

最终完成风机传动轴对中状况监测;弹性支撑老化情况监测;发电机轴承监测。

风电机组振动在线监测系统通过安装在工作机组上的振动传感器实时监测机组的振动情况。

传感器将采集到的振动信号传递给监测系统,系统通过对信号的处理和分析,判断机组当前的运行状态,以便在出现故障时及时发现并采取相应的措施。

1.1系统的总体设计系统应包括数据采集、数据处理和数据分析三个核心部分。

数据采集部分负责振动信号的采集,数据处理部分负责信号的处理,如去噪、滤波等,数据分析部分负责对数据进行深入分析,提取机组振动特征。

应根据机组类型和监测需求选择合适的振动传感器,如加速度传感器、速度传感器等,同时应考虑传感器的安装位置和安装方式。

此外,还需要选择合适的信号采集器和数据存储设备。

软件系统既要接受硬件的数据,实时显示波形数据、测量结果,又要发送命令对硬件系统的采集方式、放大倍数等参数进行控制。

大型汽轮发电机定子绕组端部动态特性试验及振动测量讲义

大型汽轮发电机定子绕组端部动态特性试验及振动测量讲义

1 概述随着发电机单机容量的增加,定子绕组端部受到的倍频电磁力随之增大。

如果定子绕组端部的固有频率接近100Hz,在运行中绕组端部将会产生较大的谐振振幅。

近年来,国产和进口大型汽轮发电机由于定子绕组端部谐振,而引起绑绳、支架固定螺栓、槽内紧固件松动和线棒绝缘磨损的现象时有发生,因而开展发电机定子绕组端部动态特性的测量和评定工作十分必要。

1.1 试验目的对发电机定子绕组端部动态特性试验而言,主要包括:发电机定子绕组端部整体模态试验、定子绕组鼻端接头固有频率测量、定子绕组引出线和过渡引线固有频率测量,以检测是否避开二倍频电磁共振;测量发电机定子绕组端部及其支承结构的振动,考核发电机振动保证值指标。

1.2 相关标准和规范(1)《大型汽轮发电机定子绕组端部动态特性的测量与评定》(DL/T735-2000)(2)《透平型发电机定子绕组端部动态特性和振动试验方法及评定》(GB/T20140-2006)(3)供货合同中:性能保证和试验。

(4)以往标准:DL/T596-1996电力设备预防性试验规程、JB/T8990-1999大型汽轮发电机定子端部绕组模态试验分析和固有频率测量方法及评定。

1.3 相关术语1.3.1 模态试验为确定系统模态参数所做的振动试验,通常先由激励和响应关系得出频率响应矩阵,再由曲线拟和等方法识别出各阶模态参数。

1.3.2 频响函数(频率响应函数、传递函数)对瞬态激励而言,输出的傅立叶变换与输入的傅立叶变换之比。

1.3.3 相干函数1()x t和2()x t的互谱的绝对值的平方与各自的自谱的乘积之比。

1.3.4 模态参数模态的特征参数,即振动系统的各阶固有频率、振型、模态质量、模态刚度与模态阻尼。

1.3.5 固有频率由系统本身的质量和刚度所决定的频率,n 自由度系统一般有n 个固有频率,按大小次序排列,最低的为第一阶固有频率等。

1.3.6 振型机械系统的某一给定振动模态的振型是指由中性面(或中性轴)上的点偏离其平衡位置的最大位移值所描述的图形。

汽轮发电机定子绕组端部振动在线监测系统的研究

汽轮发电机定子绕组端部振动在线监测系统的研究

研究 , 实现端部振幅的在线监测 , 以防止端部故障的发 生, 一直受 率有 3 个方 向, 即径向 、 向、 切 轴向。 而实 际在发电机运行时 , 定子
到发电机行业 的广泛关注1 4 ] 。
绕组所受的电磁力的方 向主要是径 向的 , 因此定子绕组端部线棒 及引出线 的 自振频率应 以径 向为主。若 它落人 (4 15 H 的共 9~ 1)z
★来稿 日期 : 1— 9 2 + 2 0 9 9 基金项 目: 0 国家 自 然科学基金项 目(0 7 0 7 , 5 6 7 1 )中央高校基本科研业务 费专项资金资助(9 3 ) 0 MG 0
14 3
唐贵基 等 : 汽轮发 电机 定子绕组端部 振动在 线监测 系统的研 究
扰环境 中 强 3定 子绕组端部振 动在线监测 系统 的总 极好的电绝缘状态 ,
;nfqn—mnnysi i na ys ai ia 。. a rucd a as, r。t d as, n n。 nS n deey 。i a i b ne l id e a dO . l va r n t mt
; Ke od : ub -e eao ;n idn i ai ; nl e n oig yw rsT rognrtrE d n ig b t nO -i i r w vr o n mo t n
2定子绕组端部结构、 振动特点
汽轮发电机定子绕组在定子本体部分是用槽契将绕组固定在 振范 围内 , 应及时的对线棒重新绑扎或采取加 固措施 , 自振频 使 0 Hz防止因共振发生各类事故同 对此就应该在端部加 。 定子槽 内的, 由于定子铁心是用硅钢片叠装而成 , 在铁心 内主磁场 率避开 10 , 方向大多为径向, 定子绕组受到电磁力多为周向, 故定子绕组在定 装监测系统 , 实时的监测端部的振动情况。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安装工作中很重要的是传感器的安装位置选择,由于是非金属材 料,不必考虑安装位置的电位。主要考虑确保传感器和光纤引线 不会在运行中脱落,检修时不致碰撞损坏。 为进行研究对比,安装光纤传感器的同时,还请哈尔滨大电机研 究所安装了6只压电式加速度传感器。安装位置为汽侧和励侧各3 只,布置在绕组低电位末端的引线上。传感器外壳加装了磁屏蔽。 压电式传感器的引线连接到测温端子板上,可以用便携式信号分 析仪定期采集数据。
3)VibroSystM公司实际业绩
• 至2000年底以前,VibroSystM公司开发的光纤加速度振动 测试系统共售出并安装了36套,各套系统配备传感器数目如 下:1个测点的9套、2个测点的3套、4个测点的3套、5个测 点的2套、6个测点的2套、8个测点的4套、9个测点的1套、 12个测点的10套、34个测点1套、36个测点的1套,其中包 括了安装在我国陡河电厂6个测点的一套系统和山东黄岛电 厂2个测点的一套系统。VibroSystM公司还生产SBV系列压 电式振动传感器,应用也很广泛,在此不作详述 。

前置放大部分包括12个单个的前置放大模块和对应的12个光学振 动传感器(通常发电机汽侧和励侧各安装6个传感器)。
– 前置放大部分可选择扩展到16个前置放大模块。测点数是可以根据用 户需要改变的,单台发电机最多曾安装到48个测点。

主机单元将来自前置放大器的交变频率编码信号转换为用于面板 数显的直流电压电平,亦可用于数采计算机接收。
– 前置放大单元和主机单元,两部分组成的系统作为一个模块封装。以 12个前置放大模块为例,它们都是可以互换的。模块化系统封装的优 点是坚固、可靠并且因具有许多可换部件而使硬件易于维护,系统的 故障处理也更为简单。

2)WH公司监测系统的基本配置(续)
• 前置放大单元的作用是把传感器上采集到的光学编码振动信号进 行处理,提取出振动和系统状态信息。振动信息被处理并经由电 路传输到主机中用数字显示。
图1 美国WH公司光学振动传感器内部结构图
2)WH公司监测系统的基本配置
• 系统的基本配置一般包括用于两侧的 12个振动传感器和2根光缆束、 两个光纤承压密封盒,以及一台多通道振动监视器。
– 光纤传感器通常用于测量径向振动,(轴向和周向的振动也可以测 量),具体测量位置和方向取决于发电机的具体情况。

一般设计参数为:
– – – – – – – – – – – – 传感器与电子装置之间的电气绝缘强度大于27kV(有效值) 测量频率范围:30 Hz~350Hz±5% 动态测量范围:在100Hz时0~40g(峰-峰值0~1mm) 加速度测量灵敏度:100mV/g±5% 传感器重量约30g 最大冲击加速度:600g半正弦,耐受1ms 传感器谐振频率:500Hz以上 横向灵敏度:相对轴向值的5%以内 残余噪声:30Hz~350Hz之间总噪声<3mV(RMS) 分辨率:100Hz时峰-峰值<1μm -运行压力:氢气压力<0.5MPa -传感器的连续最高工作环境温度90℃
– 这个单元也含有当传感器通道处于低光状态时触发继电指示的回路。
• •
为确保振动测量的准确度,主机单元自动校准在线测量的每个传 感器,包括随着运行温度变化,或传感器老化等原因引起的传感 器固有频率的漂移偏差。 主机架可安装在控制室、继电器室等处。每个主机单元一般配置 12个通道。
图2美国WH公司光纤测振系统在发电机上安装配置示意图
– 在强电磁场的作用下,金属结构的普通传感器可能产生放电,并且引起磁场分 布的变化,干扰自身的工作。 – 含铁磁性材料的传感器本身还存在剧烈的电磁振动和涡流发热,会对线棒绝缘 形成严重威胁,降低了发电机安全运行的可靠性,增加了事故的隐患。


在发电机定子端部应当慎用含有金属结构的振动传感器。


由于采用光学原理和光纤材料的传感器可以抵御电磁干扰,目前国内外已 经开发了几种光学振动测量系统,它们填补了在高电压、强电磁干扰,以 及高度爆炸性气体等恶劣电气环境下测量仪器的空白。
光纤测振系统的价格昂贵,制约了其在商业上的应用。现在,国外对这种 光学原理的振动传感器在发电机上的应用,已进入商品化,但总体上仍处 于快速发展和完善之中。
1 美国WH公司的光学振动监测系统 1)传感器基本结构和工作原理
• 传感器尺寸为1”×1”×3”,直接安装到被 测部位上。传感器内部结构为一个舌簧和 光栅组。光栅位于舌簧运动最高点的端部, 承受振动时可间断遮光生成光脉冲。传感 器设计为给定时间段上脉冲数量与被测振 幅成正比。光脉冲信号通过光缆送到机外 的主机中,经过数据处理在主机的液晶显 示屏上显示振动峰-峰值 。
3)实际应用情况
• 大约10年以前,WH公司已经在100多台 发电机上安装了定子绕组端部振动监测系 统,其中80%以上的发电机安装了12个测 点,根据情况最少的安装了6个测点,最 多的安装了48个测点。
• 典型的安装方式是12个测点,具体布置为 汽侧和励侧各6个测点,全部为鼻端作径 向测量。
2 加拿大VibroSystM公司的光学振动监测系统 1)传感器基本结构和工作原理
1)传感器基本结构和工作原理(续)
• 光传感器采集的信号通过光缆送到安装在机壳上 的承压密封盒内的光电耦合器上,转变为电信号 再送入AGM-P21信号处理模块和PCU-100型可 编程信号处理器。PCU-100既可以处理普通的压 电式加速度传感器采集的电信号,也可以处理由 FOA-100光纤传感器送出的光信号转换出来的电 信号,是一种通用型数据信号处理器。
二、发电机定子绕组端部 振动监测系统选型
• 发电机定子绕组端部监测环境非常恶劣,目前300MW及以上容量的发电 机线棒工作电压达20kV左右,电流1万安培以上,因此是一个高电压、强 交变电磁场的特殊环境。 通常进行振动监测使用的压电式或压阻式加速度传感器,因对电气环境敏 感而限制了其在此环境下的应用。
运行中监测端部振动必要性
• 近代设计先进、工艺可靠的发电机,采用了许多防止端部振 动过大的措施,发电机安装和检修工作也规定了相应的措施, 如要求测试端部线棒和引线的固有频率及模态,绕组端部紧 固结构的详细人工检查和处理,等等。实践表明,这些措施 对防止发电机发生端部振动破坏事故是非常有效的,保证发 电机能够承受端部的正常振动而长期无故障运行。 • 运行实践和检修经验表明,发电机定子绕组端部的振动状态 不可能是一成不变的,在交变电磁力和热应力的长期作用下, 可能因绝缘的微缩作用及磨损或紧固件的局部松动,使固有 频率和振型发生变化,投运时完全合格的发电机,经长期运 行使固有频率和振型落入与电磁力谐振范围内,造成振动状 态逐步或突然恶化,而一般的电气监测和外部部件振动监测 反映不出这种危险的振动变化,就难以完全避免突然事故的 发生,因此,有条件时,直接监测定子绕组端部的振动幅值 是非常有用的技术措施。
– 注意:发电机外壳是光信号和电信号分界线,与WH 公司的技术完全不同。
图3 FOA-100型光纤振动传感器、光缆及光电转换接头照片
图4 在发电机定子绕组端部安装的光纤振动传感器(照片)
2)光纤加速度传感器的配置和基本参数
• 传感器本体由瓷质和聚苯类元件制造。光纤由5mm厚的聚四氟乙烯套管 保护,最小弯曲半径为80mm,光纤长度为6m或10m或更长。

可以通过锤击试验寻找安装传感器的最佳位置。

传感器用浸环氧的玻璃编织带永久性固定在线圈端部。为避免发 电机抽插转子和做检查工作时受损,典型的安装位置在上下层线 棒连接鼻端,或下层线棒的外表面。光缆的典型安装走向是沿下 层线圈支撑环的外表面布置,其目的也是为防止损坏。
多通道振动监视系统的电子回路由两种基本单元组成:
• FOA-100型光纤加速度计现场应用结果表明它具有很高的灵 敏度、准确度、可靠性和通用性,特别适用于汽轮发电机和 水轮发电机绕组端部的振动监测。
三、陡河发电厂#7发电机上的应用实践 1发电机历史情况
• • • 哈尔滨电机厂生产的QFQS-200-2型汽轮发电机,1986年11月投产, 历史上共发生过4次定子线棒绝缘损坏事故,除了制造质量问题以外, 定子绕组端部动态特性不好是事故的直接原因。 1998年大修中该发电机经模态试验证实定子绕组端部汽侧和励侧均存 在107Hz~108Hz的椭圆振型,恰处于最危险的频率范围上。 为保证发电机安全运行,避免突然事故的发生,应当对该发电机定子 绕组端部采取一定的处理措施:

2在线监测装置的选型和安装
• 经过综合考虑供货渠道、价格、业绩等因素,选择了加拿大 VibroSystM公司生产的光纤振动监测系统。
– 其中光纤振动传感器为FOA-100型加速度计,共购置6只,励侧和汽 侧各安装3只。 – 配套的数据处理和监测显示仪器为PCU-100型信号备的安装利用小修时间完成。
– 或者是发电机定子绕组端部结构彻底改造,使其改变振型和固有频率; – 或者加装在线振动监测装置,监视发电机定子绕组端部的实际振动情况。

鉴于该发电机已经无故障运行了几年,定子绕组端部未见到明显的磨 损和松动痕迹,说明振动阻尼较大,有效约束了振动的幅值,并且谐 振频带较窄,共振现象不明显。这种情况可能还可以维持很长时间, 但随着运行时间的延长,端部结构可能逐渐劣化,出现端部事故的危 险就逐渐增大。 因此,加装在线监测振动的装置是明智的选择,可以以较少的投资实 现定子端部故障的早期报警,避免重大事故的突然发生,达到保证发 电机安全运行的重要目的。
汽轮发电机定子绕组端部 振动监测系统
华北电力科学研究院有限责任公司 白亚民
教授级高级工程师
一、前言
• 发电机正常运行时,定子绕组端部处于不停的振动当中,振 源主要为双倍频交变电磁力。由于发电机定子绕组端部类似 悬臂梁的结构特点,特别是汽轮发电机定子线棒端部伸展较 长,因此防止因振动过大威胁发电机的安全运行,一直是设 计、制造和运行人员共同关心的问题。大量的发电机事故统 计分析表明,长期的振动可能造成发电机定子绕组端部紧固 结构松动、线棒绝缘磨损,因振动还可导致机械疲劳引起的 股线断裂,严重的故障将引发端部相间短路事故。因为造成 振动的电磁力与发电机定子电流的平方成正比,随着发电机 单机容量的增大,定子绕组端部的振动问题更为突出。
相关文档
最新文档