算法设计与分析大作业
算法分析与设计大作业
算法分析与设计大作业摘要:本文以算法分析与设计为主题,对算法的概念、分析和设计进行了探讨。
首先介绍了算法的概念和基本特征,其次分析了算法的效率和复杂度,并介绍了常用的算法复杂度表示方法。
然后,通过实例分析了几种常用的排序算法的性能与复杂度,并对它们进行了比较。
最后,总结了算法分析与设计的重要性,并提出了进一步研究的方向。
一、引言随着计算机技术的快速发展,算法分析与设计成为计算机领域中的重要研究方向。
算法是指解决特定问题的具体步骤和方法,是计算机科学的核心和基础。
算法的效率和复杂度对计算机的性能和运行时间有着直接的影响,因此算法的分析和设计非常重要。
二、算法的概念和特征算法是指在有限的时间内解决特定问题的一种方法。
它具有以下特征:输入、输出、确定性、有穷性和可行性。
输入是指算法接受的问题的数据或信息,输出是指算法求解得到的问题的解。
确定性是指算法在任何情况下都能够得到相同的结果。
有穷性是指算法在执行有限的步骤后能够终止。
可行性是指算法的每一步都是可行的,即能够被计算机执行。
三、算法的效率和复杂度算法的效率是指算法解决问题所需要的时间和空间资源的多少。
算法的复杂度是用来描述算法执行过程中所需要的资源的多少。
常用的算法复杂度表示方法有时间复杂度和空间复杂度。
时间复杂度表示算法的执行时间与输入规模之间的关系,用大写O表示。
空间复杂度表示算法所需的空间资源与输入规模之间的关系,用大写S表示。
四、常用的排序算法及性能与复杂度分析1.插入排序插入排序是一种简单直观的排序算法。
它的基本思想是将未排序的元素逐个插入到已排序的序列中。
插入的过程中,需要比较和移动元素的次数与未排序序列中的元素个数相关,因此时间复杂度为O(n^2)。
空间复杂度为O(1)。
2.冒泡排序冒泡排序是一种重复比较相邻元素并交换位置的排序算法。
它的基本思想是两两比较相邻元素,如果顺序错误则交换位置。
冒泡的过程中,需要进行n-1次的比较和交换操作,因此时间复杂度为O(n^2)。
算法设计与分析习题答案
算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
算法设计与分析报告大作业
算法分析与设计大作业班级: 12信科姓名:郭倩南学号: 1242155105完成日期: 2015-6-4指导教师:陈平序号选定题目所用算法设计技术1数字三角形问题动态规划2集合划分问题分治法回溯法3求子集问题评分:大作业报告1、数字三角形问题一、问题描述对于给定的由n行数字组成的数字三角形,计算从三角形的底至顶的路径经过的数字和的最大值。
如:73 88 1 02 7 4 44 5 2 6 5二、实验内容与实验步骤实验内容:输入数据的第1 行是数字三角形的行数n,1<=n<=100。
接下来n行是数字三角形各行中的数字。
所有数字在0..99之间实验步骤:1、首先证明该问题满足最优化原理最优化原理:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。
简而言之,一个最优化策略的子策略总是最优的。
2、建立动态规划函数3、填表三、实验环境Window7系统,vc++6.0软件四、问题分析由观察数字三角形可知,从数字三角形的顶层出发,下一层选择向左还是向右取决于两个4层数字三角形的最大数字和,而对于第四层的决定取决于第三层的最大数字和,依次类推,可知该问题是多阶段决策最优化问题,并且划分出来的子问题是相互重叠的,所以该问题采用动态规划法解决动态规划:与分治法相似,把问题分解按层次分成子问题,直到可以直接求解的子问题,然后一级一级地向上求解。
与分治法的出别在于:动态规划适用有许多重复子问题出现的问题,它保存已求出问题的解。
73 8 3 88 1 0 8 1 1 02 7 4 4 2 7 4 7 4 4 4 5 2 6 5 4 5 2 6 5 2 6 5一个五层数字三角形子问题〔1〕子问题〔2〕五、问题解决〔1〕根据对问题的分析,写出解决方法。
1、证明:S,S1,S2,..Sn,t是从S到t的一条数字和最大的路径,从源点S开始,设从S到下一段的顶点S1已经求出,如此问题转化为求从S1到t的数字和最大的路径,显然S1,S2,...Sn,t一定构成一条从S1到t的数字和最大值的路径,如假如不然,设S1,r1,r2,....rq,t是一条数字和最大的路径,如此S,S1,r1,r2,....rq,t的路径经过数字和的最大值比S,S1,S2,...Sn,t的路径数字和更大,从而导致矛盾,所以数字三角形问题满足最优性原理。
算法设计与分析课程大作业
题目作业调度问题及算法分析学院名称:计算机与信息工程学院专业名称:计算机科学与技术目录《算法设计与分析》课程大作业 (1)一.动态规划算法解决流水作业调度 (3)1、问题描述 (3)2、算法分析 (3)3. 算法的描述 (4)4、部分算法实现 (5)5. 运行结果 (6)6、时空效率分析 (6)二.贪心算法解多机调度问题 (6)1、问题描述 (6)2、算法分析 (7)3.部分算法实现 (7)4.计算复杂性分析 (8)5. 运行结果 (9)三.回溯法解决批作业调度问题 (9)1.问题描述 (9)2.算法思想 (10)3. 部分算法实现 (11)4.运行结果 (12)5.时间复杂性分析 (12)四.作业调度算法比较 (12)五.课程学习总结 (13)摘要:在现代企业中,作业调度已成为提高资源利用率、从而提高企业运行效益的关键环节之一。
把各个作业分配到车间现有的设备上,并确定它们的先后次序,这是一项复杂的工作本文就作业调度排序问题进行了研究,通过对几个经典作业调度算法的分析讨论,总结了各个算法对作业调度的求解过程,并给出了每个算法的复杂度及性能分析。
关键词:作业调度;动态规划;贪心算法;回溯法;一.动态规划算法解决流水作业调度1、问题描述给定n 个作业,每个作业有两道工序,分别在两台机器上处理。
一台机器一次只能处理一道工序,并且一道工序一旦开始就必须进行下去直到完成。
一个作业只有在机器1上的处理完成以后才能由机器2处理。
假设已知作业i 在机器j 上需要的处理时间为t[i,j]。
流水作业调度问题就是要求确定一个作业的处理顺序使得尽快完成这n 个作业。
2、算法分析直观上,一个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。
在一般情况下,机器M2上会有机器空闲和作业积压2种情况。
在一般情况下,机器M1开始加工S 中作业时,机器M2还在加工其他作业,要等时间t 后才可利用。
将这种情况下完成S 中作业所需的最短时间记为T(S,t)。
算法分析与设计作业及参考答案样本
《算法分析与设计》作业( 一)本课程作业由两部分组成。
第一部分为”客观题部分”, 由15个选择题组成, 每题1分, 共15分。
第二部分为”主观题部分”,由简答题和论述题组成, 共15分。
作业总分30分, 将作为平时成绩记入课程总成绩。
客观题部分:一、选择题( 每题1分, 共15题)1、递归算法: ( C )A、直接调用自身B、间接调用自身C、直接或间接调用自身 D、不调用自身2、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的字问题, 这些子问题: ( D )A、相互独立B、与原问题相同C、相互依赖D、相互独立且与原问题相同3、备忘录方法的递归方式是:( C )A、自顶向下B、自底向上C、和动态规划算法相同D、非递归的4、回溯法的求解目标是找出解空间中满足约束条件的:( A )A、所有解B、一些解C、极大解D、极小解5、贪心算法和动态规划算法共有特点是: ( A )A、最优子结构B、重叠子问题C、贪心选择D、形函数6、哈夫曼编码是: ( B)A、定长编码B、变长编码C、随机编码D、定长或变长编码7、多机调度的贪心策略是: ( A)A、最长处理时间作业优先B、最短处理时间作业优先C、随机调度D、最优调度8、程序能够不满足如下性质: ( D )A、零个或多个外部输入B、至少一个输出C、指令的确定性D、指令的有限性9、用分治法设计出的程序一般是: ( A )A、递归算法B、动态规划算法C、贪心算法D、回溯法10、采用动态规划算法分解得到的子问题:( C )A、相互独立B、与原问题相同C、相互依赖D、相互独立且与原问题相同11、回溯法搜索解空间的方法是: ( A )A、深度优先B、广度优先C、最小耗费优先D、随机搜索12、拉斯维加斯算法的一个显著特征是它所做的随机选性决策有可能导致算法: ( C )A、所需时间变化B、一定找到解C、找不到所需的解D、性能变差13、贪心算法能得到: ( C )A、全局最优解B、 0-1背包问题的解C、背包问题的解 D、无解14、能求解单源最短路径问题的算法是: ( A )A、分支限界法B、动态规划C、线形规划D、蒙特卡罗算法15、快速排序算法和线性时间选择算法的随机化版本是:( A )A、舍伍德算法B、蒙特卡罗算法C、拉斯维加斯算法D、数值随机化算法主观题部分:二、写出下列程序的答案( 每题2.5分, 共2题)1、请写出批处理作业调度的回溯算法。
算法设计与分析作业
算法设计与分析作业姓名:学号:专业:习题一1-1函数的渐进表达式3n2+10n=O(n2);n2/10+2n=O(2n);21+1/n=O(1);logn3=O(logn);10log3n=O(n)1-2O(1)和O(2)的区别分析与解答:根据符号O的定义可知O(1)=O(2).用O(1)和O(2)表示同一个函数时,差别仅在于其中的常数因子。
1-3按渐进阶排列表达式分析与解答:按渐进阶从低到高,函数排列顺序如下:O(2)<O(logn)<O(n2/3)<O(20n)<O(4n2)<O(3n)<O(n!)习题二算法分析题2-2 7个二分搜索算法分析与解答:(1)与主教材中的算法BinarySearch相比,数组段左、右游标left和right的调整不正确,导致陷入死循环。
(2)数组段左、右游标left和right的调整不正确,导致当x=a[n-1]时返回错误。
(3)数组段左、右游标left和right的调整不正确,导致当x=a[n-1]时返回错误。
(4)数组段左、右游标left和right的调整不正确,导致陷入死循环。
(5)算法正确,且当数组中有重复元素时,返回满足条件的最右元素。
(6)数组段左、右游标left和right的调整不正确,导致当x=a[n-1]时返回错误。
(7)数组段左、右游标left和right的调整不正确,导致当x=a[0]时陷入死循环。
2-26修改快速排序算法,使它在最坏情况下的计算时间为O(nlogn).分析与解答:从一个无序的序列中随机取出一个值q做为支点,然后把大于q的放到一边,小于q的放到q的另一边,然后再以q为分界点,分别对q的两边进行排序(快排时直接再对q两边重新取支点,整理,再取支点,...直到支点两旁都有序。
也就是支点两旁只有一个数时)#include <stdio.h>#include <stdlib.h>int Qsort(int p[],int beg,int end){if(beg+1>=end)return 0;//退出递归int low,hight,q;low=beg;hight=end;q=p[low];//q为支点,其实q可以为随机数。
算法设计与分析大作业报告
《算法设计与分析大作业报告》班级:学号:姓名:分治法大作业报告问题陈述:编程实现归并排序算法和快速排序算法,输出排序结果。
输入10组相同的数据,验证排序结果和完成排序的比较次数。
分治法基本思想:分治法的基本思想是将问题分解成若干个子问题,然后求解子问题。
子问题较原问题要容易些,先得出子问题的解,由此得出原问题的解,这就是所谓“分而治之”的思想。
算法描述:当要求解一个输入规模为n,且n的取值相当大的问题时,如果问题可以分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n,而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。
那末,对于这类问题分治法是十分有效的。
本实验就是通过归并排序和快速排序来体现分治的思想。
1.归并排序的思想:将A(1),……,A(N)分成两个集合,对每个集合单独分类,然后将已分类的两个序列归并成一个含N个元素分好类的元素2.快速排序的思想:选取A的某个元素做为划分元素,然后将其他元素重新排列,使在划分元素以前出现的元素都小于或等于它,在划分元素之后出现的划分元素都大于等于它。
程序代码:#include <stdio.h>#include <time.h>#include <stdlib.h>void MergeSort(int *data,int x,int y,int *temp){ int p,q,m,i=x;if (y-x>1){m = x+(y-x)/2;p = x;q = m;MergeSort(data,x,m,temp);MergeSort(data,m,y,temp);while(p<m||q<y){if (q>=y||(p<m&&data[p]<data[q])){temp[i++] = data[p++];}else{temp[i++] = data[q++];}}for(i=x;i<y;i++)data[i] = temp[i]; }}void HoareSort(int *data,int x,int y){int p=x,q=y-1,temp;while(p<q) {while (q>p&&data[q]>=data[p])q--;if (q>p){temp = data[p],data[p] = data[q],data[q] =temp;p++;}while(q>p&&data[p]<=data[q])p++;if (p<q){temp = data[p],data[p] = data[q],data[q] =temp;q--;}if (p==q) {HoareSort(data,x,p);HoareSort(data,p+1,y);}}}int main(){int data[10],i;int temp[10];srand(time(NULL));for (i=0;i<10;i++){ data[i] = rand()%100; }printf("未排序排序的数据为:\n");for (i=0;i<10;i++){printf("%d ",data[i]);}printf("\n");printf("归并排序的顺序为: \n");MergeSort(data,0,10,temp);for (i=0;i<10;i++){printf("%d ",data[i]); }printf("\n");printf("快速排序的顺序为: \n");HoareSort(data,0,10);for (i=0;i<10;i++){printf("%d ",data[i]);}printf("\n");return 0;}运行结果:结论分析:归并排序和快速排序都是递归排序,但是归并排序是稳定的排序方法,快速排序是不稳定的排序方法。
【图文】算法分析与设计大作业
算法理论、教改类题目学习大量相关算法(程序),总结出对应方法的一些特点,将其写成论文形式,并以足够的例子作为佐证。
24.论分治法、动态规划、贪心法的区别 25.论递归程序向非递归程序的转换 26.论应用型本科院校算法课程的教学目标和教学方法 27.论二叉树在计算机科学与技术中的应用 28.数据库索引的算法解释 29.论贪心法的适用范围 30.解空间搜索方法的选择依据 31.分治法算法分析综述
算法应用、算法研究类题目查阅大量相关资料,对相关内容给出初步的结果。
31.基于UCCI的中国象棋对弈引擎开发技术研究 32.五子棋对弈关键技术研究33.黑白棋对弈关键技术研究 34.数独初始局面生成算法研究 35.支持按文件名搜索的索引构造技术研究 36.通用回溯算法演示系统设计 37.通用分支限界算法演示系统设计 38.通用排序算法演示系统设计 39.通用动态规划算法演示系统设计
40.论文阅读和翻译类题目• 给出一个英文文献,用准确的语言将其翻译为中文,不需要逐字逐句翻译,但主要观点、算法思想和算法过程表述清楚、准确、充分。
格式要求• 论文正文中不得出现大段代码(超过10行)• 标题样式需规范• 参考文献不低于10篇,参考文献格式和标注位置须规范。
算法分析与设计作业
最接近点对问题问题此问题分为一维,二维,三维的情况1. 一维: 给定直线上n 个点,找其中一对点,使得在n 个点组成的所有点对中,该点对间的距离最小,这个问题比较简单,是引出二维解法的一个引子,因为一维的直线上的点,相邻点的距离肯定小于相隔的点的距离,只需要考虑相邻点即可。
2. 二维:给定平面上n 个点,找其中一对点,使得在n 个点组成的所有点对中,该点对间的距离最小,这是我们这一问题的重点3. 三维:给定空间上n 个点,找其中一对点,使得在n 个点组成的所有点对中,该点对间的距离最小,此问题是二维的解法的复杂化,具体可以在飞机航线等问题上运用,但在此不多做介绍。
基本思想由于该问题的基本解法是去考察每个点和其他所有点的距离。
因此它的时间复杂度是2()O n ,这样做的效率太低,我们就要去寻找一个更高效的办法:分治法。
1. 因二维的情况太过复杂,先考虑一维的情况中,可以用分治法对其进行分部计算: 把直线分成两部分, 1s 2s ,分别求出其最接近点的距离1d 2d 。
但分割开的地方的两点距离可能小于这两个值,这三个值进行比较之后,得到最后结果。
2. 鉴于此,二维的也可以用此方法进行计算:把待计算的点s 分成两部分1s 2s ,分别求出其最接近点的距离1d 2d 。
但1d 2d 最小的未必是s 中的最小距离d ,它有可能是1s 中的一个点和2s 中的一个点组成的最接近点对。
所以还要考虑1s 中的所有点到2s 中的每一个点的距离,一一比较之后得出一个最小值,再和1d 2d 比较,这就得出了最后结果。
3. 接下来是具体算法实现的步骤:1. 把待计算的点s 分成两部分1s 2s :重要的如何去划分,这里采用在二维平面上的中线(用横坐标的最小值加上最大值的平均数)来划分。
2. 分别求出其最接近点的距离1d 2d :这可以用一个递归来完成。
3. 计算1s 中的所有点到2s 中的每一个点的距离:这个问题是此问题的关键。
算法设计与分析作业
算法设计与分析作业作业一:给一个数组,用冒泡排序、选择排序、合并排序与快速排序四种方法实现过程且比较,并把排序时间显示出来。
冒泡排序:原理:将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。
在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。
所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。
如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。
代码:package maopao;public class maopao{public void paixu(){int array[] = {1,3,-2,0,8,7,-1,13,63,-20,120};long start = System.nanoTime();//开始时间for(int i = 0;i<array.length;i++){for(int j = i+1;j<array.length;j++){if(array[i] < array[j]){int tempt = array[i];array[i] = array[j];array[j] = tempt;}}}for(int i = 0 ; i< array.length; i++){System.out.println(" "+array[i]+" ");}long end = System.nanoTime();//结束时间System.out.println("所花费的时间为: "+(end-start)+"纳秒" );//运行时间}public static void main(String[] args){maopao m = new maopao();m.paixu();}}运行结果:选择排序:原理:对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。
算法分析 期末大作业内容
算法设计与分析期末成绩考核标准要求:算法设计与分析考试方式为小论文形式。
下面给出了小论文的参考模型和参考题目,供大家选择。
1.小作业题目(仅供参考)(题目的难易:●简单10道题★中等11道题▲复杂10道题)●最佳浏览路线问题问题描述:某旅游区的街道呈网格状,其中东西向的街道都是旅游街,南向的街道都是林荫道。
由于游客众多,旅游街被规定为单行道。
游客在旅游街上只能从西向东走,在林荫道上既可以由南向北走,也可以从北向南走。
阿隆想到这个旅游区游玩,他的好友阿福给了他一些建议,用分值表示所有旅游街相邻两个路口之间的道路浏览的必要程度,分值从-100到100的整数,所有林荫道不打分,所有分值不可能全是负值。
阿隆可以从任一路口开始浏览,在任一路口结束浏览,请写出一个算法,帮助阿隆寻找一条最佳的浏览路线,使得这条路线的所有分值总和最大。
(算法设计与分析第二版P190—11题)●问题描述:某工业生产部门根据国家计划的安排,拟将某种高效率的5台机器,分配给所属的,A,B,C个工厂,各工厂在获得这种机器后,可以为国家盈利如图表所示,问:这5台机器如何分配给各工厂,才能使得国家盈利最大?(P190-14题)●问题描述:编写算法对输入的一个整数,判断他能否被4,7,9整除,并输出一下信息之一,能同时被4,7,9整除;能被其中两个数(要指出那两个)整除能被其中一个数(要指出哪一个)整除不能被4,7,9任一个整除。
(P118-16)●问题描述:某一印刷厂有6项加工任务,对印刷车间和装订车间所需的时间表如下图:完成每项任务都要先去印刷车间印刷,再到装订车间装订。
问咋样安排这6项加工任务的加工工序,使得加工工时最少?(P191-17)●问题描述:编写用动态规划法求组合数mC的算法(P191-19).n●问题描述:仿照分治算法中两个大数相乘的算法策略,完成求解两个n*n阶矩阵A和矩阵B的乘积的算法。
假设n=2k,要求算法的复杂性要小于O(n3).(P190-12)●问题描述:在一个n*m的方格中,m为奇数,放置有n*m个数,方格中间的下方有一人,此人可按照5个方向前进但不能跃出方格,如图所示,人每走过一个方格必须取此方格中的数。
算法设计与分析+习题参考答案
算法设计与分析+习题参考答案5..证明等式gcd(m,n)=gcd(n,m mod n)对每⼀对正整数m,n都成⽴.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d⼀定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意⼀对正整数m,n,若d能整除m和n,那么d⼀定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也⼀定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限⾮空集,其中也包括了最⼤公约数。
故gcd(m,n)=gcd(n,r)6.对于第⼀个数⼩于第⼆个数的⼀对数字,欧⼏⾥得算法将会如何处理?该算法在处理这种输⼊的过程中,上述情况最多会发⽣⼏次?Hint:对于任何形如0<=m并且这种交换处理只发⽣⼀次.7.a.对于所有1≤m,n≤10的输⼊, Euclid算法最少要做⼏次除法?(1次)b. 对于所有1≤m,n≤10的输⼊, Euclid算法最多要做⼏次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—⼭⽺C—⽩菜2.(过桥问题)1,2,5,10---分别代表4个⼈, f—⼿电筒4. 对于任意实系数a,b,c, 某个算法能求⽅程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平⽅根的函数)算法Quadratic(a,b,c)//求⽅程ax^2+bx+c=0的实根的算法//输⼊:实系数a,b,c//输出:实根或者⽆解信息D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将⼗进制整数表达为⼆进制整数的标准算法a.⽤⽂字描述b.⽤伪代码描述解答:a.将⼗进制整数转换为⼆进制整数的算法输⼊:⼀个正整数n输出:正整数n相应的⼆进制数第⼀步:⽤n除以2,余数赋给Ki(i=0,1,2...),商赋给n第⼆步:如果n=0,则到第三步,否则重复第⼀步第三步:将Ki按照i从⾼到低的顺序输出b.伪代码算法DectoBin(n)//将⼗进制整数n转换为⼆进制整数的算法//输⼊:正整数n//输出:该正整数相应的⼆进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下⾯这个算法,它求的是数组中⼤⼩相差最⼩的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输⼊:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样⼀个排序算法,该算法对于待排序的数组中的每⼀个元素,计算⽐它⼩的元素个数,然后利⽤这个信息,将各个元素放到有序数组的相应位置上去.a.应⽤该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所⽰:b.该算法不稳定.⽐如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[]4.(古⽼的七桥问题)习题1.41.请分别描述⼀下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章习题2.17.对下列断⾔进⾏证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断⾔是正确的。
算法设计与分析(王多强)作业参考答案.docx
第二章递归习题导论4.1-17(/?) = 27(b / 2)+ 1=> M = 2T5 /2) + 1%)习题导论4.1-6Tin) = 2T(0) + 1做代换:m=log2n另 S(m)=T(2m )则有: S(/z?) = 2S(zz? / 2) + 1 化简有:S(m)=O(m) 所以 T(n)=O(logn)习题4.2-27(/7)= T(n / 3) + 7(2/7 / 3) + 劲 注意最长分支 2n/3-*(2n/3)2 -*(2n/3)3...-*(2n^)log3/2n 习题4.3-1a) T(n) = 4T(n/2) + nb) T(n) = 4T(n/2) + n 2c 取大于1/2小于1的数即可,如珈习题4.3-4f(n )/nlogba = n 2log n/n'°g"二 log nvn所以不满足规则3直接化简即可,T(n)=O(n 2log 2n)c) T(n) = 4T(n/2) + n 3情况 3, ◎ (r?). 验证 4f(n/2)=4(n/2)3=n 3/2^cn 3,这里7X2")27(2"/彳)+情况4 0(n 2)情况 2, © (n 2logn)第三章习题4.5注意三分Z—和三分Z二分割点的计算ml = (2low+high)^m2 = (low+2high)/3习题4.20主要是验证T(n/r) + T(0)>|« n/r+O的数量级是否小于n的1次方(线性) 利用关系式:\n / r」n (/7 - r - 1) / /进行化简r=3:\r / 2~|~|_/2 / /_] / 2~| > 2 z? / r / 2 = n / r」> (/? 一2) / 3则,刀一卜/2北刀 / 厂」/ 2] < /? - (/? - 2) / 3 = 2/7 / 3 + 2 / 3 则,n〃 +羊n +厉超线性了r=7:\r / 2]\n / r\/ 2〕>/ 7」/2 = 2山 / 7」> 2(刀一6) / 7则,n - \r / i\\n / /」/ 2〕v 刀一2(刀一6) / 7 = 5刀 / 7 + 12 / 7可证,当n>48的时候,上式小于3伙则,n/7+3nA = 25n/28 <n 成立r=9:\r / 2][n / 厂」/ 2〕> 5[刀 / 9」/ 2 = (5 / 2)^/9」> 5(刀-8)/18n一\r / 2\[n / /」/ 2〕< 13/?/18 + 40/18可证,当n>20的时候,上式小于7n/8 则,n/9+7n/8 = 71n/72 <n 成立r=ll习题4.25肓接带入验证即可棋盘覆盖问题角上用一个骨牌覆盖,认为构造有特殊方格的区域,然后在四个区域上递归求解即可第四章中位数中位数习题导论9-2A)比较明显。
算法分析与设计作业及参考答案
算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在实际中的应用场景。
2、设计一个算法,用于在一个未排序的整数数组中找到第二大的元素,并分析其时间复杂度。
3、比较贪心算法和动态规划算法的异同,并分别举例说明它们在解决问题中的应用。
参考答案1、冒泡排序算法时间复杂度:冒泡排序的基本思想是通过相邻元素的比较和交换,将最大的元素逐步“浮”到数组的末尾。
在最坏情况下,数组完全逆序,需要进行 n 1 轮比较和交换,每一轮比较 n i 次(i 表示当前轮数),所以总的比较次数为 n(n 1) / 2,时间复杂度为 O(n^2)。
在最好情况下,数组已经有序,只需要进行一轮比较,时间复杂度为 O(n)。
平均情况下,时间复杂度也为 O(n^2)。
空间复杂度:冒泡排序只在原数组上进行操作,不需要额外的存储空间,空间复杂度为 O(1)。
应用场景:冒泡排序算法简单易懂,对于规模较小的数组,或者对算法的简单性要求较高而对性能要求不是特别苛刻的场景,如对少量数据进行简单排序时,可以使用冒泡排序。
例如,在一个小型的学生成绩管理系统中,需要对一个班级的少量学生成绩进行排序展示,冒泡排序就可以满足需求。
2、找到第二大元素的算法以下是一种使用遍历的方法来找到未排序整数数组中第二大元素的算法:```pythondef find_second_largest(arr):largest = arr0second_largest = float('inf')for num in arr:if num > largest:second_largest = largestlargest = numelif num > second_largest and num!= largest:second_largest = numreturn second_largest```时间复杂度分析:这个算法需要遍历数组一次,所以时间复杂度为O(n)。
算法分析与设计程序操作实现 2大作业
算法分析与设计程序操作实现 2大作业实现操作者:08网本分组:6组每组1道大作业。
所占分值:30分(百分制)实现内容:1 循环赛日程表问题描述:设有n=2k个运动员要进行网球循环赛。
现要设计一个满足以下要求的比赛日程表:①每个选手必须与其他n-1个选手各赛一次。
②每个选手一天只能参赛一次。
③循环赛在n-1天内结束。
请按此要求将比赛日程表设计成有n行和n-1列的一个表。
在表中的第i行、第j列处填入第i个选手在第j天所遇到的选手。
其中1≤i≤n,1≤j≤n一1。
3-4个算法解决以上问题。
2 求3个数的最小公倍数问题描述:对任给的3个正整数,求它们的最小公倍数。
看完题目,读者一定会回忆起:最小公倍数的定义以及用短除法求这3个数的最小公倍数,甚至想到了最大公约数与最小公倍数的换算公式……。
其实,与问题相关的每一个经验和思路,都可能是解决这个问题的一种方法,下面就给出用这3种思路进行算法设计的过程。
3个算法解决以上问题。
3 猴子选大王问题描述:不同于自然界猴子选大王的方式,这里的猴子是这样选举它们的大王的:17只猴子围成一圈,从某只开始报数1—2—3—1—2—3—…,报“3”的猴子就被淘汰,游戏一直进行到圈内只剩一只猴子,它就是猴大王了。
通过解决这个问题将使我们进一步认识算法与数据结构的紧密关系。
3-4个算法解决以上问题。
4 最大子段和问题问题描述:给定n个整数(可能为负整数)a1,a2,a3,a4,a5,求形如:A i,a i+1,……,a j, i、j=1,…,n, i<=j的子段和的最大值。
当所有整数均为负整数时定义其最大子段和为0。
例如,当(a1,a2,a3,a4,a5 ,a6)=(-2,11,-4,13,-5,-2)时,最大子段和为:∑==ji kka20j=2,j=4(下标从1开始)3-4个算法解决以上问题。
5 与利润无关的背包问题1背包问题1:在9件物品中选出3件使其质量和与500克之差的绝对值最小。
算法分析与设计大作业
int
main ( int argc, char *argv[] )
{
char * fixed = "600087000000905706040000080030002000004000690000410023500030170080090200001076300";
char r[MMAX][MMAX] = {{0}};
{
return row/3 * 3 + col/3;
}
void getnext(int *row, int *col, int* nrow, int* ncol){
if(*col ==8)
{
*ncol = 0;
*nrow = (*row)+1;
}பைடு நூலகம்
Else
{
*nrow = *row;
*ncol = (*col) +1;
{
for(col= 0; col<MMAX; col++)
{
if(fixmtr[row][col]!= 0)
{
r[row][(int)fixmtr[row][col]-1] = 1;
c[col][(int)fixmtr[row][col]-1] = 1;
b[getblockid(row,col)][(int)fixmtr[row][col]-1] = 1;
问题描述
在本次算法分析的课堂演示中,我做的是一个关于“裁切悖论——消失的正方形的PPT”,但是由于代码的问题,现在借鉴了同学的实验,写了一个关于数独算法的小题目。
如下图所示,有一个9*9的正方形,而正方形又分成了九个小正方形,现在已经在图示的正方形中给出了一些方格中的数字,要求将正方形中所有小方格的数字填充完,并且每个小正方形以及每行、每列,只能出现一次1~9这九个数字。
算法设计与分析大作业
算法Flowshop的主要计算时间花在对作业集的排序上。在这里,我们使用冒泡排
序法(BubbleSort),因此,在最坏情况下算法FlowJob所需要的计算时间为O(nlog n)。
所需要的空闲显然是O(n)。
.贪心算法解多机调度冋题
1、问题描述
多机调度问题要求给出一种作业调度方案, 使所给的n个作业在尽可能短的时间内由m台机 器加工处理完成。约定,每个作业均可在任何一台机器上加工处理, 但未完工前不允许中断处理。 作业不能拆分成更小的子作业。这个问题是NP完全问题,到目前为止还没有有效的解法。对于这 一类问题,用贪心选择策略有时可以设计出较好的近似算法。
{int i;
Jobtype *d = new Jobtype[ n];
for( i=0; i<n; i++)
{
d[i].key = a[i]>b[i]?b[i]:a[i];〃按Johnson法则分别取对应的b[i]或a[i]值作为关键字
d[i].job=a[i]v=b[i];〃给符合条件a[i]<b[i]的放入到N1子集标记为true
2、算法分析
贪心算法只需按顺序以数组方式提供ห้องสมุดไป่ตู้作业的加工时间和机器的台数;求出作业的个数,
若小于机器台数,就将作业逐个分配给就近的机器,所需要的加工时间,即为最长作业所需 时间。
若作业数大于机器台数,将作业按加工时间的多少降序排序,以机器数建立最小堆,先将 前m个作业分配给m个机器,最小堆顶是最小的元素(即m个作业中加工时间最少的作业), 将其移出并加上后续作业的加工时间,再插入堆,这时会改变原来的状态,升到堆顶的机器 力卩工总时间最少,它再移出加后续作业的加工时间,在插入堆,依此类推,直到全部作业结 束。堆中的最大值就是完成所有作业所需的最短时间。
算法设计与分析报告大作业问题详解
算法设计技术与方法大作业学院电子工程学院专业电路与系统姓名学号导师姓名1.分别实现多项式求值的四种运算,若针对不同规模的输入值a ,各算法的运行时间,问题 规模n 分别取10,50,100,150,200,300,400,500,10000,20000,50000,100000时绘制四种算法运行时间的比较图。
2.分别实现矩阵相乘的3种算法,比较三种算法在矩阵大小分别为2222⨯,3322⨯,4422⨯,5522⨯,6622⨯,7722⨯,8822⨯,9922⨯,101022⨯,111122⨯,121222⨯时的运行时间与MATLAB 自带的矩阵相乘的运行时间,绘制时间对比图。
3.利用遗传算法求解下面的问题:)20sin()4sin(5.21),(max 221121x x x x x x f ππ⋅+⋅+=⎩⎨⎧≤≤≤≤-8.51.41.120.3..21x x t s1、分析题意可知,该题要用四种不同的方法实现对多项式的求值计算,每种方法取从10-100000不同的规模。
本文采用了以下方法进行求值:直接代入法和递归法。
而其中递归法分三类不同思路进行递归:① n n n n x a x P x P +=-)()(1;② 0a P =,1=Q ,Q a P P Qx Q i +==,;③ i n i i a x x P x P --+'=')()(1。
本文对上述四种方法进行了编程,具体代码如下:程序1.1文件名poly.m% 主程序:实现不同规模下多项式求值的四种运算clc;close all ;clear all ;n=[10 50 100 150 200 300 400 500 10000 20000 50000 100000];x=2;for i=1:12a=rand(1,(n(i)+1)); % 产生多项式,最高次幂为n(i)+1tic;p1(i)=polyval(a,x); % 直接代入法t1(i)=toc;tic;p2(i)=0;for j=1:(n(i)+1)p2(i)=p2(i)+a(j)*x^(j-1); % 递归法1t2(i)=toc;tic;p3(i)=0;q=1;for j=2:(n(i)+1)q=q*x;p3(i)=p3(i)+a(j)*q; % 递归法2endt3(i)=toc;tic;p4(i)=0;for j=1:n(i);p4(i)=x*p4(i)+a(n(i)+1-j); % 递归法3endt4(i)=toc;endfigure(1);subplot(2,2,1);h=semilogx(n,t1); % 这里不能用plot,横轴需要取对数,下同set(h,'linestyle','-','linewidth',1.8,'marker','*','color','g','markersize',6); xlabel('The scale of the problem:n');ylabel('time for first method(s)');title('the relationship between time and scale');grid on;subplot(2,2,2);h=semilogx(n,t2);set(h,'linestyle','-','linewidth',1.8,'marker','*','color','b','markersize',6); xlabel('The scale of the problem:n');ylabel('time for second method(s)');title('the relationship between time and scale');grid on;subplot(2,2,3);h=semilogx(n,t2);set(h,'linestyle','-','linewidth',1.8,'marker','*','color','k','markersize',6); xlabel('The scale of the problem:n');ylabel('time for third method(s)');title('the relationship between time and scale');grid on;subplot(2,2,4);h=semilogx(n,t2);set(h,'linestyle','-','linewidth',1.8,'marker','*','color','r','markersize',6); xlabel('The scale of the problem:n');ylabel('time for forth method(s)');title('the relationship between time and scale');grid on;figure(2);g=semilogx(n,t1,'g+',n,t2,'bx',n,t3,'k*',n,t4,'ro');legend('the first method','the second method','the third method','the forth method'); set(g,'linestyle','-','linewidth',2.0,'markersize',8);xlabel('n=10, 50, 100, 150, 200, 300, 400, 500, 10000, 20000, 50000, 100000'); ylabel('time');title('The comparison chart of four different methods for polyval');grid on;运行结果如下:图 1.1 四种方法所用时间随规模不同而变化的结果图图 2.2 四种方法所用时间随规模不同而变化的对比图由理论分析可知,四种算法的时间复杂度分别为)(2n O 、)(2n O 、)(n O 、)(n O ,由图1.2分析可知,直接带入计算和递归法所用时间相差无几,这与理论分析一直。
华工 2023秋 算法设计与分析 平时作业
华工 2023秋算法设计与分析平时作业作业一题目描述请设计一个算法,找出一个无序数组中的第K大元素。
算法设计与分析我们可以使用快速选择算法来解决这个问题。
快速选择算法的基本思想是选择一个基准元素,将数组中小于基准元素的值放在左边,大于基准元素的值放在右边,然后通过递归地将基准元素所在的位置与K进行比较,从而确定K所在的位置。
具体的步骤如下:1. 选择一个基准元素(可以是数组中的任意一个元素)。
2. 将数组中小于基准元素的值放在左边,大于基准元素的值放在右边。
可以使用双指针法来实现这一步骤。
3. 比较基准元素所在的位置与K的大小关系:- 如果基准元素所在的位置等于K,则找到了第K大元素,返回。
- 如果基准元素所在的位置大于K,则在基准元素的左边继续进行快速选择算法。
- 如果基准元素所在的位置小于K,则在基准元素的右边继续进行快速选择算法。
该算法的时间复杂度为O(n),其中n为数组的长度。
在最坏情况下,时间复杂度为O(n^2),但通过随机选择基准元素和合理的划分方式,可以使得算法的平均时间复杂度为O(n)。
示例代码def quick_select(nums, left, right, k):if left == right:return nums[left]随机选择基准元素pivot_index = random.randint(left, right)pivot = nums[pivot_index]将基准元素放在最左边nums[left], nums[pivot_index] = nums[pivot_index], nums[left]划分数组i = leftj = rightwhile i < j:while i < j and nums[j] <= pivot:j -= 1while i < j and nums[i] >= pivot:i += 1nums[i], nums[j] = nums[j], nums[i]将基准元素放在正确的位置nums[left], nums[i] = nums[i], nums[left]if i == k:return nums[i]elif i > k:return quick_select(nums, left, i - 1, k)else:return quick_select(nums, i + 1, right, k)def find_kth_largest(nums, k):return quick_select(nums, 0, len(nums) - 1, len(nums) - k)测试nums = [3, 1, 5, 4, 2]k = 2result = find_kth_largest(nums, k)print(result)结果分析对于给定的无序数组[3, 1, 5, 4, 2],要找到第2大的元素。
北航研究生 算法设计与分析大作业一
一、请安排投资计划,使总的利润最大。
写出你所设的状态变量、决策变量、状态转移方程与递推关系式,和手工求解的详细步 骤及结果。
解:设k 表示前k 个项目;状态变量为k x ,表示能投资到前k 个项目中的金额为k x ;决策变量为}0|{ , k k k k k k x u u D D u ≤≤=∈,表示将k u 的金额投入到第k 个项目中;状态转移方程为k k k u x x +=+1,表示能投资到前k+1个项目的金额等于能投资到前k 个项目的金额,加上投资到第k+1个项目的金额;指标函数为)(P k k x ,表示将k x 投入到前k 个项目中所能获得的最大利润;设)(A k k x 为向第k 个项目投资k x 金额所能获得的利润。
则递推关系式为:⎪⎩⎪⎨⎧+-====-∈)}(A )({P max )(P 00 , 0)(P 1k k k k k D u kk k k k u u x x x k x k k 或① 当k=0或0=k x 时,总利润一定为0③ 当k=2时,8万元只投资第一、第二个项目,有若将0万投资第一个项目,8万投资第二个项目,利润为0+75=75若将1万投资第一个项目,7万投资第二个项目,利润为5+74=79 若将2万投资第一个项目,6万投资第二个项目,利润为15+73=88 若将3万投资第一个项目,5万投资第二个项目,利润为40+70=110 若将4万投资第一个项目,4万投资第二个项目,利润为80+60=140 若将5万投资第一个项目,3万投资第二个项目,利润为90+40=130 若将6万投资第一个项目,2万投资第二个项目,利润为95+15=110 若将7万投资第一个项目,1万投资第二个项目,利润为98+5=103 若将8万投资第一个项目,0万投资第二个项目,利润为100+0=100此时将4万元投资第一个项目,将剩余4万元投资第二个项目可获得最大利润140万元 同时计算出将2x 万元投资到前两个项目的获利情况如下表:④ 当k=3时,8万元同时投资第一、第二、第三个项目,有 若将0万投资前两个项目,8万投资第三个项目,利润为0+53=53若将1万投资前两个项目,7万投资第三个项目,利润为5+52=57若将2万投资前两个项目,6万投资第三个项目,利润为15+51=66若将3万投资前两个项目,5万投资第三个项目,利润为40+50=90若将4万投资前两个项目,4万投资第三个项目,利润为80+45=125若将5万投资前两个项目,3万投资第三个项目,利润为90+40=130若将6万投资前两个项目,2万投资第三个项目,利润为95+26=121若将7万投资前两个项目,1万投资第三个项目,利润为120+4=124若将8万投资前两个项目,0万投资第三个项目,利润为140+0=140此时将4万元投资第一个项目,将剩余4万元投资第二个项目,第三个项目投资0元,可获得最大利润140万元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年4月大作业
学习中心:课程名称:算法设计与分析
学
号
姓名
ห้องสมุดไป่ตู้考试日期
年月日
编程题(C、JAVA、C++等均可)(每小题50分,共100分)
1.试用C语言编写程序,连接任意两个链表。
2.企业发放的奖金根据利润提成。利润I低于或等于10万元时,奖金可提10%;利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可提成7.5%;20万到40万之间时,高于20万元的部分,可提成5%;40万到60万之间时高于40万元的部分,可提成3%;60万到100万之间时,高于60万元的部分,可提成1.5%,高于100万元时,超过100万元的部分按1%提成,从键盘输入当月利润I,求应发放奖金总数。