汽车悬架系统设计要点

合集下载

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析随着汽车工业的不断发展,汽车底盘悬架结构设计已成为汽车工程领域中的重要一环。

底盘悬架是汽车的重要组成部分,它直接影响着汽车的操控性、舒适性和安全性。

底盘悬架结构设计的质量和性能对汽车整体品质起着至关重要的作用。

本文将从悬架结构设计的要点入手,分析汽车底盘悬架结构设计的关键因素,为汽车工程师和爱车用户提供一些有益的参考。

一、悬架类型选择在汽车底盘悬架结构设计中,最基本的要点之一就是选择合适的悬架类型。

目前,常见的悬架类型包括独立悬挂、麦花臣悬挂、扭力梁悬挂和梯形双叉臂悬挂等。

在选择悬架类型时,需要考虑到汽车的使用环境、操控性能、舒适性和成本等多个方面因素。

独立悬挂具有悬挂系统独立、行驶稳定性好的优点,但造价相对较高;麦花臣悬挂适合用于负荷较大的商用汽车,扭力梁悬挂则适合于经济型车型,梯形双叉臂悬挂则能提供较好的悬挂几何特性。

在底盘悬架结构设计时,需要根据具体车型与使用环境,选择合适的悬架类型。

二、悬挂系统刚度设计悬挂系统刚度设计是底盘悬架结构设计中极为重要的一个要点。

悬挂系统的刚度将影响着汽车的操控性和舒适性。

在悬架系统设计中,需要合理设计悬挂弹簧和减震器的刚度,以及悬挂件的刚度匹配。

通常情况下,过硬的悬挂系统会使汽车在颠簸路面上操控性能更好,但舒适性较差;而过软的悬挂系统则会带来舒适性的提高,但操控性能可能会受损。

悬挂系统刚度的设计需要寻求一个平衡点,以兼顾操控性和舒适性。

三、悬架几何特性设计悬架几何特性设计包括悬挂系统的几何布置、悬架几何参数的选择和悬挂几何特性的优化等方面。

悬架系统的几何特性将对汽车的悬挂性能、操控性能和舒适性产生重要影响。

在底盘悬架结构设计中,需要特别注意悬挂几何特性的调整和优化。

合理选择悬挂几何参数,调整悬挂系统的上下位点高度,控制悬挂系统的摆动角和外倾角等,以提高汽车的转向操控性和行驶稳定性。

还需要注意悬架几何特性的变化对车辆悬挂性能和操控性能造成的影响。

第六章悬架设计汽车设计

第六章悬架设计汽车设计

第六章悬架设计——汽车设计摘要悬架系统是汽车设计中至关重要的组成部分,它为汽车提供了稳定的操控性和舒适的驾乘体验。

本文将介绍悬架系统的基本概念、设计原则和常见类型,旨在帮助汽车设计师了解悬架系统的设计过程和要点,为汽车的悬架设计提供指导和参考。

悬架系统的基本概念悬架系统是汽车中用于支撑车身和轮胎的重要装置,它的主要功能是吸收和减少路面不平度对驾驶员和乘客的影响,保证汽车在行驶过程中具有稳定的操控性和舒适的驾乘体验。

悬架系统的主要组成部分包括弹簧、减震器、转向机构、齿轮组、悬架臂、车轮和轮胎等。

其中,弹簧和减震器是悬架系统的核心部件,它们直接影响着汽车的行驶稳定性和舒适性。

悬架系统的设计原则1.负载平衡原则悬架系统设计的一个重要原则是负载平衡。

悬架系统必须确保车身各部分的重量分布均匀,以避免车身前后倾斜、侧倾等现象,保证汽车在行驶时稳定性和舒适性。

2.悬挂高度原则悬架系统的悬挂高度是指车轮离地高度,悬挂高度的调整对轮胎的抓地力、车身的稳定性、悬挂系统的响应速度等都有着至关重要的影响。

3.质量和强度原则悬架设计必须考虑汽车的总重量和各零部件的强度,以确保悬架系统在各种路况下都能承受负载和力量的作用。

常见的悬架类型1.独立悬挂系统独立悬挂系统是目前汽车悬架系统的主流类型,它将每个车轮独立地连接到车身,可根据路面状况独立地调整吸震性能,使得汽车在行驶中更加平稳和舒适。

2.悬挂叉式悬挂系统悬挂叉式悬挂系统与常规独立悬挂系统相似,不同之处在于前后悬挂系统之间采用悬挂叉连接,能够更好地分散受力,提高悬架系统的稳定性和耐用性。

3.悬架梁式悬挂系统悬架梁式悬挂系统是一种简单而经济的悬架系统类型,主要应用于低档车辆。

它将左右车轮通过悬架梁连接到车身,使用一个弹簧和一个减震器来吸收路面不平度,具有结构简单、成本低的优点。

4.多连杆悬挂系统多连杆悬挂系统是一种复杂的汽车悬架结构,由多个连杆组成,可以在不同的路面状况下调整悬挂高度和减震力度,以提高汽车的稳定性和操控性。

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析【摘要】汽车底盘悬架结构设计是车辆工程中非常重要的一个方面。

本文首先介绍了悬架结构的作用,包括提供悬挂和减震功能,保障车辆稳定性和舒适性。

然后对悬架结构进行了分类,包括独立悬挂和非独立悬挂等。

接着讨论了悬架结构设计的优化方案,指出通过减轻重量和提高刚度可以改善悬架性能。

材料选择也是关键的一环,合适的材料可以提高悬架的强度和耐久性。

最后分析了影响悬架结构的因素,包括行驶路况、车辆载重等。

综合以上内容,总结了汽车底盘悬架结构设计的要点,强调了设计的重要性和必要性。

通过合理的设计和优化,可以提升车辆性能和驾驶体验。

【关键词】汽车底盘,悬架结构,设计要点,分析,作用,分类,优化方案,材料选择,影响因素,总结1. 引言1.1 汽车底盘悬架结构设计要点分析汽车底盘悬架结构设计是汽车制造过程中非常重要的一环,它直接影响着汽车的操控性、舒适性和安全性。

设计良好的悬架结构可以有效减少车身的颠簸以及提升车辆的稳定性,让驾驶者在驾驶过程中更加舒适和安全。

悬架结构的作用是支撑汽车的车身,同时将车轮连接到车身上,使得车轮可以相对独立地运动。

根据不同的需求和使用环境,悬架结构可以分为独立悬架、半独立悬架和非独立悬架等多种分类。

不同类型的悬架结构在不同的路况和驾驶条件下会有不同的表现,因此在设计过程中需要根据实际情况选择合适的悬架结构。

优化悬架结构设计方案包括减轻悬架重量、提高刚度和强度、降低噪音和震动等方面。

选择合适的材料也是悬架结构设计的重要一环,常用的材料有钢铝合金、碳纤维等,不同的材料具有不同的优缺点,需要根据具体情况进行选择。

悬架结构的影响因素包括车辆的使用环境、车辆的负荷、悬架结构的几何形状等。

设计人员需要综合考虑这些因素,才能设计出性能更优秀的悬架结构。

在对汽车底盘悬架结构设计要点进行分析后,我们可以得出结论,对于汽车底盘悬架结构的设计要点有着重要的影响。

设计人员需要综合考虑悬架结构的功能、分类、优化方案、材料选择以及影响因素,才能设计出性能更卓越的底盘悬架结构。

汽车悬置系统设计指南(一)2024

汽车悬置系统设计指南(一)2024

汽车悬置系统设计指南(一)引言概述:汽车悬置系统是汽车底盘系统的重要组成部分,对于汽车的驾驶稳定性和乘坐舒适性至关重要。

本文旨在提供汽车悬置系统设计的指南,帮助读者了解悬置系统的基本原理和设计要点,从而优化汽车悬置系统的性能与驾驶舒适。

正文内容:一、悬置系统基本原理1. 悬置系统的定义和作用2. 悬置系统的基本组成部分3. 悬置系统的工作原理4. 悬置系统与驾驶稳定性的关系5. 悬置系统与乘坐舒适性的关系二、悬置系统设计要点1. 悬置系统弹簧的选取和设计2. 悬置系统减震器的选择和调整3. 悬置系统阻尼的调节和优化4. 悬置系统材料的选择与优化5. 悬置系统与车体结构的匹配设计三、悬置系统振动控制1. 悬置系统振动类型与特性2. 悬置系统振动控制的方法3. 悬置系统调频器的设计与优化4. 悬置系统振动控制与驾驶稳定性的关系5. 悬置系统振动控制与乘坐舒适性的关系四、悬置系统磨损与维护1. 悬置系统磨损的原因与表现2. 悬置系统磨损程度的检测方法3. 悬置系统磨损的预防与延长寿命的方法4. 悬置系统维护的注意事项5. 悬置系统维护对驾驶稳定性和乘坐舒适性的影响五、悬置系统创新与发展趋势1. 悬置系统新材料的应用2. 悬置系统主动控制技术的发展3. 悬置系统电子化的趋势4. 悬置系统智能化的发展5. 悬置系统可持续发展的方向结论:通过本文的介绍,读者可以更好地理解汽车悬置系统的设计原理和要点,并在实际应用中引导悬置系统的优化与改进。

汽车悬置系统的设计不仅影响驾驶稳定性和乘坐舒适性,也与汽车的安全性和性能密切相关。

因此,合理设计和维护汽车悬置系统对于提高整车的操控性和乘坐舒适性至关重要。

未来,随着汽车技术的飞速发展,悬置系统将面临更多的创新与发展机遇,我们期待悬置系统能够更好地满足人们对于汽车驾驶体验和乘坐舒适性的需求。

车辆悬挂系统的优化设计

车辆悬挂系统的优化设计

车辆悬挂系统的优化设计车辆悬挂系统作为汽车重要的组成部分,直接关系到车辆行驶的平稳性、舒适性和安全性。

优化悬挂系统设计能够提高车辆性能和乘坐体验,本文将围绕车辆悬挂系统的优化设计展开论述。

一、悬挂系统的基本原理与作用车辆悬挂系统通过悬挂弹簧、减震器和悬挂支架等部件,连接车身和车轮,起到支撑和缓冲作用。

悬挂系统能够吸收路面不平,减少车身的颠簸,保证驾乘的舒适性和稳定性。

同时,悬挂系统还能够保护车身、发动机和传动系统等重要部件,延长其使用寿命。

二、悬挂系统的优化设计目标1. 提高车辆的行驶稳定性。

悬挂系统的优化设计需要考虑车辆在高速行驶、转弯、制动等情况下的稳定性,减少侧翻和摇晃。

2. 提升乘坐的舒适性。

通过减震器的优化设计,降低车辆受到的颠簸和震动,提供舒适的驾乘环境。

3. 提高悬挂系统的可靠性和耐久性。

悬挂系统需要在各种复杂的路况下保持良好的工作状况,提升其使用寿命和可靠性。

4. 降低车辆的燃油消耗。

通过优化悬挂系统的设计,减少不必要的能量损耗,提高车辆的燃油利用效率。

三、悬挂系统的优化设计方法1. 材料选择与强度分析。

选用高强度、耐疲劳的材料,同时进行强度分析和优化设计,确保悬挂系统在受力情况下不会发生变形或破裂。

2. 建立悬挂系统的数学模型。

通过建立悬挂系统的数学模型,包括弹簧刚度、减震器参数等,进行仿真分析和优化设计。

3. 减震器的优化设计。

减震器的合理设计能够有效抑制车身的振动,提供更好的驾乘体验。

优化设计减震器的阻尼特性和刚度,以满足车辆不同行驶状态下的需求。

4. 悬挂系统的悬架结构优化。

悬挂系统的悬架结构也会影响整个系统的性能。

通过优化悬挂支架等部件的结构,降低重量,提高刚度和强度,进一步改善悬挂系统的性能。

5. 考虑多种路况和行驶状态。

在悬挂系统的优化设计中,需要考虑不同的路况和行驶状态,如高速行驶、弯道行驶、起步和制动等情况,以确保悬挂系统在各种条件下都能提供最佳的性能和驾乘体验。

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析随着汽车工业的飞速发展,汽车底盘悬架结构的设计也成为汽车工程师们关注的重点之一。

底盘悬架是汽车重要的组成部分之一,直接关系到车辆的操控性、舒适性和安全性。

本文将对汽车底盘悬架结构设计的要点进行详细分析。

1. 悬架结构的类型要点分析的第一步就是悬架结构的类型。

常见的悬架结构包括双叉臂式、麦弗逊式、复合式、多连杆式等。

每种类型的悬架结构都有各自的优缺点,需要根据车型和用途来选择合适的悬架结构。

双叉臂式悬架适合高性能及大功率车型,麦弗逊式悬架适合一般家用车,复合式悬架适合跨界车型,多连杆式悬架适合豪华车型。

在选择悬架结构类型时,需要考虑到车辆的整体性能需求、成本、制造难易度以及可维修性等因素。

2. 悬架构件的材料悬架构件的材料是影响悬架结构性能的重要因素。

常见的材料有钢材、铝合金、碳纤维等。

钢材强度高、价格低,是汽车悬架结构最常用的材料。

但随着汽车轻量化、节能化及安全性要求的提高,铝合金和碳纤维等新材料被越来越多的应用在悬架结构中。

这些新材料在提高整车轻量化的同时还能提高车辆的操控性能和减少燃油消耗。

在选择悬架材料时,需考虑到材料的强度、刚度、耐久性以及成本等因素。

3. 悬架减震器的选型悬架减震器是影响汽车乘坐舒适性和操控性的关键部件,其选型直接影响到车辆的驾驶品质。

常见的悬架减震器包括气压式、液压式、电子控制式等。

不同类型的减震器具有不同的减震特性,如气压式减震器可以根据路况和行驶速度自动调整减震力,提高车辆的操控性和稳定性;电子控制式减震器可以根据驾驶者的驾驶习惯和路况实时调整减震力,提高车辆的操控性和舒适性。

在选型时需要考虑到车辆的用途和价格。

4. 悬架系统的调校悬架系统的调校是悬架设计的重要环节之一。

悬架系统的调校包括悬架几何参数的设计和悬架部件的强度设计。

悬架几何参数的设计直接关系到车辆的操控性和舒适性,如悬架几何参数的合理设计可以改善车辆的操控性和降低车辆的侧倾,提高车辆的行驶稳定性。

悬架设计总结

悬架设计总结

悬架是现代汽车上重要总成之一,它把悬架与车轴弹性地连接起来。

其主要任务是传递作用在车轮与车架之间的一切力与力矩,并且缓和路面传给车架的冲击载荷,衰减由此引起的承载系统的振动,保证汽车的行驶平顺性,保证车轮在路面不平和载荷变化时有理想的运动特性,保证汽车的操纵稳定性,使汽车获得高速行驶能力。

为满足上述功能,悬架系统设计需满足下述要求:1) 保证汽车有良好的行驶平顺性。

2) 具有合适的衰减振动能力。

3) 保证汽车具有良好的操纵稳定性。

4) 汽车制动或加速时要保证车身稳定,减少车身纵倾,转弯时车身侧倾角要合适。

5) 结构紧凑、占用空间尺寸小。

6) 可靠地传递车身与车轮之间的各种力和力矩,在满足零部件质量要小的同时,还要保证有足够的强度和寿命。

上述六点对悬架系统设计要求,都需先对悬架系统运动进行分析,了解在各种载荷状态及不同工况下悬架系统运动状态。

问题解决过程:我公司生产HFJ6350、HFJ6351B 、HFJ6370、HFJ6380车前悬架为麦弗逊式独立悬架,后悬架为纵置板簧式非独立悬架。

这是一种典型的组合之一。

麦弗逊式悬架的特点是减振器兼作转向主销,可在工作站上建立运动模型,运用运动模块,通过两端凑的方法,求出各种载荷状态下悬架姿态。

钢板弹簧在整车上的布置情况,不仅影响整车的平顺性,而且也影响其操纵稳定性。

以下用三种方法对比分析了钢板弹簧系统关键点轨迹和关键角的变化。

一、 计算方法(附程序)如图1所示,假定主片长度L 在钢板弹簧运动中不变,即长度L 以外部分不参与变形;长度L 段的变形是纯圆弧型的,不考虑钢板弹簧悬架系统中橡胶件变形的影响。

而弧高Ha 和角θ间的关系(参见图2)为:Ha=R[cos (θ/2-α)-cos (θ/2)]式中 R= ⌒ PS /θ α=⌒ PQ / ⌒ PS ×θ所以Ha= ⌒ PS /θ×{cos[(1/2-⌒ PQ / ⌒ PS )×θ]-cos (θ/2)}由于 ⌒ PS 、⌒ PQ 为已知,所以每给定一个Ha 值,都有一个θ值与之对应,解此方程可用牛顿迭代法。

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析

汽车底盘悬架结构设计要点分析汽车底盘悬架是车辆重要的组成部分之一,它与行驶舒适性、安全性、稳定性密切相关。

底盘悬架结构设计要点包括设计目标与要求、悬挂形式选择、弹簧悬挂参数、减震器的设计和优化、悬挂支撑部位的设计和材料选择等方面。

一、设计目标与要求底盘悬架的设计目标是确保车辆在运行中能够满足悬挂系统的工作要求,使车辆行驶更加平稳、舒适、安全。

在设计之前,需要先明确以下要求:1、确保车辆行驶的平稳性,可靠性和安全性。

2、符合车辆的整体设计要求,满足人机工程学与环保等方面的要求。

3、考虑悬挂系统的修理和保养方便性,确保悬挂系统的长期稳定性。

4、考虑悬挂系统的制造成本与使用成本,在达成设计要求的前提下尽可能降低成本。

二、悬挂形式选择底盘悬架主要有自悬架、独立悬架和半独立悬架等形式。

自悬架适合小型车和低速、不平路面,独立悬架适应于高速车和平路面,而半独立悬架则一般用于SUV等。

在选择底盘悬架形式时,需要考虑以下因素:1、汽车的使用对象:对于商用车、越野车等行驶在复杂路面上的车辆,应该采用强度大,承载能力高的独立悬挂;而对于轿车来说,可采用独立悬挂和半独立悬挂。

2、车辆的动力性能:采用不同类型的底盘悬架形式,对不同品牌、不同型号的汽车动力性能的提高和发挥不同的作用。

3、税费和制造成本:不同的底盘悬架形式,其结构和生产制造成本也不同,需考虑综合成本问题。

三、弹簧悬挂参数弹簧悬挂的参数设置直接影响着底盘悬架系统的工作性能。

其参数应根据车型及用途进行设计调整。

具体参数有弹簧初始刚度、加载刚度、行程和自由长度等。

1、弹簧初始刚度:弹簧初始刚度是指弹簧在未受压缩时所具有的刚度。

在设计时,应选用合适的弹簧材料和直径,以满足车辆的负荷及动力性能要求。

2、加载刚度:指弹簧在车辆行驶过程中所表现出来的刚度。

在设计时,应考虑弹簧在整个行驶过程中的工作特性及车辆的平稳性。

3、行程:行程是指车辆悬挂系统的垂直位移距离。

在设计时应根据车辆的用途及车型选择合适的行程,以提高车辆的行驶舒适性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

悬架设计的基本概念
㈠悬架设计的矛盾 悬架是研究悬架系统的振动特性,讨论悬架设计对 平顺性,稳定性和通过性等性能的影响,从而做出妥善 设计。 ⑴柔与刚 悬架的发展趋势是弹簧越来越软(既由刚变柔)。 ⑵减振与激振 ⑶悬架特性与路面特性 ⑷坚固与笨重
汽车对悬架的一般要求
汽车悬架应该满:
1. 2. 3. 4. 5. 6. 在所有载荷范围内自振频率尽可能不变。 悬架发生碰撞前的动行程不超过一定值(悬架的变刚性)。 发生的振动能迅速衰减。 在侧向力的作用下悬架质量的侧向力较小。 汽车具有某种程度的不足转向。 悬架质量在制动时有抗“点头”作用和在加速时有抗“仰头”作 用。
行驶方向 +Fez +Fgz Fe -Fex
-Fez
B
α
F E A
β a Fb -Fgz -Fgx ΔF Fg
如图中右边的静力分析表明,由于车轮中心处移出的垂直位移于转向轴的制 动力Fb在横臂上引起的反力Fex和Fgx,它们(由于横臂斜置)又引起垂直方向分 力- Fez= Fex *tanα和-Fgz = Fgx *tan β 。在同一方向的合力必须为0,即Fez和Fgz抵 消车头下沉。
方向盘转角 (o)
2) 定义主销的几何尺寸
包括:主销后倾,主销内倾,主销后倾拖距,主销偏置距等
——根据经验选取起始点
主销后倾角
定义主销后倾角
主销后倾角影响:
•转向时车轮外倾角的变化 •主销拖距 •车轮上下跳动过程中的前束变化 •不平路面上的制动性能
主销后倾角 (o)
Outer w.
方向盘转角 (o)
2.
3. 4. 5. 6.
如果汽车仅有一个很小的车轮上跳行程,即车身外侧的下沉量小于车身内侧 的抬起量,内侧轮胎载和加剧,从而使质心从w点移动到w’点上质心高为Δ Hw,结果出现临界的难以控制的过渡转向(后悬架尤为明显)。
ΔHw
F
W’
W
Hw
7. 8.
注意整车姿态,悬架决定整车资态,同时又与造型紧密相连,一但 造型确定再更改悬架行程就十分困难。 一般K和W的取值为越野车取较小值,一般车取中间值,豪华车取 较大值。 K---前悬架轮心与轮罩的距离; W---后悬架轮心与轮罩的距离;
F 根据抗点头角定义控制臂旋转轴线:如果增加在X-Z平面内的 倾角(即E点比F点低),抗点头能力就能提高。(参考汽车的 纵向角振动) A
B
转向轴线与减振器轴线
Z X E A
C
F
下摆臂旋转轴线
定义转向系统几何尺寸的所有点
定义H点根据:阿克曼角和相应的几何约束,同时考虑转向力距 的影响。 定义I点的位置要将轮胎上下跳过程中的前束变化最小化
Steering axis
A
制动盘边 缘
B
考虑轮胎包络线: 悬架的参考 基准
Disk
副车架边缘
Rim
A
M family Wheel轮胎: 225/55R17 转角:外侧转角大约30deg ,内侧转 角大约 35-36deg
A
在X-Z平面内定义减震器
在麦弗逊悬架中通常于主销重合,这是最简单和最有效的 解决方案。
I E Tie rod F
E
I F A Y H X
H A
A
根据杆系几何运动关系确定I点
将I点放在轮胎上下跳过程中H点所形成的圆弧的中心
H
I I E F H E A
A
F
侧倾中心
为确定转向横拉杆的长度和位置需要知道的距离和动点。 转向横拉杆的位置可通过HR的连线给出(图中还绘出了侧 倾中心)。如果侧倾中心位置选定的较好可使轮距变化为 0。
悬架的分类
独立悬架: 双横臂独立悬架(麦弗逊独立悬架),多联杆独立悬架, 斜置拖曳臂独立悬架,纵臂式独立悬架等 非独立悬架: 采用螺旋弹簧:拖曳臂式,扭转梁式 采用钢板弹簧 至于独立悬架和非独立悬架的优缺点在此不多说明,钢板 弹簧作为非独立悬架的最常用结构将在以后讲解。
对前后轮独立悬架的要求
前独立悬架: 1. 在负荷变化时,不致引起轮距的的显著变化,而轮距的变化乃是轮胎磨损的原因。 2. 在负荷变化时,不使主销后倾发生显著的变化,而后倾角的变化影响行使平顺性和车 轮的变化。
Variation in steering
Variation in wheel travel
Geometrical trial (mm)
主销后倾拖距
Outer w.
Steering wheel angle (o)
Inner w.
定义主销偏置距的大小
主销偏置距影响: 转向回正力距的大小,主销主销偏置距越大,回正 力距也越大。 转弯制动时方向盘力矩的大小 主销偏置距通常取-18--+30mm 轮胎的根换对主销偏置距也有影响 所有的德国车均采用了负的主销偏置距
Variation in steering
主销偏置距 (mm)
R.I.
Outer w.
Angolo volante(o)
方向盘转角 (o)
R.E.
Inner w.
定义车轮中心处的主销偏置距
车轮中心处的主销偏置距影响: •驱动时的方向盘回正性 •当车辆通过障碍物的影响 •由于轮胎受力不均引起的方向盘的摆动
定义车轮中心处的主销偏置距
Braccio trasversale a centro ruota (mm)
A B
R.I.
Angolo volante (o)
R.E.
3) 定义悬架的几何尺寸
——根据经验选取起始点
B
确定悬架边界条件和设计硬点
•主销已经确定 •收集几何约束 •定义主销上的A点,A点在轮辋和等速万向节中 间, 位置越低越好 •定义主销上的B点,尽可能低的位置但是要考虑: -轮胎上跳下跳目标 -支撑的功能性
汽车悬架系统设计
——徐东升
汽车悬架的主要功用
汽车悬架是将车架(或车身)与车轴(或直接与车 轮)弹性联接的部件。其主要功用如下: (1)缓和,抑制由于不平路面所引起的振动或冲击以保 证汽车具有良好的平顺性。 (2)迅速衰减车身和车桥(或车轮)的振动。 (3)传递作用在车轮和车架(车身)之间的各种力(垂 直力,纵向力,横向力)和力矩(制动力矩和反作用力 矩)。 (4)保证汽车行驶所必要的稳定性。
Inner w.
主销内倾角
定义主销内倾角
主销内倾角影响: 在前驱车型中通常在12°—14° • 转向回正力距 •制动时方向盘上的力
转向变化
车轮跳动变化
主销内倾角 (o)
Outer w.
方向盘转角 (o)
Inner w.
定义拖距的尺寸
主销后倾拖距的影响: •直线行使时的方向稳定性 • 提供方向盘的横向路感
纵向载荷
(通过障碍) 横向载荷
行使方向
为缓和刚丝子午线胎的纵向刚度,BMW 3系列车 型在前悬架上设计了一根镰刀形的摆臂。该摆臂 在纵向力的作用下绕只有少许变形的球胶D转动 并通过动臂4用大橡胶支座支撑在车身上。该支 座的侧向具有起始软,随即急剧递增变化的弹性。 转向横拉杆7位于横臂相应的高度上,且几乎与 支座连线GD平行,应此点U和G的运动圆弧半径 差不多相等,车轮的纵向运动不会引起前束的变 化。
行驶方向
+Fez +Fgz Fe -Fex

-Fez
B
α
F E A
β a Fb -Fgz -Fgx ΔF Fg
麦弗逊前悬架纵倾中心的确定
整车纵倾中心(前麦弗逊,后多联杆)
回正力距
对轮胎痕迹的 回正力距
轮胎接地面
轮胎痕迹
不产生前束变化的子午线轮胎纵向刚度的克服
仅承受纵向载荷 仅承受横向载荷
Z Y X
得到足够的轮胎上下跳过程中外倾角的回正性
与动力总成边界相关
B
这可以通过将B点向内移,或抬高D点或向外移动A点, 但是所有这些都要同悬架的其他特性综合考虑。
车轮外倾与车轮行程的关系
与轮胎尺寸相关
C
与转动中心相关
A
Z Y
D
车轮行程
车轮外倾角 (o)
Arm 悬 转 轴
Y X
E
定义控制臂旋转轴线的倾角和E,F点的位置
3.
4.
在负荷变化时,不引起主销内倾角发生显著而急剧的变化,而内倾角的变化影响车轮 的稳定与旋转平面的位置。
在负荷变化时,车轮不产生很大的纵向加速度,当汽车在不平路面行使时,纵向加速 度导致纵向冲击,而且所发生的力距作用到转向节上,是方向盘上的力距急剧改变。 5. 侧倾时,保证车轮与悬架质量的倾斜相同,从而增大不足转向效应。 后独立悬架: 1. 2. 在负荷变化时,不致引起轮距的的显著变化,而轮距的变化乃是轮胎磨损的原因及汽 车在不平路面上行使时产生横向冲击的原因。 侧倾时,保证车轮与悬架质量的倾斜反向,从而减小后轮的偏离角和增强不足转向效 应。
B
减振器轴线于主销轴线重合
Z X
A
C
在Y-Z平面内定义减震器
•根据轮胎尺寸定义C点(需要的话要考虑防滑链) •D点是控制臂旋转轴线和通过A点的Y-Z平面的交点。 •A, B, D点的相互位置决定了轮胎上下跳过程中的轮距的变化和外倾角 的回正性
转向轴线
B
E
D
F
减振器轴线
C D A Z Y
下摆臂旋转轴线 A
下摆臂的布置形式
下摆臂的常用布置形式和连接点的横 向受力情况
行使方向
不同状态下的受力情况
悬架的纵向稳定性
所谓的悬挂纵向稳定性是指汽车在制动和驱动时,悬挂系统抵抗车身发生纵 向倾斜的能力。悬挂的纵向刚度取决于前后悬架的静挠度和轴距,主要跟据平顺 性和总布置的要求来确定。对独立悬架来说,使中心位置高于驱动桥车轮中心是 非常重要的。
前后悬架布置时轮心与轮罩中心
相关文档
最新文档