差热分析法

合集下载

差热分析

差热分析

差动热分析仪热分析是在程序控温条件下,测量物质物理化学性质随温度变化的函数关系的一种技术。

程序控温可采用线性、对数或倒数程序。

热分析法依照所测样品物理性质的不同有以下几种:差热分析法,差示扫描量热法,热重分析法,热膨胀分析及热——力分析法等。

图a. 差动热分析仪整机线路连接图1.电炉2.气氛控制单元3.数据站接口单元4.差动热补偿单元5.差热放大单元6.可控硅加热单元7.微机温控单元图b. 仪器各主要部件2图c. 加热炉组件图d. 电炉(一)差热分析差热分析(differential thermal analysis, DTA)法是在程序控温下,测量物质与参比物之间温度差随温度或时间变化的一种技术。

根据国际热分析协会(international confederation for thermal analysis, ICTA) 规定,DTA曲线放热峰向上,吸热峰向下,灵敏度单位为微伏(μV)。

如图1-1为苦味酸(三硝基苯酚)的DTA曲线。

图1-1 苦味酸在动态空气中的DTA曲线可见,体系在程序控温下,不断加热或冷却降温,物质将按照它固有的运动规律而发生量变或质变,从而产生吸热或放热,根据吸热或放热便可判定物质内在性质的变化。

如:晶型转变、熔化、升华、挥发、还原、分解、脱水或降解等。

差热分析测量原理如图1-2所示。

图1-2 差热分析原理示意图图1-3 仪器工作原理差热分析仪主要由温度控制系统和差热信号测量系统组成,辅之以气氛和冷却水通道,测量结果由记录仪或计算机数据处理系统处理。

1.温度控制系统该系统由程序温度控制单元、控温热电耦及加热炉组成。

程序温度控制单元可编程序模拟复杂的温度曲线,给出毫伏信号。

当控温热电耦的热电势与该毫伏值有偏差时,说明炉温偏离给定值,由偏差信号调整加热炉功率,使炉温很好地跟踪设定值,产生理想的温度曲线。

2.差热信号测量系统该系统由差热传感器、差热放大单元等组成。

差热传感器即样品支架,由一对差接的点状热电耦和四孔氧化铝杆等装配而成,测定时将试样与参比物(常用α-Al2O3)分别放在两只坩埚中,置于样品杆的托盘上,然后使加热炉按一定速度升温(如10℃〃min-1)。

差热分析法误差分析

差热分析法误差分析

差热分析法误差分析
差热分析法是一种可用于涉及正在发生变化的系统的应用的广泛的热力学分析方法。

在使
用此分析方法的一些情况下,必须确定什么样的误差可能会出现。

差热分析法的误差取决于很多因素,其中包括输入参数是否可靠、计算结果如何以及计算
器构建是否正确。

所有这些参数必须在开始分析之前进行考虑,而误差在预定义的构建表
达式中开始变得明显。

将有助于避免无效的结果。

另一个可能影响差热分析法误差的因素是,有些应用中无法直接反映小变化的温度和压力变量之间的关系,因此可能会导致偏差。

在这种情况下,分析包含的数据可能过时,可能会产生计算结果的误差。

此外,差热分析法还可能受到其他热力学过程的影响,例如相变、混合、气体振动以及液
体压力等。

如果这些过程被忽视了,一些误差可能会出现。

同样,一般情况下,差热分析法所涉及的一些量可能是近似量,而不是精确值,因此也可
能会产生误差。

而且,如果模型过度简化,误差也很可能发生。

另一方面,对于用于具有稳定的“状态”的差热分析法,如果在分析过程中不考虑时间因素,则可能会发生一些错误。

总的来说,在使用差热分析法进行热力学分析之前,应该尽可能详细地了解以上几种可能给分析带来误差的因素,以确保分析的结果正确可靠。

差热和热重分析

差热和热重分析

差热分析可以用来研究土壤中污染物 的热分解和转化过程,例如研究土壤 中农药的分解和转化过程。
热重分析可以用来研究土壤中污染物 的迁移和分布特性,例如研究土壤中 重金属的分布和迁移特性。
06 差热和热重分析的未来发 展与挑战
新技术发展
新型传感器技术
利用新型传感器技术,如纳米传感器和柔性传感器,提高差热和 热重分析的灵敏度和精度。
差热分析的应用
01 确定物质的熔点、玻璃化转变温度等物理 性质。
02 研究物质的热稳定性、热分解和氧化等化 学性质。
03
用于药物、食品、聚合物、陶瓷等领域的 研发和质量控制。
04
热重分析(TGA)
02 热重分析(TGA)
热重分析的定义
热重分析(TGA)是一种在程序控温下测量物质质量与温度关系的分析方法。通过 测量物质质量随温度变化的情况,可以研究物质在加热或冷却过程中的物理和化学 变化。
在热重分析中,样品被放置在热天平上,并加热或冷却以模拟不同的温度条件。随着温度的变化,样 品的质量会发生变化,这些变化被记录并转化为温度与质量之间的关系曲线。通过对曲线的分析,可 以了解物质在加热或冷却过程中的质量变化情况。
热重分析的应用
热重分析在多个领域都有广泛的应用,包括材料科学 、化学、制药、食品科学等。它可以用于研究材料的 热稳定性、分解行为、反应动力学以及物质在温度变 化过程中的相变等。
陶瓷材料的抗热震性能
差热分析可以研究陶瓷材料在不同温度下的热震稳定性,对于陶瓷 材料的应用具有重要意义。
金属材料
金属材料的熔点和凝固点
01
通过差热分析,可以精确测定金属材料的熔点和凝固点,有助
于了解金属材料的热物性。
金属材料的氧化和腐蚀行为

差热分析法(DTA)简介 (Differential Thermal Analysis)

差热分析法(DTA)简介 (Differential Thermal Analysis)

差热分析法(DTA)简介(Differential Thermal Analysis)1.DTA的基本原理差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。

差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。

在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。

如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。

一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。

差热分析的原理如图Ⅱ-3-1所示。

将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,以表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。

则它们的升温曲线如图Ⅱ-3-2所示。

若以对t作图,所得DTA曲线如图Ⅱ-3-3所示,在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。

随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。

显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。

图Ⅱ-3-1差热分析的原理图 II-3-1 差热分析的原理图图II-3-2试样和参比物的升温曲线1.参比物;2.试样;3.炉体;4.热电偶(包括吸热转变)图Ⅱ-3-3 DTA吸热转变曲线TA曲线所包围的面积S可用下式表示式中m是反应物的质量,ΔH是反应热,g是仪器的几何形态常数,C是样品的热传导率ΔT是温差,t1是DTA曲线的积分限。

这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。

这里忽略了微分项和样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。

热分析法—热重分析法(TG) 差热分析法(DTA) 差示扫描量热法( DSC) ppt课件

热分析法—热重分析法(TG)  差热分析法(DTA) 差示扫描量热法( DSC)  ppt课件

of the first Na-containing i-QC, i-Na13Au12Ga15,
which belongs to the Bergman type but has an
extremely low valence electron-to-atom (e/a)
value of 1.75
PPT课件
800
1000
1200
140 780
180 205
1030
450
PPT课件Tຫໍສະໝຸດ ℃10差热分析法(DTA)
参比物:在测量温度范围 内不发生任何热效应的物 质,如-Al2O3、MgO等。
程序控温下, 测量物与参比 物的温差与温 度的关系 ΔT=f(T) 正峰:放热 倒峰:吸热
PPT课件
11
差示扫描量热法
PPT课件
21
亮点
金属氧化物薄层通常制备方法:原子层沉积、脉冲激 光沉积、化学气相沉积、射频溅射、喷墨印刷等方法。
本文—— “combustion” process in which the
heat required for oxide lattice formation is provided by the large internal energies of the precursors
PPT课件
22
略:XRD 、电子迁移率等测试。。。。
PPT课件
23

PPT课件
24
《应用化学》(德语:Angewandte Chemie) 每周出版一期 由德国化学会出版,由约翰威立公司发行。
PPT课件
25
主要内容
we report the discovery and characterizations

热重分析及差热分析

热重分析及差热分析
线,即DTA曲线。
热重分析法
• 分析原理 • 仪器装置 • 影响因素 • 应用
基本原理
许多物质在加热或冷却过程中除了产生热效应外,往往有 质量变化,其变化的大小及出现的温度与物质的化学组成 和结构密切有关。因此利用在加热和冷却过程中物质质量 变化的特点,可以区别和鉴定不同的物质。
• 热重分析法(TG):在程序控制温度下,测量物质的质量与 温度变化关系的一种技术。 TG曲线记录的是质量-温度, 质量保留百分率-温度或失重百分率-温度的关系。
当试样发生任何物理(如相转变、熔化、结晶、升 华等)或化学变化时,所释放或吸收的热量使试 样温度高于或低于参比物的温度,从而相应地在 DTA曲线上得到放热或吸收峰。
差热分析曲线
根据国际分析协会ICTA的规定,差热分析DTA是 将试样和参比物置于同一环境中以一定速率加热 或冷却,将两者间的温度差对时间或温度作记录 的方法。从DTA获得的曲线试验数据是这样表示的 :纵坐标是试样与参比物的温度差ΔT,向上表示 放热反应,向下表示吸热反应,横坐标为T(或t ),从左到右增加。
物质在温度变化过程中,常常伴随宏观物理、化学等性 质的变化,宏观上的这些性质变化通常又与物质的组成和 微观结构相关联。通过测量和分析物质在加热或冷却过程 中的物理、化学性质的变化,可以对物质进行定性、定量 分析,从而实现对物质的结构鉴定,为新材料的研究和开 发提供热性能数据和精细结构信息。
热分析需满足三个条件
含有一个结晶水的草酸钙的TG曲线和DTG曲线
CaC2O4·H2O→CaC2O4+H2O (100-200℃,失重量12.5% )
CaC2O4→CaCO3+CO
(400-500℃,失重量18.5%)
CaCO3→CaO+CO2 (600-800℃,失重量30.5% )

差热分析法

差热分析法

差热分析法差热分析法(Differential Thermal Analysis,DTA)是一种常用的热分析技术,它通过比较样品与参比物的温度差异来研究样品的热性质。

DTA技术在化学、材料科学、地质学等多个领域具有广泛的应用。

DTA的工作原理基于样品和参比物在受热过程中吸收或释放热量的差异。

在实验中,样品和参比物被放置在两个相邻的炉区,受同等程度的升温条件控制。

当样品发生物理或化学变化时,其吸热或放热会导致样品与参比物温度的差异。

这些温度差异会通过一个差温探测器进行检测和记录。

DTA实验中,样品和参比物通常以粉末或粒状形式存在。

粉末样品可在合适的容器中进行测试,而固体样品则需先研磨成粉末以方便测试。

样品和参比物应具有相似的物理和化学性质,以确保实验的准确性和可靠性。

在DTA实验中,通常以升温速率为X轴,差温信号(样品与参比物温度差异)为Y轴来绘制曲线图。

曲线上出现的峰或谷表示样品发生了热事件,如相变、化学反应、放热或吸热过程等。

通过对峰的位置、峰的形状和峰的峰值进行分析,可以获得有关样品的热性质和热行为的信息。

DTA技术广泛应用于材料研究、催化剂研究、岩石和土壤分析、陶瓷研究等领域。

它可以用于研究材料的熔化过程、晶体相变、氧化、还原、析出和溶解等反应。

同时,DTA还可以用来测定热容、热导率、热膨胀系数等热性质参数。

通过结合其他热分析技术,如差热/差热衍生物分析(DTA/DSC)和差热差热衍生物重量分析(DTA/TGA),可以对样品进行更全面和深入的分析。

总之,差热分析法是一种用于研究样品热性质和热行为的重要工具。

它通过比较样品与参比物的温度差异,可以揭示样品发生的热事件和热特性,为材料研究和过程分析提供了有力的支持。

差热分析及其应用

差热分析及其应用

地质年代测定
通过差热分析可以测定地 质样品的热稳定性,结合 其他方法可用于地质年代 的测定和古气候研究。
火山喷发研究
差热分析可以用于研究火 山岩的形成和演化过程, 有助于了解火山喷发的机 制和规律。
环境科学领域
有毒有害物质检测
差热分析可以用于检测环境中的有毒有害物质,如重金属、有机 污染物等,为环境监测和治理提供技术支持。
THANKS
化学反应研究
差热分析可用于研究化学 反应的热力学参数,如反 应热、熵变等,有助于深
入了解反应机理。
化学物质鉴定
通过差热分析可以确定化 学物质的结构和组成,有 助于对未知化合物的鉴定
和分类。
催化剂研究
差热分析可用于研究催化 剂的热稳定性和活性,为 催化剂的优化和改进提供
依据。
材料科学领域
材料热稳定性分析
参比物
用于比较样品热性质的物质,通 常为惰性物质。
坩埚
用于盛放样品和参比物的容器。
实验步骤与操作
准备样品和参比物
将样品和参比物分别放入坩埚中。
设定实验参数
根据实验需求设定差热分析仪的参数,如 加热速率、温度范围等。
开始实验
将坩埚放入差热分析仪中,启动实验。
数据记录与分析
记录实验过程中的热量变化数据,并进行 分析。
无损分析
差热分析是一种非破坏性的分析方法,样品在测试过程中 不会被破坏或消耗,因此可以用于对珍贵的文物或生物样 品进行无损分析。
应用广泛
差热分析可以用于研究物质的物理性质和化学性质,如熔 点、沸点、结晶、反应热等,因此被广泛应用于材料科学 、化学、生物学等领域。
操作简便
差热分析的操作相对简单,只需要将样品放入差热分析仪 中,进行必要的参数设置即可开始测试。

差热分析

差热分析

第一节 差热分析
三、差热曲线
• • • • • • • • • • • 基线(Baseline),AB和DE段; 峰(Peak),BCD段; 吸热峰(Endotherm),T<0 放热峰(Exotherm), T>0 峰宽(Peak Width),BD或B’D’ 峰高(Peak height),CF段 峰面积(Peak area),BCDFB 起始转变温度(Initial Ttrans),TB 外推起点(Extrapolated onset),G 峰的位置和形状 BC峰的前沿,CD峰的后沿
第一节 差热分析
• 四、差热曲线的数据处理
• 1 转变温度的确定 • 差热曲线上开始偏离基线的温度称起始转变温度, 但经不同国家不同工作者用不同仪器实验的结果, 认为用外推法求起始转变温度更接近热力学平衡 温度,约有1-3度之差,我们称它为外推起始温度 或转变平衡温度。外推起始温度是峰的前沿(AB) 最大斜率点的切线与外推基线(BC)的交点G。
第一节 差热分析
• • • 比例系数的标定 影响比例系数的因素很多,理论上不容易计算,要用 标准物质标定而得。 测定方法是用精确已知热效应的标准物质进行差热分 析,由差热分析求出面积,标出单位面积相当的热量, 即比例系数。由于物质的热性质与温度有关,所以比 例系数也随温度而改变,故要求标定的温度范围必须 和实验测量的温度范围相同。 标定通常用高纯物质的熔化热焓来进行,可避免化学 反应放出的分解产物可能引起的复杂行为,应当指出 用熔化吸热和冷凝放热的平均峰面积比用单独的熔化 吸热峰的峰面积更可靠。
• 假设:试样与参考物内部不存在温度梯度,且与 各自的容器温度相等。试样和参考物的热容都不
随温度而变化。样品池和参考池与炉子间的热传

差热分析法(DTA)

差热分析法(DTA)

6.3.1 基本原理
2012-3-8
5
6.3.2 差热曲线方程
为了对差热曲线进行理论上的分析, 为了对差热曲线进行理论上的分析 , 从 60年代起就开始进行分析探讨 , 但由于 年代起就开始进行分析探讨, 年代起就开始进行分析探讨 考虑的影响因素太多, 考虑的影响因素太多 , 以致于所建立的 理论模型十分复杂,难以使用。 理论模型十分复杂,难以使用。 1975年 , 神户博太郎对差热曲线提出了 年 一个理论解析的数学方程式, 一个理论解析的数学方程式 , 该方程能 够十分简便的阐述差热曲线所反映的热 力学过程和各种影响因素。 力学过程和各种影响因素。
2012-3-8 16
(二)
CS
在反应终点C, 反应终点 ,
d∆H = 0 dt
K ln (∆Tc − ∆Ta ) = − t CS
d∆T dt
= − K [∆T − ∆Ta ]
K ∆Tc = exp− CS
t + ∆Ta
(6 − 9)
反应终点C以后, 将按指数函数衰减直至 反应终点 以后,∆T将按指数函数衰减直至 以后 ∆T 基线) 2012-3-8 a(基线)
2012-3-8 20
6.3.3 差热分析仪
差热分析仪的组成
加热炉 温差检测器 温度程序控制仪 信号放大器 记录仪 气氛控制设备
2012-3-8 21
6.3.4 差热分析的影响因素
1. 仪器因素: 仪器因素: 炉子的形状结构与尺寸, 炉子的形状结构与尺寸,坩埚材料与 形状, 形状,热电偶位置与性能 2. 实验条件因素: 实验条件因素: 升温速率、 升温速率、气氛 3. 试样因素: 试样因素: 用量、 用量、粒度
2012-3-8 22

差热分析(Differencial Thermal Analysis, DTA)

差热分析(Differencial Thermal Analysis, DTA)

差热分析的应用
提供的信息:
峰的位置 峰的形状 峰的个数
凝胶材料的烧结进程研究
DTA数据的记录方式
6)用时间或温度作为横坐标,从左到右为增加。 7)说明鉴定中间生成物和最后产物的方法。8)全部 原始记录的如实重复。 9)标明试样重量和试样稀释程度。 11)标明所用仪器的型号、商品名称及热电偶的几何 形状、材料和位置。
影响曲线形状的因素
• 影响差热分析的主要因素有三个方面:仪
DTA曲线及理论分析
DTA曲线
DTA曲线是指试样与参比物间的温差(ΔT) 曲线和温度(T)曲线的总称。
DTA曲线分析
① 零线:理想状态ΔT=0的线; ② 基线:实际条件下试样无热效应时的曲线部份; ③ 吸热峰:TS<TR ,ΔT<0时的曲线部份; ④ 放热峰:TS>TR , ΔT>0时的曲线部份; ⑤ 起始温度(Ti):热效应发生时曲线开始偏离基线的 温度; ⑥ 终止温度(Tf):曲线开始回到基线的温度;
稀释 剂的 加入 往往 会降 低差 热分 析的 灵敏
度!
差热曲线分析
差热曲线分析就是解释曲线上每个峰谷产生的原因,从 而分析被测物质是有那些物相组成的。峰谷产生的原因 有:
✓矿物质脱水 ✓相变 ✓物质的化合或分解 ✓氧化还原
差热分析的峰只表示试样的热效应,本身不反应更多 的物理化学本质。为此,单靠差热曲线很难做正确的解 释。现在普遍采用的联用技术。
✓ 如:在空气和氢气的气氛下
对镍催化剂进行差热分析, 所得到的结果截然不同(见 图)。在空气中镍催化剂被 氧化而产生放热峰。
稀释剂的影响
稀释剂是指在试样 中加入一种与试样不 发生任何反应的惰性 物质,常常是参比物 质。稀释剂的加入使 样品与参比物的热容 相近,能有助于改善 基线的稳定性,提高 检出灵敏度,但同时 也会降低峰的面积。

差热分析实验报告

差热分析实验报告

引言概述差热分析是一种常用的热分析技术,它通过对样品在加热或冷却过程中释放或吸收的热量进行测量,来研究物质的热性质和热变化规律。

本次差热分析实验旨在进一步探究不同材料的热性质,并分析实验数据,得出相应的结论。

正文内容:一、差热分析基本原理1.1热分析法概述热分析法的定义和基本原理热分析法的分类及主要应用领域1.2差热分析法基本原理差热分析的基本原理和测量方法差热分析仪器的结构和工作原理二、差热分析实验装置及样品准备2.1差热分析实验装置实验装置的主要组成部分及工作原理差热分析实验装置的注意事项2.2样品准备样品的选择和准备方法样品的性质对实验结果的影响三、实验数据分析3.1实验条件的选择和控制实验中温度和升降速率的选择实验条件对结果的影响3.2差热曲线的解读差热曲线的特征和分析方法差热曲线的峰值分析和解释四、差热分析实验结果讨论4.1材料A的热性质分析材料A的差热曲线解读材料A的热变化过程分析4.2材料B的热性质分析材料B的差热曲线解读材料B的热变化过程分析4.3材料C的热性质分析材料C的差热曲线解读材料C的热变化过程分析4.4材料特性的比较和分析各材料的热性质比较和评价从实验数据中得出的结论和启示五、实验误差分析及改进方案5.1实验误差的分析和来源实验操作中的误差分析仪器精度和环境因素对实验结果的影响5.2改进方案的提出和讨论优化实验条件和操作步骤提高仪器精度和环境控制方法的改进总结本次差热分析实验通过对材料的热性质进行研究,得出了相应的实验结果和结论。

通过分析实验数据,我们发现不同材料的差热曲线具有明显的差异,而这种差异可以反映材料的热性质和热变化规律。

通过对比不同材料的热性质,我们可以得出更深入的结论,并进一步改进差热分析实验的条件和方法,提高实验结果的精度和准确性。

差热分析实验在材料研究和质量控制等领域具有广泛的应用前景,我们可以通过进一步的实验和研究来深入理解差热分析的原理和方法,为相关领域的研究和应用提供支持。

差热分析法

差热分析法

H K [ T Ta ]dt K [ T Ta ]dt K [ T Ta ]dt KS
a
2019/1/6
(6 12 )
S:差热曲线和基线之间的面积
17
根据式(6-12)可得出下述结论:
1.差热曲线的峰面积S和反应热效应ΔH成 正比; 2.传热系数K值越小,对于相同的反应热 效应 ΔH 来讲,峰面积 S 值越大,灵敏度 越高。 (6-12) 式中没有涉及程序升温速率 φ ,即 升温速率 φ 不管怎样, S 值总是一定的。 由于ΔT和φ成正比,所以φ值越大峰形越 窄越高。
2019/1/6 9
o-a之间是DTA基线形成过程
2019/1/6 10
此过程中ΔT的变化可用下列方程描述:
K C C R S ΔT 1 exp t K s c ( 6 1 )
当t足够大时,可得基线的位置:
C C R S T a K
2019/1/6 5

设:
试样 S和参比物 R 放在同一加热的金属块 W 中,使之处于同样的热力学条件之下。 1. 试样和参比物的温度分布均匀(无温 度梯度),且与各自的坩埚温度相同。 2. 试样、参比物的热容量CS、CR不随温 度变化。 3. 试样、参比物与金属块之间的热传导 和温差成正比,比例常数(传热系数)K 与温度无关。
2019/1/6
C C R S T a K
13
(一)
在峰顶b点处,
dT 0 dt
1d H d H T T ( 6 8 ) K T T b a b a K dt dt
峰高 (ΔTb-ΔTa) 与导热系数 K 成反比, K 越

热分析法—热重分析法(TG) 差热分析法(DTA) 差示扫描量热法( DSC)

热分析法—热重分析法(TG)  差热分析法(DTA) 差示扫描量热法( DSC)
1.0
0.8
树脂样品的玻璃化转变
[1] 0.6
0.4
0.2
玻璃化转变: 起始点: 53.8 ℃ 中点: 57.9 ℃ 终止点: 62.0 ℃ 比热变化*: 0.421 J/(g*K)
0 40 50 60 温度 /℃ 70 80 90 100
在无定形聚合物由玻璃态转变为高弹态的过程中,伴随着比 热变化,在 DSC 曲线上体现为基线高度的变化,由此可得到 材料的玻璃化转变温度。
satisfy a Hume–Rothery stabilization rule
How to discover it?
During systematic exploration of the Na–Au–Ga system
Thank you
TG,DTA,DSC曲线
相关文献

JACS简介
Journal of the American Chemical Society 中文名:《美国化学会志》
化学杂志龙头
1879至今 134年历史
JACS简介
总引证次数和被引次数第一,远超第二
JACS每年有51期
JACS不收版面费,文章用彩色不加收费用 审稿周期10周。通讯是2个审稿人,全文是3个,全 文审稿周期更长
外推始点onset:基线延长线与曲线拐点切线的交点。 始点initial:开始偏离基线的点。
常见热分析技术
热重分析 微分热重分析 差热分析 差示扫描量热法
TG(DTG) 检测待测物与 样品的不同 质量 DTA 温度 DSC 能量(热焓)
热重分析法
程序控温下,质量 随温度的变化。 m=f(T)。 测量条件:发生质 量变化。 纵坐标:质量或其 百分数

差热分析法(DTA)

差热分析法(DTA)
✓通常采用小颗粒样 品,样品应磨细过 筛并在坩埚中装填 均匀。
✓同一种试样应选应 相同的粒度。
2023/11/16
37
CuSO4·5H2O粒度对DTA曲线的影响
1#峰重叠; 2#峰可明显区 分; 3#只出现两个 峰。
2023/11/16
38
3.稀释剂的影响
❖ 在差热分析中有时需要在试样中添加稀 释剂,常用的稀释剂有参比物或其它惰 性材料,添加的目的有以下几方面:
2023/11/16
19
根据式(6-12)可得出下述结论:
❖1.差热曲线的峰面积S和反应热效应ΔH成 正比;
❖2.传热系数K值越小,对于相同的反应热 效应ΔH来讲,峰面积S值越大,灵敏度 越高。
(6-12)式中没有涉及程序升温速率φ,即 升温速率φ不管怎样,S值总是一定的。 由于ΔT和φ成正比,所以φ值越大峰形越 窄越高。

对碱性物 类坩埚;



Na2CO3 )


用玻


陶瓷
➢ 含氟高聚物(如聚四氟乙烯)与硅形成化合物, 也不能使用玻璃、陶瓷类坩埚;
➢ 铂具有高热稳定性和抗腐蚀性,高温时常选用,
但不适用于含有P、S和卤素的试样。另外,Pt
对许多有机、无机反应具有催化作用,若忽视
可导致严重的误差。
2023/11/16
2023/11/16
20
6.3.3 差热分析仪
差热分析仪的组成
加热炉
温差检测器
温度程序控制仪
信号放大器
记录仪
气氛控制设备
2023/11/16
21
6.3.4 差热分析的影响因素
1. 仪器因素: 炉子的形状结构与尺寸,坩埚材料与
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

差热分析法基本原理差热分析法——Differential Thermal Analysis (DTA)是在程序控制温度下,测量试样与参比物质之间的温度差ΔT与温度T(或时间t)关系的一种分析技术,所记录的曲线是以ΔT 为纵坐标,以T(或t)为横坐标的曲线,称为差热曲线或DTA曲线,反映了在程序升温过程中,ΔT与T或t的函数关系:ΔT = f ( T ) 或f ( t )参比物质为一种在所测量温度范围内不发生任何热效应的物质。

通常使用的参比物质是灼烧过的α-Al2O3或MgO。

图17.6为DTA原理示意图。

加热时,温度T及温差△T分别由测温热电偶及差热电偶测得。

差热电偶是由分别插在试样S和参比物R的二支材料、性能完全相同的热电偶反向相连而成。

当试样S没有热效应发生时,组成差热电偶的二支热电偶分别测出的温度T s、T R相同,即热电势值相同,但符号相反,所以差热电偶的热电势差为零,表现出ΔT=T s-T R=0,记录仪所记录的ΔT曲线保持为零的水平直线,称为基线。

若试样S有热效应发生时,T s≠T R,差热电偶的热电势差不等于零,即ΔT=T s-T R≠0,于是记录仪上就出现一个差热峰。

热效应是吸热时,ΔT=T s-T R<0,吸热峰向下,热效应是放热时,ΔT>0,放热峰向上。

当试样的热效应结束后,T s、T R又趋于一样,ΔT恢复为零位,曲线又重新返回基线。

图17.7为试样的真实温度与温差比较图。

差热峰反映试样加热过程中的热效应,峰位置所对应的温度尤其是起始温度是鉴别物质及其变化的定性依据,峰面积是代表反应的热效应总热量,是定量计算反应热的依据,而从峰的形状(峰高、峰宽、对称性等)则可求得热反应的动力学参数。

表17.2列出了各种吸热和放热体系的类型,供判断差热峰产生机理时参考。

表17.2 差热分析中吸热和放热体系的主要类型现象(物理的原因)吸热放热现象(化学的原因)吸热放热结晶转变○○化学吸附○熔融○析出○气化○脱水○升华○分解○○吸附○氧化度降低○脱附○氧化(气体中)○吸收○还原(气体中)○氧化还原反应○○固相反应○○影响DTA的因素影响DTA的因素很多,下面讨论几种主要的因素:★升温速度的影响保持均匀的升温速度(ψ)是DTA的重要条件之一,即应:ψ = dT R / dt = 常数若升温速度不均匀(即ψ有波动),则DTA曲线的基线会漂移,影响多种参数测量。

此外,升温速度的快慢也会影响差热峰的位置、形状及峰的分辨率。

Speils等人研究了各种升温速度时高岭土DTA的影响,结果见图17.8,表明升温速度愈快,峰的形状愈陡,峰顶温度也愈高。

Johnson.J.F等人在研究胆甾醇丙酸酯的多相转变时还发现,高的升温速度有利于小相变的检测,从而提高检测灵敏度。

通常升温速度控制在5~20℃·min-1.★气氛的影响气氛对DTA有较大的影响。

如在空气中加热镍催化剂时,由于它被氧化而产生较大的放热峰;而在氢气中加热时,它的DTA曲线就比较平坦。

又如CaC2O4·H2O在CO2和在空气中加热的DTA曲线也会有很大的差异,如图17.9所示。

在CO2气氛中,DTA曲线呈现三个吸热峰,分别为失水、失CO和失CO2的正常情况,而在空气气氛中,中间的峰呈现为很强的放热峰,这是因为CaC2O4释放出的CO在高温下被空气氧化燃烧所放出的热量所致。

在DTA测定中,为了避免试样或反应产物被氧化,经常在惰性气氛或在真空中进行。

当热效应涉及气体产生时,气氛的压力也会明显地影响DTA曲线,压力增大时,热效应的起始温度与顶峰温度都会增大。

★试样特性的影响DTA曲线的峰面积正比于试样的反应热和质量,反比于试样的热传导系数。

为了尽可能减少基线漂移时对测定结果的影响,必须使参比物的质量、热容和热传导系数与试样尽可能相似,以减少测定误差。

为了使试样与参比物之间的热导性质更为接近,有时用一至三倍的参比物来稀释试样,从而减少基线的漂移,但会引起差热峰面积的减小。

补偿的办法是适当增加试样量或提高仪器的灵敏度。

为了使基线较为平稳,稀释时试样与参比物必须混合均匀。

不同粒度的试样具有不同的热导效率,为了避免试样粒度对DTA的影响,通常采用小颗粒均匀的试样。

仪器图17.10是典型的差热分析仪器结构示意图。

仪器由支撑装置、加热炉、气氛调节系统、温度及温差检测和记录系统等部分组成。

试样室的气氛能调节为真空或者多种不同的气体气氛。

温度和温差测定一般采用高灵敏热电偶。

通常测低温时,热电偶为CA(镍铬—镍铝合金);测高温时,热电偶为铂—铂铑合金。

因为ΔT一般比较小,所以要进行放大。

加热炉是一块金属块(如钢),中间有两个与坩埚相匹配的空穴。

两坩埚分别放置试样和参比物,置于两个空穴中。

在盖板的中间孔洞插入测温热电偶,以测量加热炉的温度,盖板的左右两个孔洞插入两支热电偶并反向连接,以测定试样与参比物的温差。

结构示意图如图17.11所示。

目前,热分析仪器往往不是单能用于某一种热分析方法,而往往是可以同时几种方法联用。

常用到的是热重法与差热分析法联用。

如国产LCT型示差精密热天平就是TG—DTA 联用仪器。

应用差热分析法是热分析中使用得较早、应用得较广泛和研究得较多的一种方法,它不但类似于热重法可以研究样品的分解或挥发,而且还可以研究那些不涉及到重量变化的物理变化。

例如结晶的过程、晶型的转变、相变、固态均相反应以及降解等。

图17.12是相图测定的实例。

当存在低共熔体时,其升温过程如图所示。

开始时,由于低共熔体的熔化,出现一尖峰。

其后,出现通常固溶体所具有的很宽的峰。

依次改变其组成,测定它们的差热曲线,可以看到在同一类转变——熔化过程中,峰的大小是连续变化的。

图17.13是SrCO3在空气中的DTA曲线及TG、DTG曲线。

在DTA曲线上,950℃处有一明显的吸热峰,而在TG及DTG曲线上均不出现,说明在950℃的热效应不涉及质量的变化,而只是形态的变化,实验证明,此时SrCO3从正交晶系转变为六方晶系。

某些高聚物的物理性质,如强度和柔性,决定于其结晶度,DTA可以对其进行研究。

图17.14为非晶形(a)和晶形(b)两种高聚物的DTA曲线。

曲线a无突变发生,直至420℃时高聚物开始分解。

由于高聚物受热时软化也会吸热,因此曲线呈现非晶形样品的非直线特征。

高聚物(b)中的晶体在180℃时开始熔化,因而在曲线b上有一明显的吸热峰,至480℃时分解。

180℃时的吸热峰峰面积与样品中晶体的重量成比例,若用已知结晶度的样品进行校正,就可以从未知物峰面积求得其晶体的百分数。

从曲线b中发生晶体熔化的温度范围可以得到有关晶体大小的信息。

DTA还可以进行共混聚合物的鉴定。

图17.15为七种工业产品共混物的DTA曲线。

七种产品分别为:高压聚乙烯(HIPPE)、低压聚乙烯(LPPE)、聚丙烯(PP)、聚次甲氧基(POM)、尼龙6(Nylon 6)、尼龙66(Nylon 66)和聚四氟乙烯(PTFE),在DTA曲线上每一组分表现出本身的特征熔融吸热峰,峰顶温度分别为:108℃、127℃、165℃、170℃、220℃、257℃和340℃。

用DTA鉴定这类共混物时,显示出用量少(约8mg)、时间短的优点。

差示扫描量热法DSC基本原理差示扫描量热法DSC—(Diffential Scanning Calorimetry)是在程序控制温度下,测量输给试样和参比物的热流量差或功率差与温度或时间关系的一种技术(国际标准ISO 11357-1)。

在这种方法下,试样在加热过程中发生热效应,产生热量的变化,而通过输入电能及时加以补偿,而使试样和参比物的温度又恢复平衡。

所以,只要记录所补偿的电功率大小,就可以知道试样热效应(吸收或放出)热量的多少。

DSC与DTA的差别在于测定原理的不同:DTA是测量试样与参比物之间的温度差,DTA是测量∆T-T 的关系,而DSC是保持∆T = 0,测定∆H-T 的关系。

两者最大的差别是DTA只能定性或半定量,而DSC的结果可用于定量分析。

DSC是测量为保持试样与参比物之间的温度一致所需的能量(即试样与参比物之间的能量差)。

DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。

DSC法所记录的是补偿能量所得到的曲线,称DSC曲线。

示差扫描量热测定时记录的热谱图称之为DSC曲线,典型DSC曲线的纵坐标是试样与参比物的功率差dH/dt,也称作热流率,单位为毫瓦(mW),横坐标为温度(T)或时间(t)。

曲线的形状与差热分析法相似,如图17.16所示。

曲线离开基线的位移,代表样品吸热或放热的速率,通常以mJ/s表示。

而曲线峰与基线延长线所包围的面积,代表热量的变化,因此,DSC可以直接测量试样在发生变化时的热效应。

一般在DSC热谱图中,吸热(endothermic)效应用凸起的峰值来表征(热焓增加),放热(exothermic)效应用反向的峰值表征(热焓减少)。

仪器DSC的仪器与DTA的仪器最主要的不同是多了一个差示量热补偿回路。

温差检测系统从试样和参比物之间检测到的温差反馈到差示量热补偿回路,该回路产生的电流加热试样(试样发生吸热的热效应)或参比物(试样发生放热的热效应),使试样和参比物的温度恢复相等。

图17.17为DSC的结构示意图。

应用DSC由于能定量地测定多种热力学和动力学参数,且使用的温度范围比较宽(-175~725℃),方法的分辨率较好,灵敏度较高,因此应用也较广。

其主要用于测定比热、反应热、转变热等热效应以及试样的纯度、反应速度、结晶速率、高聚物结晶度等。

下面例举说明。

1. 化合物焓变的测定试样发生热效应而引起温度的变化时,这种变化一部分传导至温度传感装置(如热电偶、热敏电阻等)等被检测,另一部分传导至温度传感装置以外的地方。

记录仪所记录的热效应峰仅代表传导至温度传感装置的那部分热量变化情况,但是,当仪器条件一定时,记录仪所记录的热效应峰的面积与整体热效应的热量总变化成正比,即: m × ΔH = ΚA式中m为物质的质量,ΔH为单位质量的物质所对应的热效应的热量变化,即焓变,Κ为仪器常数,A为曲线峰的面积。

首先,用已知热焓变ΔH s的物质M s进行测定,测及与其相对应的峰面积A s,求得仪器常数Κ,然后,在同样的方法和条件下测定未知物质m x的曲线峰面积A x,则可求得ΔH x2. 比热容的测定在DSC中,试样是处在线性的程序温度控制下,试样的热流率是连续测定的,且所测的热流率(dH/dt)与试样的瞬间比热容成正比。

因此,热流率可用下式表达:式中m为试样的质量,C p为试样的定压比热容,dT/dt为升温速率。

在比热容的测定中,通常采用蓝宝石作为标准物质,其数据已精确测定,可从有关手册中查得不同温度下的比热容。

相关文档
最新文档