基于ARMA的微惯性传感器随机误差建模方法

基于ARMA的微惯性传感器随机误差建模方法
基于ARMA的微惯性传感器随机误差建模方法

谈谈系统误差的产生原因及其消除或减少的方法

谈谈系统误差的产生原因及其消除或减少的方法 在讨论随机误差时,总是有意忽略系统误差,认为它等于零。若系统误差不存在,期望值就是真值。但是,在实际工作中系统误差是不能忽略的。所以要研究系统误差,发现和消除系统误差。 一、系统误差产生的原因 在长期的测量实践中人们发现,系统误差的产生一般的与测量仪器或装置本身的准确程度有关;与测量者本身的状况及测量时的外界条件有关。 1、在检定或测试中,标准仪器或设备的本身存在一定的误差。在进行计量检定,向下一级标准量值传递时,标准值的误差是固定不变的,属于系统误差。又称为工具误差或仪器误差。如:标称值为100g的砝码,经检定实际值为99.997g,即误差为+0.003g。用此砝码去秤量其他物体的质量,按标称值使用,则始终把被测量秤大,产生+0.003g的恒定系统误差。 某些仪器或设备,在测量前须先进行调零位,若因测量前未调零位或存在调零偏差,使得标准仪器在测量前即具有某一初始值,该初始值必然直接影响测量结果,给测量结果带来误差。这种误差,一般称零位误差,或简称零差。 某些仪器或设备,如未按要求放置,特别是某些电磁测量和无线电测量仪器或设备,未正确接地或屏蔽,或未用专用连接导线,也会给测量结果带来误差。这种误差称为装置误差。 2、测量时的客观环境条件(如温度、湿度、恒定磁场等),也会给测量结果带来误差。如,重力加速度因地点不同而异,若与重力加速度有关的某些测量,未按测量地点的不同加以适当的修正,也会给测量结果带来误差。因这种误差是由客观环境因素引起的,一般把它称为环境误差。 3、由于某些测量方法的不完善,特别是检定与测试中所使用的某些仪器或设备,在设计制造时受某些条件的限制(如元器件,制造工艺等),不得不降低某些指标,采用一些近似公式,这也会给测量结果带来误差。这种误差称方法误差或称理论误差。 4、在测量中,测量者本身生理上的某些缺陷,如听觉、视力等缺陷,也会给测量结果带来误差。此项误差又称为人员误差。 二、消除或减少系统误差的方法 mad消除或减少系统误差有两个基本方法。一是事先研究系统误差的性质和大小,以修正量的方式,从测量结果中予以修正;二是根据系统误差的性质,在测量时选择适当的测量方法,使系统误差相互抵消而不带入测量结果。

ARMA模型的应用

基于ARMA模型的湖南省工业总产值的时间序列分析 摘要:改革开放以来,湖南省的工业经济增长取得了举世瞩目的成就。故本文以1978-2013年湖南省工业总产值的历史数据为基础,对1978-2009年的数据进行了平稳化处理,并进行了模型的识别、参数估计、显著性检验、优化,建立了适合湖南省工业发展的自回归移动平均模型(ARMA);然后对2010-2013年湖南省工业总产值进行了拟合预测,以检验模型的实际拟合效果;最后对2014-2016年的工业总产值进行了统计预测,得出ARMA模型是一种很好的短期时间序列预测方法,并从中找出了湖南省工业发展的内在规律,提出了工业发展的相关政策建议。 关键词:ARMA模型;工业总产值;时间序列;短期预测

一、引言 2014年湖南省政府工作报告在回顾2013年工作时指出“工业实力增强,全部工业增加值突破1万亿元,规模工业主营业务收入超过3万亿元”。改革开放以来,湖南省工业总产值从1978年的142.78亿元上升到2013年的40004.55亿元,工业增加值占地区生产总值的比重也由1978年的35.3%上升到2013年的40.8%。2013年,湖南省规模以上工业增加值增长11.6%,规模以上工业新产品产值增长23.2%,占工业总产值比重为13.1%,比上年提高1个百分点。可见湖南省工业不断得到发展,并取得了较为瞩目的成就。但是工业的发展也呈现出一系列问题,工业的发展速度从1978年的121.6%呈现波动性下降,这进一步说明湖南省工业经济在取得重大发展的过程中也付出了极大的代价,特别是环境方面的代价,这在某种程度上阻碍了湖南省工业经济的进一步发展。此外,随着我国经济增长中心由东部沿海地区向西部地区推移,作为我国主要的能源基地和原材料工业基地的中部六省必定成为我国工业经济的高速增长点,而湖南省两型社会(资源节约型和环境友好型)的构建,使其面临了更多的机遇和挑战。从某种程度上说,湖南省工业发展的好坏,将会影响我国未来经济的发展和环境友好型社会的构建,这就迫切需要我们对湖南省工业经济发展的模式做出重新选择。为了探索出湖南省工业发展的内在规律和短期波动情况,促进湖南省工业经济的发展,从而更好定位我国未来经济的发展和构建环境友好型社会,本文运用ARMA模型对湖南省工业总产值序列进行了平稳化处理、模型识别、参数估计、模型检验以及模型优化,最终建立起符合湖南省工业经济发展的疏系数模型(ARIMA模型),并对2014-2016年的工业总产值进行了统计预测。 ARMA模型是国际上比较流行的单一时间序列预测模型,特别适合处理复杂时间序列的预测,且在短期预测时精度较高,故在各个领域运用得也非常广泛。从宏观层面来看,张煜(2006)将ARMA模型应用于我国外贸进出口总额的时间序列的分析中,证实了ARMA模型是一种较好的短期预测模型]1[。夏蓉(2008)以1952-2004年我国工业总产值的历史数据为基础,建立ARMA模型,探析出ARMA 模型能较好的分析和计算我国工业的发展波动情况,我国工业总产值在保持稳定速度增长的同时也存在一些问题]2[。陈德艳(2011)]3[、苏雷(2012)]4[等分别将ARMA模型应用于我国城乡收入差距、土地利用需求量的预测中。从微观层面

测量误差及数据处理.

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

减小测量误差的方法总结

减小测量误差的方法总结 The Standardization Office was revised on the afternoon of December 13, 2020

减小测量误差的方法总结 摘要:本文通过知识回顾法、查阅资料法、总结法,介绍了测量误差的基本概念和来源,从不同角度归纳出误差的分类,并从如何弥补仪器缺陷、减小系统误差和随机误差方面做详细介绍。 关键词:测量误差误差来源减小误差 一、测量误差的概念和来源 (一)测量误差的概念 在测量时,测量结果与实际值之间的差值叫误差。真实值是客观存在的,是在一定时间下体现事物的真实数据。测量值是测量所得的结果。这两者之间总是或多或少的存在一定的差异,就是测量误差。 (二)测量误差的主要来源 1.外界条件 外界的温度、湿度、大气折射等对观测结果都会产生影响。 2.仪器条件 仪器制造产生的精度缺陷。 3.观测者自身条件 每个人都有自己的鉴别能力,一定的分辨率和技术条件,在仪器安置、照准、读数等方面可能会产生误差。 二、测量误差的分类及简单介绍 (一)按表示方法 1.绝对误差:是示值与被测量真值之间的差值。 设被测量的真值为A0,器具的示值为x,则绝对误差Δx为: Δx=x-A0 (1) ,在实际应用中,常用精度高一级的标准器具的示由于一般无法求得真值A 值A代替之。X与A之差常称为器具的示值误差。记为:

Δx=x-A (2)通常以此值代表绝对误差。 绝对误差一般适用于标准器具的校准。 2.相对误差:是相对误差Δx与被测量的约定值之比,它较绝对误差更能确切地说明测量精度。 3.容许误差:是根据技术条件的要求,规定某一类器具误差不应超过的最大范围。 (二)按误差出现的规律分类 1.系统误差 其变化规律服从某种已知函数。系统误差主要由以下几个方面引起:材料、零部件及工艺缺陷;环境温度、湿度、压力的变化以及其他外界干扰等。 系统误差表明了一个测量结果偏离真值或实际值的程度。系统误差越小,测量就越正确。 2.随机误差 又称偶然误差,其变化规律未知。随机误差是由很多复杂因素的微小变化的总和所引起的,具有随机变量的一切特点,在一点条件下服从统计规律。因此,通过多次测量后,对其总和可以用统计规律来描述,则可从理论上估计对测量结果的影响。 随机误差表现了测量结果的分散性。在误差理论中,常用精密度一词来表征随机误差的大小。随机误差越小,精密度越高。 3.粗大误差

基于ARMA模型的短期风速建模

基于ARMA模型的短期风速建模 摘要:建立能够正确反映实际风速特性的风速模型对于风力发电系统动态分析十分必要。自回归滑动平均模型(ARMA)是分析时间序列的重要方法。在分析实际风速统计特性和ARMA模型性质的基础上,建立了可用于动态仿真的短期风速模型。仿真结果表明,所得风速序列能够正确反映实际风速的特性。 关键词:短期风速模型,ARMA,V on Karman功率谱 Short-term Wind Speed simulation based on ARMA Model Abstract: It is necessary to build a wind speed model which accurately reflects the characteristics of actual wind for dynamic analysis of wind power generation system. Auto-regressive and moving average model (ARMA) is an important method of time series analysis; based on the analysis of the statistical characteristics of actual wind speed and the nature of ARMA model, this paper established a short-term wind speed model which can be used for dynamic simulation. Simulation results show that the wind speed model correctly reflects the characteristics of the actual wind speed. Keywords: Short-term Wind Speed Model, ARMA, V on Karman power spectrum 1 引言 随着能源问题日益突出,风力发电等以可再生能源为基础的发电技术越来越受到关注。建立能够正确反映实际风速特性的风速模型是研究风力发电系统控制策略以及并网运行特性的重要基础[1]。由于风速的随机性和波动性,系统中的机械设备和电气设备以及电网均会受到扰动,这种扰动对于系统设备的寿命、运行性能以及电网的稳定性都将产生一定的影响。因而,在研究风电场接入电网的功率波动与电能质量等动态特性时,需要建立与之相适应的风速模型。 目前,用于风电系统仿真的风速模型有两种,一是由基本风速、渐变风速、阵风和随机风四种分量合成风速模型[2-4],其中阵风是风速变化的主要分量;一是由平均风速与湍流风速叠加而成[5-7]。前者无法确定风速变化的具体参数,只能简单描述风速的变化情况,而后者具有特定的参数描述风速变化的特征,是电力系统动态仿真中常用的风速模型。基于对后者模型中湍流风速特性的研究,利

减小仪表测量误差的方法实验

实验 减小仪表测量误差的方法 一、实验目的 1. 进一步了解电压表、电流表的内阻在测量过程中产生的误差及其分析方法。 2. 掌握减小因仪表内阻所引起的测量误差的方法。 二、原理说明 减小因仪表内阻而产生的测量误差的方法有以下两种: 1. 不同量限两次测量计算法 当电压表的灵敏度不够高或电流表的 内阻太大时,可利用多量限仪表对同一被 测量用不同量限进行两次测量,用所得读 数经计算后可得到较准确的结果。 如图2-1所示电路,欲测量具有较大 内阻R 0的电动势U S 的开路电压Uo 时,如 果所用电压表的内阻R v 与R 0相差不大时, 将会产生很大的测量误差。图 2-1 设电压表有两档量限,U 1、U 2分别为在这两个不同量限下测得的电压值,令R v1和R v2 分别为这两个相应量限的内阻,则由图2-1可得出 R v1 R v2 U l =────×U S U 2=────×U S R 0+R v1 R 0+R v2 由以上两式可解得U S 和R 0。其中U S (即U o )为: U 1U 2(R v2-R v1) U S =──────── U 1R v2-U 2R v1 由此式可知,当电源内阻R 0与电压表的内阻R v 相差不大时,通过上述的两次测量结果,即可计算出开路电压U o 的大小,且其准确度要比单次测量好得多。 对于电流表,当其内阻较大时,也可用 类似的方法测得较准确的结果。如图2-2所示 U S 电路,不接入电流表时的电流为 I =── , R 接入内阻为R A 的电流表A 时,电路中的电 U S 流变为I'=──── R +R A 如果R A =R ,则I'=I/2,出现很大的误差。图 2-2 如果用有不同内阻R A1、R A2的两档量限的电流表作两次测量并经简单的计算就可得到 较准确的电流值。 按图2-2电路,两次测量得 U S U S I l =──── I 2=──── R +R A1 R +R A2 U S I 1I 2(R A1-R A2) 由以上两式可解得U S 和R ,进而可得:I =──=──────── R I 1R A1-I 2R A2 v R

误差简答题

1、在实际测量中如何减小三大误差对测量结果的影响: A、粗大误差的减小方法: 1)加强测量者的工作责任心;2)保证测量条件的稳定,避免在外界条件激烈变化时进行测量;3)采用不等测量或互相校核的方法;4)采用判别准则,在测量结果中发现并剔除。 B、系统误差的减小方法:1)从误差根源上消除;2)预先将测量器具的系统误差检定出来,用修正的方法消除;3)对不变的系统误差,可以考虑代替法、抵消法、交换法等测量方法;对线性变化的系统误差,可采用对称法;对周期性系统误差,可考虑半周期法予以减小。 C、随机误差的减小方法:1) 从误差根源上减小;2)采用多次测量求平均值的方法减小;3)采用不等精度、组合测量等方法消除。 2、简述微小误差的判别方法及其应用: 对于随机误差核未定系统误差,微小误差判别准则为:若该标准差小于或等于测量结果总标准差的1/3或1/10,则可认为该误差是微小误差,准予舍去。 在计算总误差或误差分配时,若发现有微小误差, 可不考虑该项误差对总误差的影响。选择高一级精 度的标准器具时,其误差一般应为被检器具允许总 误差的1/10-3/10。 3、系统误差合成与随机误差合成的方法有什么区别: 系统误差分已定系统误差和未定系统误差,对已定系统误差,采用代数和法合成即可: 由于未定系统误差不具有抵偿性,而随机误差具有抵偿性,因此在用多次重复测量的平均值表示测量结果时,合成标准差中的各项随机误差标准差都必须除以测量次数的平方根,未定系统误差则不必如此。 4、简述动态测试数据的分类,分析各类数据的特点 与性质: 动态测试数据分类:特点: 确定性数据可由确定的数学表达式表示出来,正弦周期含有单一频率,而复杂周期数据是由多种频率综合而成的数据,且频率比全为有理数。准周期数据的频率比不全为有理数,瞬态数据的频谱一般是连续的。 随机过程数据是无法用确定的表达式表示出来,它的值无法预知,但具有统计规律性。其中非平稳随机过程的均值、方差、自相关函数一般是随时间变化的,而平稳随机过程的均值、方差、自相关函数则不会随时间发生变化。 5、平稳随机过程的必要条件与各态历经随机过程的充分条件是什么?其特征量的估计方法有何不同?分别写出它们的特征量均值与方差的估计公式。 6、简述仪器的误差来源,并就你熟悉的仪器举例说明。 ①设计测量装置时,由于采用近似原理所带来的工作原理误差;②组成设备的主要零部件的制造误差与设备的装配误差③设备出厂时校准与定度所带来的误差④读数分辨力有限而造成的读数误差⑤数字式仪器所特有的量化误差⑥元器件老化、磨损、疲劳所造成的误差。 7、简述系统误差的判断方法及其适用对象。 在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时按一定规律变化的误差。按对误差掌握的程度分一定系统误差和未定系统误差;按误差出现规律分不变系统误差和变化系统误差; 其发现方法有:a)组内:实验对比法、残余误差观察法、残余误差校核法、不同公式计算标准差比较法;b)组间:计算数据比较法、秩和检验法、t检验法。 减小和消除方法:1)从误差根源上消除;2)预先将测量器具的系统误差检定出来,用修正的方法消除;3)对不变的系统误差,可以考虑代替法、抵消法、交换法等测量方法;对线性变化的系统误差, 可采用对称法;对周期性系统误差,可考虑半周期

基于ARMA模型的股价预测及实证研究

龙源期刊网 https://www.360docs.net/doc/6717320508.html, 基于ARMA模型的股价预测及实证研究 作者:刘伟龙 来源:《智富时代》2017年第02期 【摘要】在现实中很多问题,如利率波动、收益率变化及汇率变化通常都是一个时间序列。然而经济时间序列不同于横截面数据存在重复抽样的情况,它是一个随机事件的唯一记录,这个过程是不可重复的。横截面数据中的随机变量可以非常方便地通过其均值、方差或数据的概率分布加以面熟,但是时间序列中这种描述很不清楚,这就需要用一些特定的计量方法和手段分析其变化规律。ARMA模型在经济预测过程中即考虑了金融市场、股票市场指标在 时间序列上的依存性,又考虑了随机波动你的干扰性,对其指标短期趋势的预测准确率较高,它用有限参数线性模型描述时间的自相关结构,便于进行统计分析与数学处理,因此ARMA 模型是目前常用的用于拟合平稳序列的模型,尤其在金融和股票领域具有重要意义。本文将利用ARMA模型结合民生银行股票的历史数据建模,并运用该模型对招商银行的股票日收盘价进行预测,从而推断其未来趋势。 【关键词】ARMA模型;金融时间序列;平稳序列;收益率;股价预测 一、ARMA模型的理论介绍 ARMA(p,q)模型是由美国统计学家Box GEP和赢过统计学家Jenkins GM在二十世纪七十年代提出的时间序列分析模型,即自回归移动平均模型,一般的ARMA(p,q)模型的 形式可以表示为: yt=c+Φ1yt-1+Φ2yt-2+...+Φpyt-p+εt+θ1εt-1+θ2εt-2+... +θqεt-q 其中:εt是白噪声序列,p和q是非负整数,AR和MA模型都是ARMA模型的特殊情况,p=0时,ARMA模型为MA(q),q=0时,ARMA模型为AR(p)。ARMA模型针对的是平稳序列,对于非平稳的时间序列,不能直接用ARMA模型去描述,只有经过某种处理后,产生一个平稳的新序列,才可应用ARMA模型。对于含有短期趋势的非平稳序列可以进行差分使非平稳序列变成平稳序列。 二、对民生银行的股票日收盘价的实证分析及预测 在wind资讯数据库选取民生银行(600016)的股票日收盘价数据,时间区间为2013/5/22至2016/1/15共计649个样本。下面旨在利用ARMA模型的建模理论结合软件STATA进行ARMA模型的建立和预测分析。 (一)原始数据的平稳化处理

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

对粗大误差和随机误差处理

用matlab 对一组随机数据的随机误差的处理 当今社会,人们对测量和仪器的精确性要求越来越高,传统的测量精确度远远不能满足当今科技以及人们生活方面的要求,所以需要一种能够快速分析误差的方法出现。matlab 可以大大减少人工运算的成本,成本低,可行性高,而且具有普遍性,故采用matlab 来进行误差处理。 等精度测量粗大误差处理 粗大误差的判别准则 (1)莱以特准则(3σ准则) 具体方法:求出平均值和σ,将残差的绝对值与3σ进行比较,大于3σ的测量值都是坏值。这种方法称为 3σ法则(正态分布)。 适合测量点数较大的情况,计算所有的点。逐一剔除异常值 (2)罗曼诺夫斯基准则 具体方法:首先剔除一个可疑的测得值,然后按照t 分布检验被剔除的测量值是否含有粗大误差。如果是,剔除后,再判断其它的测试结果点。 适合条件:测量次数较少的情况,是逐一剔除的。 等精度测量随机误差处理 (1) 算数平均值 1 1==∑n i n i x x 大多数情况下,真值未知,用=-i i v x x 来代替误差: σ==σ=s δ=-i i x x n :测量次数 (2)测量列算数平均值标准差 /σσ=x (3)算数平均值的极限误差: ,δδσ= =t t lim δσ=±x t t 为置信系数,通过查表可得。 |()d x x |K n -2,a σ -≥1,1=-1n i i i d x x n =≠∑

结果表示: lim δ=±X x t x (4 (5 软件流程设计 等精度测量计算流程 开始 读取数据文件

matlab程序 clc; clear; data=load('test.txt'); % v_2=0; %定义残差的平方 average_data=0; %定义数据的平均值 average_data=mean(data);%计算平均值 if(length(data)<10) %判断数据的长度,用罗曼诺夫斯基准则剔除粗大误差 while(1) for i=1:length(data) %计算残差和残差的平方和 v(i)=data(i)-average_data; v_2=v_2+v(i)^2; end [max_v,I]=max(abs(v));` sum=0; for i=1:length(data)

减少系统误差的方法

减少系统误差的方法 消除或减少系统误差有两个基本方法。一是事先研究系统误差的性质和大小,以修正量的方式,从测量结果中予以修正;二是根据系统误差的性质,在测量时选择适当的测量方法,使系统误差相互抵消而不带入测量结果。 1.采用修正值方法 对于定值系统误差可以采取修正措施。一般采用加修正值的方法。 对于间接测量结果的修正,可以在每个直接测量结果上修正后,根据函数关系式计算出测量结果。修正值可以逐一求出,也可以根据拟合曲线求出。应该指出的是,修正值本身也有误差。所以测量结果经修正后并不是真值,只是比未修正的测得值更接近真值。它仍是被测量的一个估计值,所以仍需对测量结果的不确定度作出估计。 2.从产生根源消除 用排除误差源的办法来消除系统误差是比较好的办法。这就要求测量者对所用标准装置,测量环境条件,测量方法等进行仔细分析、研究,尽可能找出产生系统误差的根源,进而采取措施。 采用专门的方法 (1)交换法:在测量中将某些条件,如被测物的位置相互交换,使产生系统误差的原因对测量结果起相反作用,从而达到抵消系统误差的目的。 (2)替代法:替代法要求进行两次测量,第一次对被测量进行测量,达到平衡后,在不改变测量条件情况下,立即用一个已知标准值替代被测量,如果测量装置还能达到平衡,则被测量就等于已知标准值。如果不能达到平衡,修整使之平衡,这时可得到被测量与标准值的差值,即:被测量=标准值差值。 (3)补偿法:补偿法要求进行两次测量,改变测量中某些条件,使两次测量结果中,得到误差值大小相等、符号相反,取这两次测量的算术平均值作为测量结果,从而抵消系统误差。(4)对称测量法:即在对被测量进行测量的前后,对称地分别对同一已知量进行测量,将对已知量两次测得的平均值与被测量的测得值进行比较,便可得到消除线性系统误差的测量结果。 (5)半周期偶数测量法:对于周期性的系统误差,可以采用半周期偶数观察法,即每经过半个周期进行偶数次观察的方法来消除。 (6)组合测量法:由于按复杂规律变化的系统误差,不易分析,采用组合测量法可使系统误差以尽可能多的方式出现在测得值中,从而将系统误差变为随机误差处理。 补充: 1、可以对仪器进行调整和检定 2、对观测顺序进行设计,使系统误差可以全部或部分被抵消(比如:采用测回法观测水平角,可以消除2c误差影响;限制水准测量的视距差,可以减少i角误差的影响;多个测回的方向观测法中对起始读数进行改变,可以消除度盘刻度不均匀性和度盘偏心影响……) 3、让同一个人观测全部观测值,避免换人带来的观测习惯变化带来的系统误差。 4、观测三角高程时,对大气折光和地球曲率进行改正。 5、对电离层和对流层进行观测和建模,在观测值中进行改正,可以避免其带来的系统误差。

测量误差及数据处理的基本知识(精)

第一章测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就 是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N,相应的真值为N0,测量值与真值之差ΔN ΔN=N-N0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将

第三章 模型中误差项假定的诸问题

第三章 模型中误差项假定的诸问题 第一节 广义最小二乘法 前面的分析知道,多元线性回归的数学模型可以表示为: 12233t t t k kt t Y X X X ββββμ=+++???++ (t=1,2,3,…,n ) 其中t μ是随机误差项,它代表的是对于t Y 的变化,it X 不能解释的微小变动的全部。用矩阵表示,则上述回归模型可以表示为: Y X U β=+ 其中,123n Y Y Y Y Y ?? ? ? ?= ? ? ? ?? M ,123k βββββ?? ? ? ?= ? ? ???M ,2131122 32223111k k n n kn X X X X X X X X X X ????? ???? ? = ? ??????M M M M ,123n u u U u u ?? ? ? ?= ? ? ? ?? M 运用最小二乘准则,我们得到的参数的估计量为: ()1''?X X X Y β-= 对于随机误差项t μ,我们所做的假定有三个:零均值、同方差和非自相关。这三个假定的矩阵表述为:

()()()()()1230000 0n E u E u E U E u E u ???? ? ? ? ? ? ?=== ? ? ? ? ? ? ????? M M , ()()()()()()()()()()()11212122122222'2var cov ,cov ,cov ,var cov ,var cov ,cov ,var 10000 001000000 001000 n n n n n u u u u n u u u u u u u u u u u U u u u u u I E UU σσσσσ????? ???? ?= ? ? ?????? ???? ? ? ? ? ==== ? ? ? ? ??? ? ?M M M M M M M M M M M 在上述假定条件下,我们得出的参数估计值具有最优线性无偏估计特性。 现实情况的偏离: 1、随机扰动项均值不为零时,通过将随机扰动项与常数项结合,不会对估计产生影响。 2、同方差和非自相关假设不满足时,会对最小二乘估计产生重要影响。 因此,不满足假定条件的分析可以归结为同方差和非自相关的偏离。用矩阵来表示为: ()' 2u E UU σ=Ω ,其中,Ω为 n 阶正定矩阵。

基于ARMA模型的上证指数预测的实证分析报告

基于ARMA模型的上证指数预测的实证报告

————————————————————————————————作者:————————————————————————————————日期:

基于ARMA模型的上证指数预测的实证报告 引言 生活中有很多问题都可以看成是时间序列问题,例如银行利率波动、股票收益率变化以及国际汇率变动等问题。所谓的时间序列问题,是指某一统计对象长时间内的数值变化情况。在实际应用中,经常会遇到许多不满足平稳性的时间序列数据,尤其是在经济、金融等领域。因此,能否有效地挖掘非平稳时间序列的有用信息,对于解决一些经济、金融领域的问题显得尤为重要。目前关于预测股票价格的研究文章有很多,这些已有研究大都采用回归分析、组合预测等方法对股票价格未来变动值进行探讨,得出股票价格在未来短期内的变化趋势及预测值,但预测结果并不非常精准,存在较大的误差。模型不仅可用于拟合平稳性时间序列问题,而且对非平稳时间序列问题同样具有良好的拟合效果,尤其是在金融和股票领域应用最为广泛。 本文主要针对 2016-04-18 至 2017-03-15 (共计222个工作日) 期间上证综合指数每日收盘价数据,建立上证综合指数每日收盘价预测模型,采用 模型对上证综合指数每日收盘价进行高精度的拟合预测。研究结果表明,上证综合指数每日收盘价在短期内将保持平稳上涨,不会有大幅涨跌的情况。研究上证综合指数每日收盘价的短期变动情况了解股票市场变化及制定投资决策具有现实意义,能够为投资者和决策者提供可靠的信息服务及决策指导。 1 模型的理论介绍及平稳性检验 1.1模型建模流程 1)时间序列的预处理,用模型预测要求序列必须是平稳的,若所给的序列是非平稳序列,则必须对所给序列做预处理,使其为平稳非白噪声序列。 2)计算出样本自相关系数和偏自相关系数的值。

测量误差及数据处理的基本知识

第一章 测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差 在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N ,相应的真值为N 0,测量值与真值之差ΔN ΔN =N -N 0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将影响降低到最低程度,并对测量结果中未能消除的误差做出估计,是实验测量中不可缺少的一项重要工作。 相对误差 绝对误差与真值之比的百分数叫做相对误差。用E表示: %1000 ??=N N E 由于真值无法知道,所以计算相对误差时常用N代替0N 。在这种情况下,N可能是公认 值,或高一级精密仪器的测量值,或测量值的平均值。相对误差用来表示测量的相对精确度,相对误差用百分数表示,保留两位有效数字。 1.1.3 误差的分类

减小测量误差的方法总结

减小测量误差的方法总结 摘要:本文通过知识回顾法、查阅资料法、总结法,介绍了测量误差的基本概念和来源,从不同角度归纳出误差的分类,并从如何弥补仪器缺陷、减小系统误差和随机误差方面做详细介绍。 关键词:测量误差误差来源减小误差 一、测量误差的概念和来源 (一)测量误差的概念 在测量时,测量结果与实际值之间的差值叫误差。真实值是客观存在的,是在一定时间下体现事物的真实数据。测量值是测量所得的结果。这两者之间总是或多或少的存在一定的差异,就是测量误差。 (二)测量误差的主要来源 1.外界条件 外界的温度、湿度、大气折射等对观测结果都会产生影响。 2.仪器条件 仪器制造产生的精度缺陷。 3.观测者自身条件 每个人都有自己的鉴别能力,一定的分辨率和技术条件,在仪器安置、照准、读数等方面可能会产生误差。 二、测量误差的分类及简单介绍 (一)按表示方法 1.绝对误差:是示值与被测量真值之间的差值。 ,器具的示值为x,则绝对误差Δx为: 设被测量的真值为A (1) Δx=x-A ,在实际应用中,常用精度高一级的标准器具的示值A代由于一般无法求得真值A 替之。X与A之差常称为器具的示值误差。记为: Δx=x-A (2)通常以此值代表绝对误差。 绝对误差一般适用于标准器具的校准。 2.相对误差:是相对误差Δx与被测量的约定值之比,它较绝对误差更能确切地说明测量精度。 3.容许误差:是根据技术条件的要求,规定某一类器具误差不应超过的最大范围。

(二)按误差出现的规律分类 1.系统误差 其变化规律服从某种已知函数。系统误差主要由以下几个方面引起:材料、零部件及工艺缺陷;环境温度、湿度、压力的变化以及其他外界干扰等。 系统误差表明了一个测量结果偏离真值或实际值的程度。系统误差越小,测量就越正确。 2.随机误差 又称偶然误差,其变化规律未知。随机误差是由很多复杂因素的微小变化的总和所引起的,具有随机变量的一切特点,在一点条件下服从统计规律。因此,通过多次测量后,对其总和可以用统计规律来描述,则可从理论上估计对测量结果的影响。 随机误差表现了测量结果的分散性。在误差理论中,常用精密度一词来表征随机误差的大小。随机误差越小,精密度越高。 3.粗大误差 是指在一定条件下测量结果显著地偏离其实际值所对应的误差。在测量及数据处理中,如发现某次测量结果所对应的误差特别大或小时,应认真判断误差是否属于粗大误差,如是,该值应舍去不用。 三、测量误差的减小 下面将从测量误差的三个主要来源:仪器条件、外界条件、观测者自身条件,进行分析如何减小测量误差。 (一)弥补仪器缺陷 由于仪器本身的缺陷带来测量误差,如零点偏离,为了减小测量误差,首先就得考虑弥补仪器的缺陷。可以由以下的方法: 1.替代法 替代法是指在测量装置上对某一带测量进行测量后,立即将带测量与标准量进行交换,再次进行测量,利用函数关系,从而得出测量的值。即在测量装置上对某一带测量进行测量后,再次进行测量,并调到同样的情况,从而得出带测量等于标准量。例如,用电桥测量电阻时,调平衡后,把被测电阻用可变标准电阻替换,调标准电阻值使电桥再次达到平衡,则标准电阻的示值即为被测电阻的阻值。这样可消除用此电桥自身可能存在的误差。 2.对称观测法

第六章 动态回归与误差修正模型

第6章 动态回归与误差修正模型 本章假定时间序列是平稳的。 6.1 均衡与误差修正机制 1 均衡 均衡指一种状态,达到均衡时将不存在破坏均衡的内在机制。这里只考虑平稳的均衡状态,即当系统受到干扰后会偏离均衡点,而内在均衡机制将努力使系统重新回到均衡状态。 下面通过一个例子说明系统均衡概念。以两个地区某种商品的价格为例,假设地区A 中该商品物价由于某种原因上升时,该商品就会通过批发商从价格低的B地区向价格高的A 地区流动。从而使批发商从中获利。这种活动将直接导致该商品在B地区的需求增加,从而使该商品在B地区的价格上涨。从A地区看,由于增加了该商品的供给,则导致价格下降,反之依然,从而使两各地区的该商品价格趋同。 若称价格A = 价格B的直线表示均衡价格。如上所述,当价格离开这条均衡价格直线后,市场机制这只无形之“手”就会把偏离均衡点的状态重新拉回到均衡状态。随着时间推移,无论价格怎样变化,两个地区的价格都具有向均衡价格调整的趋势。 若两个变量x t , y t永远处于均衡状态,则偏差为零。然而由于各种因素的影响,x t , y t并不是永远处于均衡位置上,从而使u t≠ 0,称u t为非均衡误差。当系统偏离均衡点时,平均来说,系统将在下一期移向均衡点。这是一个动态均衡过程。t期非均衡误差u t是y t下一期取值的重要解释变量。当u t > 0时,说明y t相对于x t取值高出均衡位置。平均来说,变量y t 在t+1期的取值y t+1将有所回落。所以,u t= f (y t , x t) 具有一种误差修正机制。 6.2 分布滞后模型 如果回归模型中不仅包括解释变量的本期值,而且包括解释变量的滞后(过去)值,则这种回归模型称为分布滞后模型。例 y t = α0 + ∑ =? n i i t i x β+ u t,u t~ IID (0, σ2 ) (6.1)

相关文档
最新文档