小学四年级奥数讲义之数学趣题
趣味奥数题四年级

趣味奥数题四年级在学习数学的过程中,我们经常会遇到一些有趣的奥数题,这些题目不仅能够锻炼我们的逻辑思维能力,还能够增加我们对数学的兴趣。
下面就来看几个趣味奥数题,希望能够给大家带来乐趣和挑战。
题目一:猜数字游戏小明和小红玩猜数字游戏。
小明想一个三位数,其中百位、十位和个位分别是1、2、3,小红可以猜三次,每次猜一个三位数。
小红每次猜完后,小明会告诉她猜对了几个数字的位置正确,但数字不正确,或者数字正确但位置不正确。
请问,小红最少需要猜几次才能猜到小明想的数字?解析:小红的第一次猜测可以是312,这样她就能够确定百位数字是1。
然后,她可以根据这个信息来猜测十位数字,比如第二次猜测412,这样她就能够确定十位数字是2。
最后,她只需要在个位数字上进行尝试,最多只需要猜测10次,即可找到正确的数字。
所以,小红最少需要猜4次才能猜到小明想的数字。
题目二:数字排列有三个数字:3、4、5。
请问这三个数字能够组成多少个互不相同且不重复的三位数?解析:首先,我们可以确定百位数字有3、4、5三种可能;然后,十位数字可以从剩下的两个数字中选择,有2种可能;最后,个位数字可以从剩下的一个数字中选择,只有1种可能。
所以,总共有3×2×1=6种可能。
题目三:数字之和小明写下了所有的两位数,然后把这些数字的十位数字和个位数字相加,得到一个和。
请问,这个和是多少?解析:所有的两位数共有90个(10~99),其中十位数字和个位数字的和是1+2+3+...+9=45。
所以,这个和是45。
题目四:数字序列请写出下面数字序列的规律,并填上相应的数字:。
四年级数学有趣经典的奥数题及答案解析

四年级数学有趣经典的奥数题及答案解析【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
四年级奥数题:统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
【分析】:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。
四年级下册数学试题 - 奥数趣味40题 | 通用版(含答案)

小学奥数趣味40题一、小学奥数趣味40题1.5只鸡,5天生了5个蛋。
100天内要100个蛋,需要多少只鸡?2.3个人3天用3桶水,9个人9天用几桶水?3.三个孩子吃三个饼要用3分钟,九十个孩子九十个饼要用多少时间?4.怎样使用最简单的方法使X+I=IX等式成立?5.买一双高级女皮鞋要214元5角6分钱,请问买一只要多少钱?6.有三个小朋友在猜拳,,一个出剪刀,一个出石头,一个出布,请问三个人共有几根指头?7.浪费掉人的一生的三分之一时间的会是什么东西?8.一把11厘米长的尺子,可否只刻3个整数刻度,即可用于量出1到11厘米之间的任何整数厘米长的物品长度?如果可以,问应刻哪几个刻度?9.考试做判断题,小花掷骰子决定答案,但题目有20题,为什么他却扔了40次?10.一个挂钟敲六下要30秒,敲12下要几秒?11.什么时候4-3=5?12.王大婶有三个儿子,这三个儿子又各有一个姐姐和妹妹,请问王大婶共有几个孩子?13.塑料袋里有六个橘子,如何均分给三个小孩,而塑料袋里仍有二个橘子?(不可以分开橘子)14.8个数字“8”,如何使它等于1000?15.什么时候,四减一等于五?16.有一个年轻人,他要过一条河去办事;但是,这条河没有船也没有桥。
于是他便在上午游泳过河,只一个小时的时间他便游到了对岸,当天下午,河水的宽度以及流速都没有变,更重要的是他的游泳速度也没有变,可是他竟用了两个半小时才游到河对岸.17.一口井7米深,有只蜗牛从井底往上爬,白天爬3米,晚上往下坠2米。
问蜗牛几天能从井里爬出来?18.小白买了一盒蛟香,平均一卷蛟香可点燃半个小时。
若他想以此测量45分钟时间,他该如何计算?19.三张分别写有2,1,6的卡片,能否排成一个可以被43除尽的整数?20.篮子里的7个莱果掉了4个在桌子上,还有一个不知掉到哪去了,飞飞把桌子上的莱果拾进篮子里,又吃了一个,请问篮子里还剩下几个苹果?21.一个篮子里装着五个苹果,要分给五个人,要求每人分的一样多,最后篮子里还要剩下一个苹果,如何分(不能切开苹果)22.一斤白菜5角钱,一斤萝卜6角钱,那一斤排骨多少钱?23.在路上,它翻了一个跟斗,接着又翻了一次(猜4字成语)?24.有一位刻字先生,他挂出来的价格表是这样写的刻“隶书”4角;刻“仿宋体”6角,刻“你的名章”8角;刻“你爱人的名章”1.2元.那么他刻字的单价是多少?25.将100颗绿豆和100颗黄豆混在一起又一分为二,需要几次才能使A堆中黄豆和B堆中的绿豆相等呢?26.每隔1分钟放1炮,10分钟共放多少炮?27.烟鬼甲每天抽50支烟,烟鬼乙每天抽10支烟。
四年级数学思维训练-奥数趣题-和差倍问题

和差倍问题三
教师:巨人龙老师
课前热身
第5组4个小朋友在交作业时少交了一人的 作业本,老师分别问了他们四人:
甲说:“没交作业的人在乙、丙、丁三 人之中”
乙说:“是丙没有交” 丙说:“在甲和丁中有1个人没交作业” 丁说:“乙说的是真的” 经过证实,四人中有两人说对了,两人 说错了,你知道是谁没有交作业吗?
练习1
龙龙和齐齐各有一些糖果,开始时龙龙的糖果数是齐齐的2倍,两 个人各吃掉3块糖后,一共剩下12块糖果,请问:此时齐齐还剩 下多少块糖果?
例题2
李师傅某天生产一批零件,他把它们分成甲、乙两堆,如果从甲堆中拿出15个放到乙堆中,则两堆零 件个数相等;如果从乙堆拿出15个放在甲堆中,则甲堆零件个数是乙堆的3倍。问:甲堆原来有零件 多少个?李师傅这一天共生产了零件多少个?
和倍与差倍
和倍问题: 青青草原上狼和羊的数量总和是30只,羊的数量是狼的5倍,请问狼和羊各几只?
和倍与差倍
差倍问题: 水果店新买来了一些苹果和香蕉,苹果比香蕉多20箱,苹果是香蕉的5倍,那么苹果和香蕉各有多少箱子?
例题1
有长、短两根竹竿,长竹竿的长度是短竹竿长度的3倍,将它们插入水塘中,插入 水中的长度都是40厘米,而露出水面的部分总长为160厘米,请问:短竹竿露在外 面的长度是多少厘米?
练习5
李老师去买课桌椅,他带的钱只买桌子恰好可以买40 张,只买椅子恰好可以买60把,那么用同样的钱可以 买多少套课桌椅?(一套课桌椅是指一张桌子和一把 椅子)
思考题
Hale Waihona Puke 有甲、乙、丙三个奥运会志愿小组,如果从甲组调去乙组12人,那么两 组人数一样;如果从乙调去丙组5人,那么乙组还比丙组多5人,已知甲 组人数是丙组的4倍,则甲组有多少人?乙组有多少人?
小学奥数教程之-中国剩余定理 及余数性质拓展 (含答案)

1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用 一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
【精品奥数】四年级上册数学思维训练讲义-第十二讲 速算与巧算(一) 人教版(含答案)

第十二讲速算与巧算(一)第一部分:趣味数学蜗牛爬啊爬一只蜗牛不小心掉进了一只枯井里,它趴在井底上哭起来,一只癞蛤蟆过来,翁声翁气的对蜗牛说:“别哭了,小兄弟,哭也没用,这井壁又高又滑,掉到这里只能在这里生活了。
我已经在这里生活了许多年了。
”蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀!我决不能像它那样生活在又黑又冷的井底里。
”蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬出去,请问这口井有多深?”“哈哈哈……,真是笑话,这井有10米深,你小小年纪。
又背负着这么重的壳,怎么能爬出去呢?”“我不怕苦不怕累,每天爬一段,总能爬出去!”第二天,蜗牛吃得饱饱的,开始顺着井壁往上爬了,它不停的爬呀爬,到了傍晚,终于爬了5米,蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就可以爬出去了。
”想着想着不知不觉睡着了,早上,蜗牛被一阵呼噜声吵醒了,一看,原来是癞大叔还以睡觉,他心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后,从井壁上滑下来4米,蜗牛叹了一口气,咬咬牙,又开始往上爬,到傍晚又往上爬了5米,可晚上,蜗牛又滑下来4米,就这样,爬呀爬,滑呀滑,最后坚强的蜗牛终于爬上了井台。
聪明的小朋友你能猜出来蜗牛用了多少天才爬上井台的吗?第二部分:奥数小练速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。
这一周我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。
在巧算方法里,蕴含着一种重要的解决问题的策略。
转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。
【例题1】计算9+99+999+9999【思路导航】这四个加数分别接近10、100、1000、10000。
在计算这类题目时,常使用减整法,例如将99转化为100-1。
这是小学数学计算中常用的一种技巧。
四年级奥数题及答案-趣味数学题

六年级奥数题及答案-工程问题5
这是道很有意思的数学题既可以让同学们学到知识又可以感受到学习的乐趣下面我们开始吧
四年级奥数题及答案-趣味数学题
四年级奥数题及答案:趣味数学题。这是道很有意思的数学题,既可以让同学们学到知识,又可以感受到学习的乐趣,下面我们开始吧!
我学数学乐×我学数学乐=数数数学数数学学数学
在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字。如果“乐”代表9,那么“我数学”代表的三位数是多少?
【答案】学=1,我=8,数=6 ,81619*81619=6661661161
小学教育,5068小学教育推荐:
五年级奥数题及答案-纸盒
六年级奥数题及答案-平路的速度
五年级奥数题及答案-行程问题
六年级奥数题及答案-象棋Βιβλιοθήκη 目四年级奥数题及答案-个位数字
四年级奥数题及答案-四位数
2014年四年级语文上册期末试卷新人教版在线看
(完整word版)小学四年级奥数之有趣的数字问题

小学四年级奥数之有趣的数字问题班级:姓名:评价:例1、用数字0、5、8、9可以组成多少个没有重复数字的四位数?用1、2、3、4呢?例2、用6、7、8、9这个四个数字可以组成许多个四位数,将它们从小到大依次排列起来,那么9786是排在第几个的数字?例3、求1,2,3,4,……,1998,1999这些自然数的所有数字之和。
例4、有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,如246、156、12358等等,这类数中最大的一个数是多少?例5、有一个两位数,十位上的数字是个位上数字的3倍。
如果把这个数减去7,所得的数的个位上的数字与十位上的数字相同。
求这人个两位数。
例6、一个两位数,十位上的数字比个位上的数字少2,如果把这个两位数的个位上的数字与十位上的数字对调,所得的新两位数与原来的两位数之和是154。
求原来的两位数是多少?例7、把数字4写在一个两位数的左边,所得到的三位数刚好是原两位数的9倍,求原来的两位数是多少?例8、一个两位数,在它的后面写上2,所成的三位数比原两位数多785,问:原来的两位数是多少?小学四年级奥数之还原问题例1、小明问爸爸今年多大年纪,爸爸说:“把我的年纪加上9,除以4,减去2,再乘3,恰好是30岁。
”你知道爸爸今年多少岁吗?例2、小敏问爷爷今年多少岁。
爷爷笑着说:“把我的年龄减去6以后,缩小5倍,再加上10之后,扩大4倍,正好是100岁。
”你算算小敏爷爷今年多少岁?例3、小马虎在做一道整数减法时,把减数个位上的1看成了7,把减数十位上的7看成了1,结果得出的差是444。
正确的差应该是多少?例4、两个数的和是128,一位学生在计算时将其中一个加数个位上的0漏掉了,结果算出的和是56,这两个加数各是多少?例5、有一个卖桃子的人,拿了一篮桃子到各家销售。
到第一家,先尝一个,然后买去所余下的一半;到第二家,又是先尝一个,再买去所余下的一半;到第三家,还是先尝一个,买去所余下的一半。
20XX四年级数学竞赛奥数讲义例题图文百度文库

20XX四年级数学竞赛奥数讲义例题图文百度文库一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.是三位数,若a是奇数,且是3的倍数,则最小是.3.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是.4.有一个数学运算符号“⊙”,使下列算式成立:2⊙4=8,4⊙6=14,5⊙3=13,8⊙7=23.按此规定,9⊙3=.5.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.6.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b 最大是,a﹣b最小是,a﹣b最大是.7.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.8.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角.那么一杯饮料的原价是元.9.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.10.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.11.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.12.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.13.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.14.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.15.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有人.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.3.【分析】本题主要考察等差数列.解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,化简后是8x+27=6x+39∴x=6,【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.4.解:9⊙3=9×2+3=21;故答案为:21.5.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.6.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.7.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.8.【分析】把第一杯饮料的原价看作单位“1”,则第二杯饮料的价钱是第一杯的,由题意可知:第一杯饮料价钱的(1+)是13.5元,根据已知一个数的几分之几是多少,求这个数,用除法解答.解:13.5÷(1+),=13.5÷1.5,=9(元);答:一杯饮料的原价是9元;故答案为:9.【点评】解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.9.解:设中间的圆圈中的数是A;根据题意可得:1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,66+4A=90,4A=24,A=6;那么每条线段剩下的两个数的和是:18﹣6=12;又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;分别放到每条线段剩下的两个圆圈中;由以上可得:.10.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.11.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.12.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.13.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.14.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.15.解:(32﹣11)÷(11﹣8)+1=21÷3+1=8(人)答:教室里一共有 8人.故答案为:8.。
小学四年级数学竞赛奥数讲义例题

小学四年级数学竞赛奥数讲义例题一、拓展提优试题1.三个连续自然数的乘积是120,它们的和是.2.有一个数学运算符号“⊙”,使下列算式成立:2⊙4=8,4⊙6=14,5⊙3=13,8⊙7=23.按此规定,9⊙3=.3.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.4.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角.那么一杯饮料的原价是元.5.在□中填上适当的数,使竖式成立.6.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.7.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.8.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.9.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人名.10.买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是元角.11.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.12.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.13.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果个.14.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有副.15.有一笔钱,用来给四(1)班的学生每人买一个笔记本,若每本3元,则可多买6本;若每本5元,则差30元.若用完这笔钱,恰好给每人买一个笔记本,则共买笔记本24个,其中3元的笔记本个.【参考答案】一、拓展提优试题1.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.2.解:9⊙3=9×2+3=21;故答案为:21.3.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.4.【分析】把第一杯饮料的原价看作单位“1”,则第二杯饮料的价钱是第一杯的,由题意可知:第一杯饮料价钱的(1+)是13.5元,根据已知一个数的几分之几是多少,求这个数,用除法解答.解:13.5÷(1+),=13.5÷1.5,=9(元);答:一杯饮料的原价是9元;故答案为:9.【点评】解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.5.解:根据题干分析可得:6.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.7.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.8.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.9.解:504÷8÷(108÷3÷4)﹣4,=504÷8÷9﹣4,=63÷9﹣4,=7﹣4,=3(名),答:需增加3名,故应填:3.10.【分析】先根据买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,求出西红柿买需要的钱数,再根据单价=总价÷数量即可解答.解:11元8角=11.8元,1元4角=1.4元(11.8+1.4)÷4=13.2÷4=3.3(元);3.3元=3元3角;答:每斤西红柿的价格是3元3角.故答案为:3,3.【点评】本题主要考查学生依据单价,数量以及总价之间数量关系解决问题的能力.11.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.12.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.13.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.解:根据题意可知,原来甲筐比丙筐少(12+24)=36个苹果,且原来丙筐是甲筐个数的2倍,则原来甲筐有:36÷(2﹣1)=36个,原来丙筐有:36×2=72个,原来乙筐有:72+(6+12)=90(个)答:乙筐内原有苹果 90个.故答案为:90.【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.14.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.解:假设全是围棋,则象棋就有:(24×14﹣300)÷(24﹣18)=36÷6=6(副);答:其中象棋有6副.故答案为:6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.15.【分析】若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,进而可得结论.解:由题意得若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,若钱用完刚好买24本,则3元的笔记本有(24×5﹣90)÷(5﹣3)=15个,故答案为24,15.【点评】本题考查分配盈亏问题,考查学生的计算能力,属于中档题.。
小学奥数趣题(四年级)解析(购书问题)

三人原来打算买三本同样的书,差(a+b+c)
元;现在合买,刚好买两本差d元 。
(a+b+c-d)÷(3-2)=(a+b+c-d)元,
a+b+c-d-a=(b+c-d)元,a+b+c-d-b=(a+c-d)元 a+b+c-d-c=(a+b-d)元。
答:张三有(b+c-d)元、李四有(a+c-d)元、 刘二有(a+b-d)元。
小学数学奥数趣题(四年级)解析
国家奥林匹克教练员卫新潮
题一:小明、小华买同一本书。小明单 独买差3元,小华单独买差5元。两人合 买一本,钱刚够。问:小明、小华的钱 各是多少?
解析:
两人原来打算买两本同样的书,差8 元;现在合买,刚好买一本,说明差一 本书的钱。
(5+3)÷(2-1)=8元,
8-3=5元,8-5=3元。
答:小明有5元、小华有3元。
题二:小明、小华买同一本书。小明单独买差 3元,小华单独买差5元。两人合买一本,钱多 2元。问:小明、小华的钱各多少?
解析:
两人原来打算买两本同样的书,差8元;现 在合买,刚好买一本多2元,说明一本书的钱 是10元。
(3+5+2)÷(2-1)=10元,
6-3=3元,6-5=1元。
答:小明有3元、小华有1元。
题四:张三、李四、刘二买同一本书。张 三单独买差6元,李四单独买差8元,刘二 单独买差10元。三人合买一本,钱刚够。 问:张三、李四、刘二的钱各多少?
解析:
三人原来打算买两本同样的书,差24 元;现在合买,刚好买一本 ,说明差两本 书的钱。
三四年级奥数 鸡兔同笼问题 简单版讲义

一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有个头;从下面数,有只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由只变成了只;如果笼子里有一只兔子,则脚的总数就比头的总数多.因此,脚的总只数与总头数的差,就是兔子的只数,即(只).显然,鸡的只数就是(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:(1) 如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数(2) 如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,3594944714735473512-=351223-=知识结构基本的鸡兔同笼A行程,方程等专题中也都会接触到假设法【例 1】 动物园里有一群鸵鸟和大象,它们共有只眼睛和只脚,问:鸵鸟和大象各有多少?【巩固】 鸡和兔共56只眼睛和92只脚,问:鸡和兔各有几只?【例 2】 动物园里养了一些梅花鹿和鸵鸟,共有脚只,鸵鸟比梅花鹿多只,梅花鹿和鸵鸟各有多少只?【巩固】 一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【例 3】 鸡兔同笼,鸡、兔共有只,兔的脚数比鸡的脚数多只,问鸡、兔各多少只?36522082010756例题精讲【巩固】 鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【例 4】 鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只 ?【巩固】 鸡、兔共有27只,鸡的脚比兔的脚少18只。
四年级数学竞赛奥数讲义-例题一图文百度文库

四年级数学竞赛奥数讲义-例题一图文百度文库一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.3.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.4.甲乙两所学校共有学生864人.新学期开学前,由甲校调入乙校32人,这时甲校还比乙校多48人.原来甲校有个学生.5.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?6.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.7.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.8.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.9.如图是长方形,将它分成7部分,至少要画条直线.10.甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有幅.11.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.12.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果个.13.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.14.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.15.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).3.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.4.解:甲校比乙校多的人数:32×2+48=112人,甲校的人数:(864+112)÷2,=976÷2,=488(人).答:原来甲校有488人.故答案为:488.5.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.6.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.7.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.8.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.9.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.10.【分析】41幅不是甲校的,就是乙校和丙校的,38幅不是乙校的,就是甲校和丙校,其中丙校的数量同时包含在41与38中,所以41+38=79(幅)是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,得出丙校的2倍,再除以2就是丙校参展的画的数量.解:(41+38﹣43)÷2=(79﹣43)÷2=36÷2=18(幅)答:丙校参展的画有 18幅.故答案为:18.【点评】解决本题的关键是明确其丙校的数量同时包含在41与38中,所以,41与38的和是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,再除以2就是丙校参展的画的数量.11.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.12.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.解:根据题意可知,原来甲筐比丙筐少(12+24)=36个苹果,且原来丙筐是甲筐个数的2倍,则原来甲筐有:36÷(2﹣1)=36个,原来丙筐有:36×2=72个,原来乙筐有:72+(6+12)=90(个)答:乙筐内原有苹果 90个.故答案为:90.【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.13.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.14.解:最大正方形的边长是11厘米,次大正方形的边长:19﹣11=8(厘米)最小正方形的边长是:11﹣8=3(厘米)阴影长方形的长是3厘米,宽是8﹣3﹣3=2(厘米)3×2=6(平方厘米)答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.故答案为:6.15.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.。
四年级数学思维训练-奥数趣题--加法原理与乘法原理

Байду номын сангаас习5
篮球比赛中,每方场上有5名队员,对应5个不同的位置,如果姚明一定要做中锋, 其他四人可以任意分配,共有多少种不同的站位方式?
思考题
阿奇去吃西餐,餐厅里有米饭和面条两种主食,烤羊排、烤牛排和烤鸡排3种主菜, 奶油蘑菇汤1种汤,以及蛋糕和布丁2种甜点。如果阿奇想要点1种主食和1种主菜,汤 和甜点可点可不点,而且种类不限。请问:阿奇一共有多少种点菜方式?
练习2
小悦选择了一家花店,这家店有3种颜色的康乃馨,2种颜色的满天星,小悦想买1 朵康乃馨和1朵满天星,有多少种不同的搭配方式?
例题3
冬冬的书包里有5本不同的语文书,6本不同的数 学书、3本不同的英语书。 (1)从中取出一本书,共有多少种不同的取法? (2)从中取出语文书、数学书、英语书各一本, 共有多少种不同的取法? (3)若从中取出两本不同种类的书,共有多少 种不同的取法?
感谢您的聆听
四年级奥数(1)
加法原理与乘法原理
课前热身
从前有三个和尚,一个讲真话,一个讲假话,另 一个有时讲真话,有时讲假话。一天,一位智者 遇到这三个和尚,他问第一个和尚:“你后面是 哪一个和尚?”和尚回答:“讲真话的”。他又问第 二位和尚:“你是哪一位?”得到的回答是:“有时 讲真话,有时讲假话”。他问第三位和尚:“你前 面是哪位和尚?”第三位和尚回答说:“讲假话的”。 根据他们的回答,智者很快分清了他们各自是哪 一位和尚,请你说出智者的答案。
练习3
一家餐馆,提供6种主食、20种菜肴,5种饮品。 (1)若主食、菜肴、饮品各取一种组成一份套 餐,共有多少种不同的套餐? (2)若要在三种食物里任选2种不同类别的食物, 共有多少种不同的选法?
例题4
运动会种有四种跑步项目,分别是50米、100米、 200米、400米。规定每个参赛者只能参加其中的 一项,某班的四名学生去报名这四个项目,那么: (1)如果这四个学生报的项目各不相同,共有 多少种不同的报名方式? (2)如果每名学生都可以任意报自己喜欢的一 个项目,那么一共有多少种不同的报名方式?
【经典】小学四年级数学竞赛奥数讲义例题一

【经典】小学四年级数学竞赛奥数讲义例题一一、拓展提优试题1.是三位数,若a是奇数,且是3的倍数,则最小是.2.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.3.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用秒.4.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.5.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.6.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.7.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…8.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是.9.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.10.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.11.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.12.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.13.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.14.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有副.15.(8分)有10张卡片,上面分别写着1,2,3,…,9,10.那么至少取出6张卡片,才能保证取出的卡片中,有两张卡片上的数字之和为11.【参考答案】一、拓展提优试题1.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.2.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.3.解:列车速度为:(285﹣245)÷(24﹣22)=40÷2,=20(米);列车车身长为:20×24﹣285=480﹣285,=195(米);列车与货车从相遇到离开需:(195+135)÷(20+10),=330÷30,=11(秒).答:列车与货车从相遇到离开需11秒.4.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.5.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.6.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.7.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.8.解:23×4+34×3﹣27×6,=92+102﹣162,=194﹣162,=32.答:第4个数是32.故答案为:32.9.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.10.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.11.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.12.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.13.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.14.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.解:假设全是围棋,则象棋就有:(24×14﹣300)÷(24﹣18)=36÷6=6(副);答:其中象棋有6副.故答案为:6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.15.解:10÷2=5(个)5+1=6(个)故填6。
三四年级奥数-鸡兔同笼问题-简单版讲义[推荐五篇]
![三四年级奥数-鸡兔同笼问题-简单版讲义[推荐五篇]](https://img.taocdn.com/s3/m/e57903df80c758f5f61fb7360b4c2e3f572725b0.png)
三四年级奥数-鸡兔同笼问题-简单版讲义[推荐五篇]第一篇:三四年级奥数-鸡兔同笼问题-简单版讲义基本的鸡兔同笼A知识结构一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:(1)如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法例题精讲【例 1】动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【巩固】鸡和兔共56只眼睛和92只脚,问:鸡和兔各有几只?【例2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【巩固】一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【例3】鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【巩固】鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【例4】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?【巩固】鸡、兔共有27只,鸡的脚比兔的脚少18只。
小学四年级奥数讲义之数学趣题

姓名班级1、小猫要吧15条鱼分成数量不相等的4堆,问最多的一堆中最多可放几条鱼?2、兔妈妈拿1盘萝卜共25个,分给4只小兔,要使每只小兔分得个数都不同。
问分得最多的一只小兔至多分得几个?3、把100个桃子分装在7个篮子里,要求每个篮子里装的桃子的只数都带有6字,想一想,该怎样分?4、把100 鸡蛋分装在6个盒里,要求每个盒里装的鸡蛋的只数目都带有6字,想想看,应该怎样分?5、有人认为8是个吉祥数字,他们得到的东西的数量都要含有数字“8”,现在200块糖要分给一些人,请你帮助设计一个吉祥的分糖方案.姓名班级1、21+22+23+24+……+502、32+34+36+38+40+423、203+207+211+215+2194、有一堆木材叠堆在一起,一共是20层,第一层有12根,第二层有13根,……下面每层比上层多一根,这堆木材共有多少根?5、有一串数,第1个数是10,以后每个数比前一个数大5,最后一个数是90,这串数连加的和是多少?6、993+994+995+996+997+998+9997、1000-81-19-82-18-83-17-84-16-85-15-86-14-87-13-88-12-89-11姓名班级1、试着计算下列各题,你发现了什么规律?(1)18⨯11= (2)38⨯11= (3)432⨯11=很快算出下面各题的结果。
47⨯11= 11⨯65= 11⨯96= 87⨯11=135⨯11= 603⨯11= 329⨯11= 872⨯11=2、你能迅速算出下面各题吗?(1)24⨯15= (2)248⨯15= (3)3456⨯15= 438⨯15= 284⨯15= 672⨯15=8762⨯15= 4956⨯15= 7948⨯15=3、下面的乘法计算有规律吗?(1)24⨯25= (2)21⨯25= (3)25⨯427= (4)25⨯1923= 32⨯25= 28⨯25= 81⨯25= 33⨯25=25⨯27= 407⨯25= 25⨯2562= 25⨯377= 4、试着计算下列各题,你发现了什么规律?(1)15⨯15= (2)25⨯25= (3)65⨯65= (4)95⨯95= 45⨯45= 75⨯75= 85⨯85= 125⨯125= 215⨯215= 425⨯425= 1025⨯1025= 3215⨯3215=姓名班级1、你有好办法算出下面各题的结果吗?(1)25⨯17⨯4 (2)8⨯18⨯125(3)8⨯25⨯4⨯125 (4)125⨯2⨯8⨯5想一想,怎样算比较简便?(1)5⨯25⨯2⨯4 (2)125⨯4⨯8⨯25 (3)2⨯125⨯8⨯5 2、你有好办法计算下面各题吗?(1)25⨯8 (2)16⨯125(3)16⨯25⨯25 (4)125⨯32⨯25你能很快算出它们的结果吗?(1)82⨯88 (2)51⨯59计算(1)72⨯78 (2)81⨯89(3)91⨯99 (4)61⨯693、简便运算(1)130÷5 (2)4200÷25 (3)34000130÷125 你能迅速算出结果吗?3270÷5 2340÷57200÷25 5600÷2578000÷125 43000÷125。
四年级下册数学讲义-奥数专题讲练:第八讲 数学游戏(例题解析版)全国通用

第八讲数学游戏我们在进行竞赛与竞争时,往往要认真分析情况,制定出好的方案,使自己获胜,这种方案就是对策.在小学数学竞赛中,常有与智力游戏相结合而提出的一些简单的对策问题,它所涉及的数学知识都比较简单.但这类题的解答对我们的智力将是一种很有益的锻炼.例1 甲、乙二人轮流报数,必须报不大于6的自然数,把两人报出的数依次加起来,谁报数后加起来的数是2000,谁就获胜.如果甲要取胜,是先报还是后报?报几?以后怎样报?分析采用倒推法(倒推法是解决这类问题一种常用的数学方法).由于每次报的数是1~6的自然数,2000-1=1999,2000-6=1994,甲要获胜,必须使乙最后一次报数加起来的和的范围是1994~1999,由于1994-1=1993(或1999-6=1993),因此,甲倒数第二次报数后加起来的和必须是1993.同样,由于1993-1=1992,1993-6=1987,所以要使乙倒数第二次报数后加起来的和的范围是1987~1992,甲倒数第三次报数后加起来的和必须是1986.同样,由于1986-1=1985,1986-6=1980,所以要使乙倒数第三次报数后加起来的和的范围是1980~1985,甲倒数第四次报数后加起来的和必须是1979,….把甲报完数后加起来必须得到的和从后往前进行排列:2000、1993、1986、1979、….观察这一数列,发现这是一等差数列,且公差d=7,这些数被7除都余5.因此这一数列的最后三项为:19、12、5.所以甲要获胜,必须先报,报5.因为12-5=7,所以以后乙报几,甲就报7减几,例如乙报3,甲就接着报4(=7-3).解:①甲要获胜必须先报,甲先报5;②以后,乙报几甲就接着报7减几.这样甲就能一定获胜.例2 有1994个球,甲乙两人用这些球进行取球比赛.比赛的规则是:甲乙轮流取球,每人每次取1个,2个或3个,取最后一个球的人为失败者.①甲先取,甲为了取胜,他应采取怎样的策略?②乙先拿了3个球,甲为了必胜,应当采取怎样的策略?分析为了叙述方便,把这1994个球编上号,分别为1~1994号.取球时先取序号小的球,后取序号大的球.还是采用倒推法.甲为了取胜,必须把1994号球留给对方,因此甲在最后一次取球时,必须使他自己取到球中序号最大的一个是1993(也许他取的球不止一个).为了保证能做到这一点,就必须使乙最后第二次所取的球的序号为1990(=1993-3)~1992(=1993-1).因此,甲在最后第二次取球时,必须使他自己所取的球中序号最大的一个是1989.为了保证能做到这一点,就必须使乙最后第三次所取球的序号为1986(=1989-3)~1988(=1989-1).因此,甲在最后第三次取球时,必须使他自己取球中序号最大的一个是1985,….把甲每次所取的球中的最大序号倒着排列起来:1993、1989、1985、….观察这一数列,发现这是一等差数列,公差d=4,且这些数被4除都余1.因此甲第一次取球时应取1号球.然后乙取a个球,因为a+(4-a)=4,所以为了确保甲从一个被4除余1的数到达下一个被4除余1的数,甲就应取4-a个球.这样就能保证甲必胜.由上面的分析知,甲为了获胜,必须取到那些序号为被4除余1的球.现在乙先拿了3个,甲就应拿5-3=2个球,以后乙取a个球,甲就取4-a个球.解:①甲为了获胜,甲应先取1个球,以后乙取a个球,甲就取4-a个球.②乙先拿了3个球,甲为了必胜,甲应拿2个球,以后乙取a个球,甲就取4-a个球.例3 甲、乙两人轮流往一张圆桌面上放同样大小的硬币,规定每人每次只能放一枚,硬币平放且不能有重叠部分,放好的硬币不再移动.谁放了最后一枚,使得对方再也找不到地方放下一枚硬币的时候就赢了.说明放第一枚硬币的甲百战百胜的策略.分析采用“对称”思想.设想圆桌面只有一枚硬币那么大,当然甲一定获胜.对于一般的较大的圆桌面,由于圆是中心对称的,甲可以先把硬币放在桌面中心,然后,乙在某个位置放一枚硬币,甲就在与之中心对称的位置放一枚硬币.按此方法,只要乙能找到位置放一枚硬币,根据圆的中心对称性,甲定能找到与这一位置中心对称的地方放上一枚硬币.由于圆桌面的面积是有限的,最后,乙找不到放硬币的地方,于是甲获胜.解:(略).例4 把一棋子放在如右图左下角格内,双方轮流移动棋子(只能向右、向上或向右上移),一次可向一个方向移动任意多格.谁把棋子走进顶格,夺取红旗,谁就获胜.问应如何取胜?分析采用倒推法.由于只能向右、向上或向右上移,要把棋子走进顶格,应让对方最后一次把棋子走到最右边一列的格中,为了保证能做到这一点,倒数第二次应让棋子走进右图中的A格中.(对方从A格出发,只能向右或向上移至最后一列的格中)所以要获胜,应先占据A格.同理可知,每次都占据A~E这五个格中的某一格的人一定获胜.解:为保证取胜,应先走.首先把棋子走进E格,然后,不管对方走至哪一格,(肯定不会走进A~D格),先走者可以选择适当的方法一步走进A~D格中的某一格.如此继续,直至对方把棋子走进最后一列的某个格中,此时先走者一步即可走进顶格,夺取红旗,从而获胜.例5 白纸上画了m×n的方格棋盘(m,n是自然数),甲、乙两人玩画格游戏,他们每人拿一枝笔,先画者任选一格,用笔在该格中心处画上一个点,后画者在与这个格相邻(有一条公共边的两个格叫相邻的格)的一个格的中心处也画上一个点,先画者再在与这个新画了点的格相邻的格的中心画上一个点,后画者接着在相邻的格中再任选一格画上一个点,…,如此反复画下去,谁无法画时谁失败.问:先画者还是后画者有必胜策略?他的必胜策略是什么?(注:已画过点的格子不准再画.)分析m,n是自然数,不定,不妨选几个小棋盘来试试,以便从中找出规律.1×1棋盘,先画者胜.1×2棋盘,后画者胜.2×2棋盘,后画者胜.2×3棋盘,后画者胜.后画者的策略如下:2×3棋盘,总可以事先分割成3个1×2的小棋盘.后画者采用“跟踪”的方法:先画者在某个1×2的小盘中某个格内画了点,后画者就在同一个1×2小盘中的另一格画点;先画者只得去寻找另外的1×2的小盘,后画者“跟踪”过去;直至先画者找不到新的1×2小盘,这时,先画者就失败.由2×3棋盘的分析过程知:m,n中至少有一个为偶数时,m×n棋盘总可以事先分成一些1×2或2×1的小棋盘,利用上面所说的“跟踪”法,后画者有必胜策略.若m,n都是奇数,先画者事先把m×n棋盘划分成一些1×2小棋盘后,还剩一个小格.这时,先画者可以先在这个剩下的小格中画点,之后,先画者用“跟踪”法,就归结为m、n至少有一个为偶数的情形,先画者有必胜策略.综上所述,当m、n中至少有一个为偶数时,后画者有必胜策略;当m、n都为奇数时,先画者有必胜策略.解:(略).例6 现有9根火柴,甲、乙两人轮流从中取1根、2根或3根,直到取完为止.最后数一数各人所得火柴总数,得数为偶数者胜.问先拿的人是否能取胜?应怎样安排策略?分析我们从最简单的情况开始进行考虑.由于9是奇数,它分成两个自然数的和时,必然一个是奇数,一个是偶数,所以两人中必然一胜一负.由于偶数分成两个自然数的和时,必然同奇或同偶,故无论如何取,都只能平局.因此我们只对火柴总数为奇数的情况加以讨论.1.如果有1根火柴,那么先取的人必败,后取的人必胜.2.如果有3根火柴,先取的人可以取2根,后取的人只能取1根,那么先取的人必胜,后取的人必败.3.如果有5根火柴,不妨设为甲先拿.甲先拿1根:①乙拿1根,还剩3根,甲取3根.甲的火柴总数为:1+3=4(根),乙的火柴总数为1根,因此甲胜.②乙拿2根,还剩2根,甲取1根,乙取1根.甲的火柴总数为:1+1=2(根),乙的火柴总数为:2+1=3(根),因此甲取胜.③乙拿3根,还剩1根,甲取1根.甲的火柴总数为:1+1=2(根),乙的火柴总数为3根,因此甲胜.因此,如果有5根火柴,先拿的人有必胜的策略.4.下面讨论7根火柴的情形.甲先取了3根:还剩4根,同前面3①~③分析可知甲必胜。
小学四年级“趣味数学”奥数竞赛试题(含答案)

小学四年级“趣味数学”奥数竞赛试题(含答案)姓名:分数:1.一个正方体的A点到B点,如果不绕远路,有多少种不同的走法?2.一只树蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米?3.10个小朋友玩关灯游戏,开始灯开着。
第一个小朋友按一下开关,第二个小朋友按两下,第三个小朋友按三下,依次按下去……请问最后灯是关着还是亮着?4.1只小狗和3只小兔子一样重;1只小兔子和3只小鸡一样重。
问:1只小狗和几只小鸡一样重?5.一只小鹿从起点向前跳了5个格,接着向后跳了4个格;然后又向前跳了6个格,再向后跳了10个格,最后停下。
这时XXX停在起点的前面还是后面?距起点几个格?6.两只小熊用一个大油瓶装有8千克油。
现在要将它分成两个4千克,但是没有秤和其他东西,只有一个能装5千克油的中等油瓶和一个能装1千克油的小油瓶。
你能帮帮小熊利用这三个油瓶将油分开吗?7.沸羊羊家的附近有一条路长63米。
为迎接春节,从头到尾都要插彩旗。
每7米插一面,一共要插彩旗多少面?8.XXX得到了一根长4米的巨大香肠,现在要把香肠切成1米长的小段,喜洋洋要切几次?9.小动物们排队做早操,第一排有1个小动物,然后每排每次增加2个小动物,一共排了8排,算一算一共有多少个小动物?10.贪吃的小熊口袋里只有25元钱,他跑到“味多美”餐厅大吃大喝了一顿,把钱全都花光了。
下面是快餐厅出售的食品,你知道小熊可能吃了些什么吗?(每种食物只能要一份)11.鲨鱼重3吨,大象体重是鲨鱼的2倍,鲸鱼体重是大象的10倍,鲸鱼比鲨鱼重多多少吨?12.小猴子早上吃2个桃子1个香蕉,中午吃2个香蕉1个桃子,晚上吃1个桃子1个香蕉,则一星期(7天)小猴子要吃多少个桃子?多少个香蕉?13.一只螃蟹有2只螯,8只脚,锅里煮了些螃蟹,最后发现有脚比螯多30只,问锅里有多少只脚,多少只螯?14.机器猫新制作了一个神奇的闹钟,这个闹钟每到整点的时候几时就响几下,而且半点的时候也会响一下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名班级
1、小猫要吧15条鱼分成数量不相等的4堆,问最多的一堆中最多
可放几条鱼?
2、兔妈妈拿1盘萝卜共25个,分给4只小兔,要使每只小兔分得
个数都不同。
问分得最多的一只小兔至多分得几个?
3、把100个桃子分装在7个篮子里,要求每个篮子里装的桃子的
只数都带有6字,想一想,该怎样分?
4、把100 鸡蛋分装在6个盒里,要求每个盒里装的鸡蛋的只数
目都带有6字,想想看,应该怎样分?
5、有人认为8是个吉祥数字,他们得到的东西的数量都要含有数字“8”,现在200块糖要分给一些人,请你帮助设计一个吉祥的分糖方案.
姓名班级
1、21+22+23+24+……+50
2、32+34+36+38+40+42
3、203+207+211+215+219
4、有一堆木材叠堆在一起,一共是20层,第一层有12根,第二层有13根,……下面每层比上层多一根,这堆木材共有多少根?
5、有一串数,第1个数是10,以后每个数比前一个数大5,最后一个数是90,这串数连加的和是多少?
6、993+994+995+996+997+998+999
7、1000-81-19-82-18-83-17-84-16-85-15-86-14-87-13
-88-12-89-11
姓名班级
1、试着计算下列各题,你发现了什么规律?
(1)18⨯11= (2)38⨯11= (3)432⨯11=
很快算出下面各题的结果。
47⨯11= 11⨯65= 11⨯96= 87⨯11=
135⨯11= 603⨯11= 329⨯11= 872⨯11=
2、你能迅速算出下面各题吗?
(1)24⨯15= (2)248⨯15= (3)3456⨯15= 438⨯15= 284⨯15= 672⨯15=
8762⨯15= 4956⨯15= 7948⨯15=
3、下面的乘法计算有规律吗?
(1)24⨯25= (2)21⨯25= (3)25⨯427= (4)25⨯1923= 32⨯25= 28⨯25= 81⨯25= 33⨯25=
25⨯27= 407⨯25= 25⨯2562= 25⨯377= 4、试着计算下列各题,你发现了什么规律?
(1)15⨯15= (2)25⨯25= (3)65⨯65= (4)95⨯95= 45⨯45= 75⨯75= 85⨯85= 125⨯125= 215⨯215= 425⨯425= 1025⨯1025= 3215⨯3215=
姓名班级
1、你有好办法算出下面各题的结果吗?
(1)25⨯17⨯4 (2)8⨯18⨯125
(3)8⨯25⨯4⨯125 (4)125⨯2⨯8⨯5
想一想,怎样算比较简便?
(1)5⨯25⨯2⨯4 (2)125⨯4⨯8⨯25 (3)2⨯125⨯8⨯5 2、你有好办法计算下面各题吗?
(1)25⨯8 (2)16⨯125
(3)16⨯25⨯25 (4)125⨯32⨯25
你能很快算出它们的结果吗?
(1)82⨯88 (2)51⨯59
计算
(1)72⨯78 (2)81⨯89
(3)91⨯99 (4)61⨯69
3、简便运算
(1)130÷5 (2)4200÷25 (3)34000130÷125 你能迅速算出结果吗?
3270÷5 2340÷5
7200÷25 5600÷25
78000÷125 43000÷125。