螺栓组受力分析与计算

合集下载

机械设计第05章螺栓

机械设计第05章螺栓

返回目录
前一页
后一页
退出
一、螺栓组连接的结构设计
目的:确定螺栓数目及布置形式。
要求:设计时综合考虑以下六个方面问题 1、连接接合面的几何形状通常都设计成轴对称的简单几何 形状,如圆形、环形、矩形、三角形等。便于对称布置螺栓, 使螺栓组的对称中心和连接接合面的形心重合,从而保证连接 接合面受力比较均匀。
为保证连接的需要,且又要防止螺纹超载而破坏,一般要
控制预紧力F0;螺栓拧紧后,预紧应力不得超过其材料的屈
服限σs的80%。
预紧力的限制
返回目录
前一页
后一页
退出
控制预紧力的方法: 利用控制拧紧力矩的方法来控制预紧力的大小。通常可采
用测力矩扳手或定力矩扳手,对于重要的螺栓连接,也可以 采用测定螺栓伸长的方法来控制预紧力。
返回目录
前一页
后一页
退出
二、螺纹主要参数 螺纹可分左旋和右旋。
1、大径d:公称直径。
32、、中小径径dd21::最d 2小 直12 (径d1,强d 2度) 算动用力。、运动、几何分析中用。
返回目录
前一页
后一页
退出
4、线数n:螺纹的螺旋线数目。n≤4。 n↑→效率↑→自锁性↓,n↓→自锁性越好。 因此,常用联接的螺纹要求自锁性,一般为单线。
前一页
后一页
退出
2)工作载荷为变载荷(螺栓的疲劳强度进行精确校核)
工作载荷在0~F变化时螺栓总拉力在F0~ F2
F0
Cb
Cb Cm
F
之间变化。
如果不考虑螺纹摩擦力矩的扭转作用
螺栓的最大拉应力为: max
F2
1 4
d12
螺栓的最小拉应力为: min

螺栓组受力分析与计算

螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接得设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面得工作能力5.校核螺栓所需得预紧力就是否合适确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。

1、螺栓组联接得结构设计螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。

为此,设计时应综合考虑以下几方面得问题:1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。

这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。

2)螺栓得布置应使各螺栓得受力合理。

对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。

当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。

如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。

接合面受弯矩或转矩时螺栓得布置3)螺栓排列应有合理得间距,边距。

布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。

扳手空间得尺寸(下图)可查阅有关标准。

对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。

扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。

4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。

同一螺栓组中螺栓得材料,直径与长度均应相同。

5)避免螺栓承受附加得弯曲载荷。

除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。

螺栓组受力分析与计算..

螺栓组受力分析与计算..
①拉伸强度条件为:
式中:Q—螺栓总拉力,N 。
其余符号意义同前。
螺栓总拉力的计算:
Q=Qp+[Cb/(Cb+Cm)]·F
式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐
的数据选取。
螺栓的相对刚度Cb/(Cb+Cm)
被联接钢板间所用垫片类别
Cb/(Cb+Cm)
金属垫片(或无垫片)
r1=r2=…=rz的关系以及螺栓联接的类型,分别代人式(5-25)或
(5-28)即可求得。
3).受轴向载荷的螺栓组联接
下图为一受轴向总载荷FΣ的汽缸盖螺栓组联接。FΣ的作用线与螺 栓轴线平行,并通过螺栓组的对称中心O。计算时,认为各螺栓平均受 载,则每个螺栓所受的轴向工作载荷为
图:受轴向载荷的螺栓组联接
螺栓组受力分析与计算
1. 螺栓组联接的设计
设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫 圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装 置等全面考虑后定出。
1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形 状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工 和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆 形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于 对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保 证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要 在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布 过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联 接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷 和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载 荷,以减小螺栓的预紧力及其结构尺寸。

螺栓组受力分析与计算(可编辑)

螺栓组受力分析与计算(可编辑)

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。

1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。

为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。

这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。

2)螺栓的布置应使各螺栓的受力合理。

对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。

当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。

如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。

接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。

布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。

扳手空间的尺寸(下图)可查阅有关标准。

对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。

扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。

4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。

同一螺栓组中螺栓的材料,直径和长度均应相同。

5)避免螺栓承受附加的弯曲载荷。

除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。

螺栓组受力分析与计算

螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。

1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。

为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。

这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。

2)螺栓的布置应使各螺栓的受力合理。

对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。

当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。

如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。

接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。

布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。

扳手空间的尺寸(下图)可查阅有关标准。

对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。

扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。

4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。

同一螺栓组中螺栓的材料,直径和长度均应相同。

5)避免螺栓承受附加的弯曲载荷。

除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。

螺栓组连接强度设计

螺栓组连接强度设计
F 2F 1F2.8F14.2 0 N67
用4.6级的Q235螺柱,拧紧时控制预紧力,取1.5 ,于是(P86表5-8、P87表5-10)
[] sS 24 1 .5 0 1M 6a 0P
由强度条件得:
d1 4 1 [ .3]F 2 5.21 164 00 .26 17.2 0m 72m
查手册,取M16 (其d1=13.835>计算值12.07)。
K sT
z
f ri
i1
ca 1 d .3 1 2 F 0 /4 或d 14 1 .3 F 0 d
2)铰制孔用螺栓连接
变形量越大,则所受工作剪力越大
Fi Fmax ri rmax
Fi
Fmax rmax
ri
ri rm ax Fmax
Fi
力矩T 平 F 1r1衡 F 2r2 : F zrz
即T : F rm ma a(x r x 12r2 2rz2)
受力最大力 螺F : m 栓 axL1 2 的 M L2 2 工 L m ax L 作 2 zM 拉 zL L m 2 i ax
受力最大螺栓 :F的 2F总 0C 拉 bC bC 力 mFmax i1
ca 1 d .3 1 2 F /2 4 或d 14 1 .3 F 2 d
校核接合面的强度计算: 底板受力分析 受翻转力矩前,接合面挤压应力分布图 F0
五、采用合理的制造工艺方法: 1)冷墩头部、滚压螺纹 2)氮化、氰化、喷丸等处理。
谢谢
F2 m
B1
F
C1
F2
F1
小结: 1.在实际工作中,螺栓所受的工作载荷往往是以上四中
简单形式的不同组合,但不论受力多复杂,都可以将 复杂状态简化成以上四中简单的受力状况,先分别求 螺栓的工作载荷,然后向量迭加,就可求出螺栓所受 的总工作载荷;

螺栓组的受力分析

螺栓组的受力分析

5)导程S——同一条螺旋线相邻两牙的轴向距离;
单线:S=t
d2
双线:S=2t
多线:S=nt
n——头数;
右旋

6)升角:螺旋线与水平线夹角;
S t

tg S d2
7)牙型角 牙型斜角
8)牙的工作高度h
S
d2
二、各种螺纹的特点、应用
自锁条件:升角<v(摩擦角); 牙型斜角越小越不容易加工。
b只受预紧力214dqp???31116dt???紧螺栓联接装配时螺母需要拧紧在拧紧力矩作用下螺栓除受预紧力qp的拉伸而产生拉伸应力外还受螺纹摩擦力矩t1的扭转而产生扭转剪应力使螺栓处于拉伸与扭转的复合应力状态下
第四章 螺纹零件
一、概述
1、作用
联接:起联接作用的螺纹; 传动:起传动作用的螺纹;
2、螺纹的形成 刀具——做直线运动; 工件——做旋转运动; 螺纹线:转动与直线运动;
rz
ks T
z
f ri
i 1
式中:f——结合面的摩擦系数;
ri——第i个螺栓的轴线到螺栓组 对称中心O的距离;
z——螺栓数目;
ks——防滑系数,同前。
机架 地基
T
r4 r1
rr32
Qpf
Qpf
松配
T
r4 r1
rr23
Qpf
Qpf
紧配
b)紧配 当采用紧配螺栓时,在转矩T的作用下,各螺栓受到剪切和挤压
习题: 一、选择题
第四章 螺纹零件
1、在常用的螺旋传动中,传动效率最高的螺纹是 4 。
(1)三角形螺纹;(2)梯形螺纹;(3)锯齿形螺纹;(4)矩 形螺纹;
2、在常用的螺纹联接中,自锁性最好的螺纹是 1 。

螺栓组联接中螺栓的受力和相对刚性系数

螺栓组联接中螺栓的受力和相对刚性系数

螺栓组联接中螺栓的受力和相对刚性系数————————————————————————————————作者:————————————————————————————————日期:螺栓组联接中螺栓的受力和相对刚性系数一、实验目的1.了解在受倾覆力矩时螺栓组联接中各螺栓的受力情况;2.了解螺栓相对刚度系数即被联接件间垫片材料对螺栓受力的影响;3.了解单个螺栓预紧力的大小对螺栓组中其它各螺栓受力的影响;3.根据实验结果计算出螺栓相对刚性系数,填入实验报告。

4.了解和部分掌握电阻应变片技术、计算机技术在力测量中的应用。

从而验证螺栓组联接受力分析理论和现代测量技术在机械设计中的应用。

二.实验要求:1.实验前预习实验指导书和教科书中有关本实验的相关内容;2.实验中按指导教师要求和实验指导书中实验步骤进行实验,注意观察实验中各螺栓载荷变化情况,并能用螺栓组联接受力分析理论解释其现象;3.根据实验结果计算出螺栓相对刚性系数,填入实验报告。

4.按指导教师要求完成指定思考题。

三、实验设备:1. 螺栓组实验台一台2. 计算机一台3.10通道A/D转换板(包括放大器)一块4.调零接线盒一个5. 25线联接电缆一条四、实验原理1. 机械部分:当将砝码加上后通过杠杆增力系统可作用在被联接件上一个力P,该力对被联接件上的作用效果可产生一个力矩,为平衡该力矩,已加上预紧力的螺栓组中各螺栓受力状况会发生变化,且受力情况会因垫片材料不同而不同;螺栓所处位置不同而不同。

测出各螺栓受力变化(如图11-2),即可检验螺栓组受力理论。

螺栓实验台(如图一)本体由①机座、②螺栓(10个)、③被联接件、④1 75的杠杆增力系统、⑤砝码(2—2kg,1—1kg)、⑥垫片六部分组成。

各螺栓的工作拉力F i可根据支架静力平衡条件和变形协调条件求出。

设在M(PL)作用下接触面仍保持为平面,且被联接件④在M作用下有绕O-O线翻转的趋势(如图11-3)。

为平衡该翻转力矩M,各螺栓将承受工作拉力F i;此时,O-O 线上侧的螺栓进一步受拉,螺栓拉力加大;O-O线下侧的螺栓则被放松,螺栓拉力减小。

螺栓组联接的受力分析

螺栓组联接的受力分析

圆形
圆环形
矩形
矩形框
三角形
§5—6 螺栓组联接的设计
2
2、对称布置螺栓,使螺栓组的对称中心和联接接合面的 、对称布置螺栓, 形心重合,从而保证联接接合面受力比较均匀。 形心重合,从而保证联接接合面受力比较均匀。 3、当螺栓组联接的载荷是弯矩或转矩时,应使螺栓的位 、当螺栓组联接的载荷是弯矩或转矩时, 置适当靠近联接接合面的边缘,以减少螺栓的受力。 置适当靠近联接接合面的边缘,以减少螺栓的受力。
5
F 铰制孔螺栓——每个螺栓所受工作剪力相等 F = Σ 铰制孔螺栓 每个螺栓所受工作剪力相等 z
普 通 螺 栓 ——预紧后接合面间所产生的最大摩 预紧后接合面间所产生的最大摩 擦力必须大于或等于横向载荷
fF zi ≥ KSFΣ 0
Ks为防滑系数
F∑
普通螺栓
F∑
铰制孔螺栓
F∑
F∑
6
练习: 练习:板A用4个普通螺钉固定在机座B上,已 个普通螺钉固定在机座B =0.15, 知板与机座间摩擦系数 f c =0.15,防滑系数 可靠性系数) =1.2, (可靠性系数) K s =1.2,螺钉许用 应 [σ ] = 60MPa ,按强度计算该螺钉联接中螺 钉所需的最小直径。 钉所需的最小直径。
§5—6 螺栓组联接的受力分析 2、受轴向载荷螺栓组联接 、 单个螺栓工作载荷为: F=P/Z P——轴向外载 Z——螺栓个数
P
7
8
练习:下图所示液压油缸盖选用6个M16螺栓,若已 练习:下图所示液压油缸盖选用6 M16螺栓, 螺栓 知其危险剖面直径d =14mm,螺栓材料许用拉应力 知其危险剖面直径dc=14mm,螺栓材料许用拉应力 ]=110MPa,油缸径 油缸径D=150 mm,油缸压力 [σ ]=110MPa,油缸径D=150 mm,油缸压力 )=0.8,进行下面的计 P=2MPa,F0=11000N,Cb/(Cb+Cm)=0.8,进行下面的计 算: 1.求螺栓的工作载荷与总拉力以及被联接件的残 1.求螺栓的工作载荷与总拉力以及被联接件的残 余预紧力; 余预紧力; 2.校核该螺栓强度是否足够 校核该螺栓强度是否足够? 2.校核该螺栓强度是否足够?

螺栓有效载荷计算公式

螺栓有效载荷计算公式

螺栓有效载荷计算公式
螺栓有效载荷是指螺栓所能承受的最大负荷或拉力。

它是设计和选择螺栓时必须考虑的关键参数之一。

螺栓的有效载荷计算公式如下:有效载荷 = 材料强度 × 断面积
其中,材料强度是指螺栓材料所能承受的最大拉力或压力。

不同材料的强度不同,常见的螺栓材料有碳钢、不锈钢等。

断面积是指螺栓截面的面积,可以通过螺栓直径和截面形状计算得出。

在计算螺栓的有效载荷时,需要根据具体的工程要求和使用环境来选择合适的材料强度和断面积。

一般情况下,设计师会根据工程的需求和安全系数来确定螺栓的有效载荷。

在实际应用中,螺栓的有效载荷还需要考虑其他因素,如预紧力、摩擦力等。

预紧力是指在安装螺栓时施加的初始拉力,它可以提高螺栓的抗震能力和抗疲劳性能。

摩擦力是指螺栓与连接件之间的摩擦力,它会影响螺栓的力学性能和工作稳定性。

螺栓的有效载荷计算是工程设计中的重要部分,它直接关系到结构的安全性和可靠性。

合理选择螺栓的材料强度和断面积,以及正确施加预紧力和控制摩擦力,可以确保螺栓在工作过程中不会发生断裂或松动,从而保证结构的正常运行。

在实际工程中,还需要考虑螺栓的使用寿命、环境条件、安装方式
等因素,以综合评估螺栓的有效载荷。

只有通过科学合理的计算和设计,才能选择到适合工程要求的螺栓,确保结构的安全性和可靠性。

机械设计-螺栓组受力分析计

机械设计-螺栓组受力分析计
每个螺栓受的轴向载荷为: 每个螺栓受的轴向载荷为:
F = Q / 4 = 16000 / 4 = 4000 N
解:由接合面的摩擦条件得: 由接合面的摩擦条件得:
f ⋅ F1 ⋅ Z ⋅ i ≥ K S ⋅ R ⇒ F1 ≥ K S ⋅ R 1.2 × 5000 = = 10000 N f ⋅ Z ⋅ i 0.15 × 4 × 1
σ=
4 ×1.3F2 ≤ [σ ] 2 πd1 4 × 1.3 × F2
⇒ d1 ≥
π [σ ]
4 ×1.3 ×14000 = = 8.51mm π × 320
悬挂的板材用两个普通螺栓与顶板联接。如果每个螺栓与被联接件刚度相等, 悬挂的板材用两个普通螺栓与顶板联接。如果每个螺栓与被联接件刚度相等, 即C1 = C2,每个螺栓的预紧力为 ,每个螺栓的预紧力为1000N,当轴承受载时要求轴承座与顶板接合面 , 间不出现间隙,则轴承上能承受的极限垂直径向载荷R是多少 是多少?。 间不出现间隙,则轴承上能承受的极限垂直径向载荷 是多少?。
σ=
4 × .1.3F2 ≤ [σ ] πd12 4 × 1.3F2
P
⇒ d1 ≥
π [σ ]
=
4 × 1.3 × 2500 = 7.69mm π × 70
螺栓的小径d1=8.376>7.69 ∵M10螺栓的小径 螺栓的小径 的螺栓。 ∴ 选M10的螺栓。 的螺栓
某容器内装有毒气体, 某容器内装有毒气体,P=1.5N/mm2,D=300mm,容器盖周围均布 个M20的 ,容器盖周围均布10个 的 螺栓( 为防止泄漏, 螺栓(d1=17.835mm)为防止泄漏,取残余预紧力 为防止泄漏 取残余预紧力F1=1.5F,螺栓杆的许用应力 , [σ]=160Mpa,试问该螺栓组的设计是否安全? ,试问该螺栓组的设计是否安全? 解:每个螺栓受的轴向载荷为

螺栓受剪切力状态下的分析和计算

螺栓受剪切力状态下的分析和计算

(2)螺栓排列的要求
①受力要求
在垂直于受力方向:对于受拉构件,各排螺栓的中距 及边距不能过小,以免使螺栓周围应力集中相互影响, 且使钢板的截面削弱过多,降低其承载能力。
平行于受力方向: 端距应按被连接钢板抗挤压及抗剪切等强度条件确定,
以便钢板在端部不致被螺栓冲剪撕裂,规范规定端距不 应小于2d0;
螺栓连接的构造要求
螺栓连接除了满足上述螺栓排列的容许距离外,根据 不同情况尚应满足下列构造要求:
(1)为了证连接的可靠性,每个杆件的节点或拼接接头一 端,永久螺栓不宜少于两个,但组合构件的缀条除外。
(2)直接承受动荷载的普通螺栓连接应采用双螺帽,或其 他措施以防螺帽松动。
(3)C级螺栓宜用于沿杆轴方向的受拉连接,可用于抗剪连 接情况有:承受静载或间接动载的次要连接;承受静载的可 拆卸结构连接;临时固定构件的安装连接。 (4)型钢构件拼接采用高强螺栓连接时,为保证接触面紧密, 应采用钢板而不能采用型钢作为拼接件。
N
b c
d
t
f
b c
d
式中: fcb —螺栓承压强度设计值; ∑ t— 连 接 接 头 一 侧 承 压 构 件 总 厚 度 a+b+c 和
d+e的较小值。
N/3
a
N/3
b
N/3
c
d
N/2
e
N/2
一个抗剪普通螺栓的承载力设计值:
Nb min
min
N
vb,N
b c
四、受剪螺栓组连接的计算
N
++ ++
坏。
2、单个普通螺栓的抗剪承载力计算
由破坏形式知抗剪螺栓的承载力取决于螺栓杆受剪和孔 壁承压(即螺栓承压)两种情况。

普通螺栓组传递倾翻力矩设计计算

普通螺栓组传递倾翻力矩设计计算

变形协调条件
Fi Li
Fm a x Lm a x
Fi
Li Lm a x
Fm a x
(1)
力平衡条件
z 2
Fi Li M 2 (2)
i 1
(1)代入(2)得:
最 大 工 作 载 荷 :Fmax
MLmax
z
2
2 L2i
螺栓总载荷
(受力最大螺栓) Q
Qp
i1
CL
CL CF
Fm a x
2-5普通螺栓组传递倾Байду номын сангаас力矩设计计算
一、基本假定
(1)M作用前: 螺栓受力QP;结合面压应力σP
(2)M作用后:
左侧螺栓受力
Q P→ Qmax
结合面压应力(左) σP左 → σPmin
结合面压应力(右) σP右 →σPmax Qmax σpmin
QP
σpmax
2-5普通螺栓组传递倾翻力矩设计计算 二、传递倾翻力矩设计计算
2、螺栓受力分析
zQp CF . M 0 A CL CF W
(3)右侧不被压溃
pmax Qp pmax
zQ p A
CF CL CF
.M W
p
Qmax
σpmin
QP
σpmax
3、失效形式
二、传递倾翻力矩设计计算
(1) 螺栓塑变或拉断 (2) 机座与地基的接合面被出缝隙或压溃
4、设计准则 (1) 保证螺栓不塑变、不被拉断
ca
1.3Q
4
d12
Qmax
σpmin
QP
σpmax
2-5普通螺栓组传递倾翻力矩设计计算 二、传递倾翻力矩设计计算
(2) 左侧不出缝隙

螺栓连接受力分析—基本连接图

螺栓连接受力分析—基本连接图

拧紧完成且不受外力时(静载)螺栓的拉伸力和连接件的夹紧力相等,我们称之为预紧力 螺栓拉伸的数学模型
螺栓拧紧时的拉伸量 f 取决于螺栓受拉长度 L、预紧力 F、螺栓材料的弹性模量 E 和螺栓的应力截面积 A,其中应力截面积 A 可通过螺栓直径进行计 算或查询相关国家标准获取(GB/T 3098.1 等)。 连接件压缩的数学模型
螺栓连接受力分析—基本连接图
此连接模型中使用 M12,10.9 级的螺栓将夹持长度为 66mm 的连接件拧紧到最小 37.5KN,最大 60KN。此连接件将承受 5KN 的剪切载荷 螺栓与被连接件的受力和各自的形变成正比!
为了便于分析,将连接件的压缩曲线平移到同一侧
在螺栓预紧力下的连接件压缩量与夹持长度 L、预紧力 F、连接件材料的弹性模量 E 以及连接件被压缩部分的有效面积 Aeff 有关。 确定连接件压缩量的主要问题是如何计算上述方程中的有效面积 Aeff
被连接件的有效面积取决于连接件的尺寸 如果连接件由板材或粗管构成,下面的公式可以用来计算被连接件的有效面积 备注:被连接件的承载面积计算建议参考 GB/T 16823.1

螺栓有效载荷计算公式

螺栓有效载荷计算公式

螺栓有效载荷计算公式
螺栓有效载荷是指螺栓或螺钉能够承受的最大拉力或剪力。

它是工程设计中非常重要的一个指标,能够保证机械装置的安全运行。

螺栓有效载荷的计算公式是根据螺栓的材料、直径、螺纹规格以及紧固力等参数来确定的。

一般而言,螺栓的有效载荷计算公式可分为拉力和剪力两种情况。

对于拉力情况,螺栓的有效载荷计算公式为:
P = F / A
其中,P代表螺栓的有效载荷,F代表螺栓所承受的拉力,A代表螺栓的截面积。

对于剪力情况,螺栓的有效载荷计算公式为:
P = F / A_s
其中,P代表螺栓的有效载荷,F代表螺栓所承受的剪力,A_s代表螺栓的剪切截面积。

在实际应用中,为了保证螺栓的安全性,通常会对螺栓的有效载荷进行安全系数的调整。

安全系数可以根据具体的工程要求来确定,一般建议在设计时选择适当的安全系数,以确保螺栓的可靠性和稳定性。

螺栓有效载荷的计算公式在工程设计中起着重要的作用,它能够帮助工程师评估螺栓的承载能力,从而选择合适的螺栓规格和数量。

合理的螺栓设计不仅可以提高机械装置的安全性和可靠性,还能够减少材料的浪费,降低成本。

螺栓有效载荷计算公式是工程设计中不可或缺的一部分,它能够帮助工程师评估螺栓的承载能力,确保机械装置的安全运行。

在实际应用中,我们需要根据具体情况选择合适的螺栓规格和数量,并考虑安全系数的影响,以确保螺栓的可靠性和稳定性。

螺栓组的受力分析 PPT

螺栓组的受力分析 PPT

表9-1图紧定螺钉联接 (平底)书P202
表9-1图紧定螺钉联接 (带顶尖)书P202
把轴上零件与轴联接在一起,联接强度不大时: 表9-1图 拧紧后与轴紧贴,则与轴表面有摩擦力,联接力不大; 表9-1图 在轴上挖一凹槽,头部有顶尖,比第一个联接力要大些,不
会转动,也不会轴向移动。
图9-4地脚螺栓联接 书P202
标准制
米制:我国多采用米制螺纹; 英制(管螺纹);
4、主要尺寸、参数(看图P199,图9-1a) 1)外径d——螺纹的最大直径,在标准中定为公称直径; 2)内径d1——螺纹的最小直径,在强度计算中常作为螺杆危险截面 的计算直径; 3)中径d2——近似等于螺纹的平均直径; 4)螺距t——相邻两牙中径线上对应轴线间的距离;
力。例如起重吊钩等;P214
4、螺纹零件
标准化
精度等级A、B、C:A级精度最高,通常用C级; 材料热处理 尺寸系列化
M10×100(三角、中径、长度)
四、拧紧
在使用上,绝大多数螺纹联接在装配时都必须拧紧;预紧的目的 在于增强联接的可靠性和紧密性。
预紧力的大小是通过拧紧力矩来控制的。因此,应从理论上找出 预紧力和拧紧力矩之间的关系。
大家学习辛苦了,还是要坚持
继续保持安静
表9-1图双头螺柱联接 书P201
表9-1图螺钉联接 书P201
表9-1图 这种联接适用于结构上不能采用螺栓联接的场合,例如 被联接件之一太厚不宜制成通孔,且需要经常拆装时,往 往采用双头螺柱联接;
表9-1图 这种联接在结构上比双头螺柱联接简单、紧凑。其用途 和双头螺柱联接相似,但如经常拆装时,易使螺纹孔磨损 ,故多用于受力不大,或不需要经常拆装的场合。
往往采用 3 。
(1)螺栓联接;(2)螺钉联接;(3)双头螺柱联接;(4)紧 定螺钉联接;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

螺栓组受力分析与计算
前言
螺栓组是机械结构中常用的连接元件,常见于机器零件和设备中。

在机械结构中,螺栓组的受力分析和计算是非常重要的。

其中,螺栓组受力的大小和方向,不仅决定了螺栓的抗拉强度,还决定了整个机械结构的稳定性和可靠性。

在本文中,我们将介绍螺栓组的受力分析和计算,包括螺栓组的受力特点、受
力方向、计算公式和实际案例。

螺栓组受力特点
螺栓组是由若干个螺栓组成的一种连接结构。

在受到外力作用时,螺栓组的受
力特点主要表现为:
1.拉力:螺栓组一般是在拉伸状态下进行工作的,拉力是螺栓组受力的
主要形式。

2.压力:螺栓组在受到工作装置的压力时,螺栓头和垫圈会承受一定的
压力。

3.剪力:螺栓组在受到横向力或剪切力时,螺栓会发生剪切变形。

4.扭矩:螺栓组在受到扭矩力时,螺栓会扭转变形。

螺栓组受力方向
螺栓组的受力方向可以分为两种类型:轴向力和剪力。

轴向力
轴向力是螺栓组最常见的受力形式,是指沿着螺栓中心线方向的受力。

当受到
轴向拉力和压力时,螺栓组会发生轴向变形,通过计算轴向力和剪力的大小和方向,可以确定螺栓组的破坏形式。

剪力
剪力是指横向力或者剪切力在螺栓组上的作用。

当受到横向力或者剪切力时,
螺栓组会承受剪切变形,通过计算剪力和轴向力的大小和方向,可以确定螺栓组的破坏形式。

螺栓组的计算公式
为了确定螺栓组的受力方向和大小,可以使用材料力学的基本公式进行计算。

下面是螺栓组的计算公式。

轴向力的计算公式
轴向拉力的计算公式如下:
F = A * σ
其中,F表示轴向拉力;A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。

轴向压力的计算公式如下:
F = A * σ
其中,F表示轴向压力;A表示螺栓的截面积;σ表示螺栓材料的压缩强度。

剪力的计算公式
剪力的计算公式如下:
F = A * τ
其中,F表示剪切力;A表示螺栓的截面积;τ表示螺栓材料的剪切强度。

实例分析
螺栓组的实际应用非常广泛,下面介绍几个实际案例。

案例1:车轮螺栓的受力分析和计算
车轮螺栓是汽车结构中常见的连接元件,其受力情况如下图所示:
在这个情况下,车轮螺栓的轴向拉力如下所示:
F = A * σ = 3.14 * (12.52/2)^2 * 780 = 23161.3 N
其中,A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。

案例2:钢结构桥梁的螺栓组受力分析
钢结构桥梁中,螺栓组受力情况如下图所示:
在这个情况下,螺栓组的轴向拉力如下所示:
F = A * σ = 3.14 * (16.87/2)^2 * 750 = 28409.3 N
其中,A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。

螺栓组的受力分析和计算是机械结构中必不可少的一部分,它不仅决定了螺栓的抗拉强度,还决定了整个机械结构的稳定性和可靠性。

在实际应用中,需要根据具体情况进行螺栓组的受力分析和计算,并采取相应的措施,保证机械结构的安全性和稳定性。

相关文档
最新文档