丰田普锐斯混动车型的结构特点及工作原理

合集下载

普锐斯车混合动力传动桥(P410)的结构原理分析

普锐斯车混合动力传动桥(P410)的结构原理分析

普锐斯车混合动力传动桥(P410)的结构原理分析作者:蒋浩丰来源:《汽车维护与修理·汽修职教》 2018年第6期南京交通职业技术学院蒋浩丰本文以第3代普锐斯车为例,简单分析普锐斯车混合动力系统的组成与工作原理,重点阐述普锐斯车的混合动力传动桥(P410)的结构原理。

1 普锐斯车混合动力系统的组成与工作原理普锐斯车混合动力系统由发动机、混合动力传动桥(P410)、带转换器的逆变器总成、HV蓄电池、辅助蓄电池、动力管理控制ECU、空调压缩机和电源电缆等组成(图1)。

其中混合动力传动桥的作用是将发动机产生的动力与电动机产生的动力传输至差速器和车轮;逆变器的作用是将HV蓄电池的直流电转换成三相交流电以驱动MG1和MG2;增压转换器的作用是将201.6 V直流电压最高升至650 V,从而提高电动机的工作功率; DC/DC转换器的作用是将201.6 V直流电压降为14 V,对辅助蓄电池充电; HV蓄电池(直流电压 201.6 V)存储MG1和MG2产生的电能。

同时,当使用电动机驱动车辆时, HV 蓄电池向MG1和MG2供电。

辅助蓄电池(直流电压12 V)向电气部件(如前照灯、音响设备等)供电。

普锐斯车混合动力系统的部件示意如图2所示,其工作原理如图3所示。

当车辆原地怠速时,发动机带动MG1给HV蓄电池充电;车辆起步或倒车时, HV蓄电池(先经过逆变器)给MG2供电以产生足够大的转矩;定速巡行时,发动机的动力分为两部分,一部分驱动MG1发电,另一部分输出至车轮;节气门全开加速时,在定速巡行的基础上, HV蓄电池再给MG2供电,从而增加MG2的功率输出;当车辆减速时,利用车辆的惯性通过MG2给HV蓄电池充电,以回收部分能量。

2 混合动力传动桥(P410)的结构原理分析2.1 结构组成混合动力传动桥(P410)在车上的位置如图4所示,混合动力传动桥(P410)中使用了两个行星齿轮机构:动力分配行星齿轮机构和减速行星齿轮机构(图5)。

丰田混动技术原理

丰田混动技术原理

丰田混动技术原理丰田混动技术原理是一种能够同时利用燃油发动机和电动机的先进动力系统。

该技术通过将两种动力源集成在一起,实现了燃油经济性和环境友好性的最佳平衡。

丰田的混动系统由以下几个主要组成部分构成:1. 燃油发动机:混动车辆仍然使用传统的燃油发动机,这是提供动力的主要来源。

燃油发动机可以根据驾驶需求提供高速公路行驶或加速所需的动力。

2. 电动机/发电机:混动车辆还配备了一个电动机/发电机,它可以以两种方式运行。

首先,当车辆启动或需要额外动力时,电动机可以与燃油发动机配合工作,提供额外扭矩和加速能力。

其次,电动机也可以作为发电机,将制动能量和发动机未使用的动力转化为电能储存在电池中。

3. 高电压电池组:混动车辆采用高电压电池组,用来存储电动机或发动机发电机产生的电能。

这些电池可以提供长时间的电动驱动,从而减少对燃油发动机的依赖。

4. 控制单元:混动系统的控制单元是系统的大脑,它根据驾驶情况和电池状态对燃油发动机和电动机进行智能管理。

控制单元可以根据需求启停燃油发动机,以确保在不需要动力时节约燃料。

基于上述组件的工作原理,丰田混动技术实现了最佳的燃油经济性。

当车辆低速行驶或处于停车状态时,电动机可以单独提供动力,此时不需要启动燃油发动机。

而在高速公路行驶时,燃油发动机可以提供更高的功率输出以满足需求。

此外,混动系统还采用再生制动技术,即通过电动机/发电机将制动能量转化为电能储存起来,以备后续使用。

这种能量回收系统进一步提高了燃油经济性和能源利用效率。

总的来说,丰田混动技术通过优化燃油和电动动力源之间的协调工作,将燃油经济性、动力性能和环境友好性结合在一起,为消费者提供了可持续发展的驾驶选择。

5混合动力汽车结构原理(工作原理)丰田普锐斯

5混合动力汽车结构原理(工作原理)丰田普锐斯

车速 0
Click! Movie
THS-II 工作原理
倒车(R档)
只用MG2 作为倒车动力. 在SOC正常状态下,发动机在车辆倒车时不工作.
参照列线图
THS-II 工作原理
倒车(R档) 只用MG2 作为倒车动力. 在SOC正常状态下,发动机在车辆倒车时不工作.
车速 0
Click! Movie
THS-II 工作原理
最大转速 转/分
冷却系统
50 (68) / 1200 – 1540
400 (40.8) / 0 - 1200
230 6,700 rpm
水冷
Prius THS II 工作原理
动力分配机构 (行星齿轮机构)
行星齿轮
齿圈
行星架
太阳轮
Prius THS-II 工作原理
动力分配机构 (行星齿轮机构)
– MG1 – 太阳轮 – MG2 – 齿圈
参照列线图
THS-II 工作原理
减速 (B 档)
MG2产生的电能在HV 蓄电池充电同时,提供给MG1, 然后MG1驱动发 动机 . 同时, 发动机燃油切断. MG1的原动力用作发动机制动.
参照列线图
THS-II 工作原理
减速 (B 档)
MG2产生的电能在HV 蓄电池充电同时,提供给MG1, 然后MG1驱动发 动机 . 同时, 发动机燃油切断. MG1的原动力用作发动机制动.
THS-II 控制系统 – 驱动力限制控制
• 当检测到车轮滑转时, HV ECU 控制 MG2 的驱动力并且施加液压 制动力
每个车轮的 滑转 速度传感器
防滑控制 ECU
制动力
HV ECU
高速
牵引控制
速度传感 器

(整理)丰田普锐斯电机及驱动控制系统解析.

(整理)丰田普锐斯电机及驱动控制系统解析.

丰田普锐斯电机及驱动控制系统解析作为全球最成功的环保车型,丰田普锐斯(PRIUS)早已成为油电混合动力车型中的全球销量冠军,即使在我们的身边,也经常可以见到它们的身影。

目前,在国内生产的丰田普锐斯(PRIUS)是采用丰田第二代混合动力系统,集发动机和电动机组合而成的并行混合动力车(图1)。

丰田第二代混合动力系统(THS-Ⅱ),可以根据车辆行驶状态,灵活地使用2种动力源,并且弥补2种动力源之间不足之处,从而降低燃油消耗,减少有害气体排放,发挥车辆的最大动力。

由于其THS-Ⅱ电机及驱动系统结构复杂,技术先进,本文将为大家详细介绍该系统的结构及基本原理,以帮助读者更进一步了解THS-Ⅱ系统。

一、THS-Ⅱ电机及驱动控制系统的特点1.在电动机和发电机之间采用AC500V高压电路传输,可以极大地降低动力传输中电能损耗,高效地传输动力。

2.采用大功率电机输出,提高电机的利用率。

当发动机工作效率低时,此系统可以将发动机停机,车辆依靠电机动力行驶。

3.极大地增加了减速和制动过程中的能量回收,提高能量的利用率。

二、THS-Ⅱ电机及驱动系统基本组成1.HV蓄电池:由168个单格镍氢电瓶(1.2V×6个电瓶×28个模块)组成,额定电压DC20 1.6V,安装在车辆后备厢内。

在车辆起步、加速和上坡时,HV蓄电池将电能提供给驱动电机。

2.混合动力变速驱动桥:混合动力变速驱动桥由发电机MG1、驱动电机MG2和行星齿轮组成(图2)。

3.变频器:由增压转换器、逆变整流器、直流转换器、空调变频器组成。

(1)增压转换器:将HV蓄电池DC201.6V电压增压到DC500V(反之从DC500V降压到DC201.6V)。

(2)逆变整流器:将DC500V转换成AC500V,给电动机MG2供电。

反之将AC500V 转换成DC500V,经降压后,给HV蓄电池充电。

(3)直流转换器:将HV蓄电池DC201.6V降为DC12V,为车身电器供电,同时为备用蓄电池充电。

普锐斯混合动力汽车丰田THS结构.ppt

普锐斯混合动力汽车丰田THS结构.ppt

丰田混合动力系统THS
► 混合动力汽车结构
▪ 动力系统
► 发动机 ► 电机
▪ 发电机MG1 ▪ 驱动电机MG2
Байду номын сангаас► 变速驱动桥
▪ 行星齿轮组 ▪ 传动系统
► 电池
▪ 动力控制系统
MG2 (AC 500V)
丰田混合动力系统THS
► 混合动力汽车结构
▪ 动力系统 ▪ 动力控制系统
► 变频器总成
▪ 增压转换器 ▪ DC/DC转换器 ▪ 空调变频器
▪ ②DC/DC转换器:将最高电压从DC 201.6V降到DC 12V 为车身电气组件供电以及为备用蓄电池再次充电(DC 12V)。
▪ ③空调变频器:将HV蓄电池的额定电压DC 201.6V转换 为AC 201.6V为空调系统中电动变频压缩机供电。
► (4)HV ECU
▪ 接收每个传感器及ECU(发动机ECU、蓄电池ECU、制动 防滑控制ECU和EPS ECU)的信息,根据此信息计算所需 的扭矩和输出功率。HV ECU将计算结果发送给发动机 ECU、变频器总成、蓄电池ECU和制动防滑控制ECU。
► HV ECU ► 发动机ECU ► 蓄电池ECU ► 制动防滑控制ECU ► 加速踏板传感器 ► 档位传感器 ► SMR系统主继电器 ► 断路器传感器
►THS的组成:
▪ (1)HV变速驱动桥:
▪ 混合动力车辆(HV)变速驱动桥由发电机(MGl)、 电动机(MG2)和行星齿轮组组成。
►①发电机(MGl):发电机(MGl)由发动机带动旋转产 生高压电以操作电动机(MG2)或为HV蓄电池充电。同 时,它还可以作为启动机启动发动机。
►(8)加速踏板位置传感器:
▪ 将加速踏板角度转换为电信号并输出到HV ECU。

普锐斯混合动力汽车结构

普锐斯混合动力汽车结构

1.5丰田普锐斯Prius工作性能
减速/能量回收时:
将减速时的能量回收到HV电池中用于再利用。
在踩制动踏板和松开油门时,普锐斯混合动力系统使 车轮的旋转力带动电动机运转,将其作为发电机使用。 减速时通常作为摩擦热散失掉的能量,在此被转换成电 能,回收到HV电池中进行再利用。
减速/能量回收时能量传递图
奥托循环 与 阿特金斯循环
2.进气返流减少了进入气缸中的燃料, 提高了燃油经济性。
奥托循环
进气返流
< 压缩行程105°
阿特金森循环
膨胀行程160°
阿特金森循环发动机配气
阿特金森循环原理
普锐斯配气相位(二代04款PRIUS 1NZ-FXE发动机)
气门正时
项目 进气
打开 关闭
排气
打开 关闭
排放标准
-A, -K
1.5丰田普锐斯Prius性能特点
传统车型
+
发动机
变速器
混合动力汽 车
发动机
电动机 传动桥
变频 转换器
HV蓄电池
怠速时
发动机运转->
消耗燃油
+
排放尾气
发动机停机-> 不消耗燃油
不排放尾气
怠速时
低负荷行驶
发动机 发动机运转->
运转->
消耗燃油
消耗
排放尾气
燃油
+ 排放 尾气
发动机 停机->
不消耗 燃油
2.0 mm (0.079 in.)
1.5 mm (0.059 in.)
其它 PVD涂层可提高抗磨损能力 使用钢铁材料提高抗磨损能力
-
2.3 丰田Prius 汽油机其它结构特点

丰田混动四驱工作原理

丰田混动四驱工作原理

丰田混动四驱工作原理丰田混动(Hybrid)四驱系统是一种将电动驱动与传统内燃机驱动结合在一起,以实现更高效能和更低排放的驱动系统。

混动四驱系统在市场上已经有一段时间了,在丰田车型中得到了广泛应用,许多车型,如普锐斯和RAV4,都采用了这一技术。

混动四驱系统的工作原理是在车辆上同时使用电动驱动和内燃机驱动。

系统由一个电动机、一个电池组和一个燃油引擎组成。

当汽车需要动力时,电动机会从电池组中提取电能,以驱动车辆。

当电池组电量不足时,或者需要更多动力时,燃油引擎会自动启动并运行。

混动四驱系统通过控制电动机和燃油引擎的工作来实现四驱功能。

在正常行驶的情况下,系统会优先使用电动驱动,这可以提供更好的燃油经济性和低排放。

当需要更多的牵引力时,系统会启动燃油引擎,这样两个驱动系统可以合作工作,以提供额外的动力。

通过燃油引擎的辅助,车辆的四驱性能得到了提升。

混动四驱系统还可以通过电动机和燃油引擎的协同工作来提供更好的悬挂控制。

在特定情况下,电动机可以提供扭矩矢量控制,用于提供更好的车辆稳定性和悬挂性能。

这使得车辆在驾驶过程中更加稳定和易于操控,尤其在弯道行驶或复杂的路况下。

此外,混动四驱系统还具有能够利用回收能量充电电池的功能。

在汽车刹车或减速时,电动机可以将动能转化为电能,并储存在电池组中。

这些回收的能量可以用于之后的电动驱动,从而节省燃料并减少对环境的影响。

总之,丰田混动四驱系统通过将电动驱动和传统内燃机驱动结合在一起,以提供更高效能和更低排放的驱动系统。

这一系统具有切换驱动模式、协同工作和回收能量的功能,从而实现更好的动力性能和驾驶操控性。

这一技术的应用使得丰田的汽车在市场上得以卓越的地位,并且成为了未来可持续交通的一部分。

丰田普锐斯混合动力工作原理

丰田普锐斯混合动力工作原理

丰田普锐斯混合动力工作原理
1.汽油发动机:丰田普锐斯搭载一台1.8升汽油发动机,用于提供传统的汽车动力。

2.电动机发电机:电动机发电机能够利用汽油发动机的动力来产生电力,并将其储存在电池组中。

3.电池组:电池组用于储存电能,由铅酸蓄电池或镍氢电池组成。

4.电动机:电动机是由电池组提供电能,用于提供额外的动力驱动汽车。

5.转变装置:转变装置包括变速器和力分配装置,用于确保汽车在不同工况下的动力转化和合理利用。

普锐斯在行驶过程中,根据驾驶条件和动力需要,会自动选择使用汽油发动机、电动机或者两者同时驱动。

以下是普锐斯在不同工况下的工作原理:
1.启动和低速行驶:
当车辆启动时,普锐斯会首先使用电池组中的电能来发动电动机,驱动车辆。

在低速行驶或停车等情况下,汽油发动机会关闭,全部动力都由电动机提供。

这样可以减少油耗和排放。

2.高速巡航:
在高速巡航过程中,当车辆需要更大的动力时,汽油发动机会启动并提供动力,同时电动机也会提供动力,两者协同工作。

变速器会根据车速和转速的不同调整传动比例,以提供最佳的动力输出效果。

3.减速和制动:
当车辆减速或制动时,电动机会变成发电机,利用惯性和制动时产生的能量来发电,并将电能储存到电池组中。

这样可以减少能源的浪费,并延长电池组的寿命。

总的来说,丰田普锐斯混合动力系统的工作原理就是根据驾驶条件和动力需求合理分配汽油发动机和电动机的工作任务,以实现最佳的燃油效率和减少排放。

通过优化动力系统的配合和能量的回收利用,普锐斯的燃油效率得到了显著提高,同时也符合环保要求。

普锐斯混合动力系统组成及运行模式

普锐斯混合动力系统组成及运行模式

丰田普锐斯混合动力汽车构造与维修学习目标1. 了解丰田普锐斯混合动力汽车性能2. 认识THS、变速驱动桥、发动机系统、制动系统和起动系统的结构3. 掌握这些系统的运行模式和工作原理,熟悉诊断流程和方法。

普锐斯混合动力系统组成及运行模式一、概述丰田混合动力汽车的核心技术是丰田混合动力系统(THS-I),它结合了汽油发动机和电机两种动力,通过并联或串联相结合的方式进行工作,以达到良好的动力性、经济性和低排放效果。

2003 年,丰田公司推出了第二代丰田混合动力系统(THS-II),该系统运用在普锐斯和凯美瑞等混合动力车型上。

另外,它采用了由大功率混合动力汽车蓄电池(额定电压为直流201.6V,简称为“HV 蓄电池”)和可将系统工作电压升至最高电压(直流 500V)的增压转换器组成的变压系统。

(1)优良的行驶性能丰田混合动力系统 II(THS-II)采用了由可将工作电压升至最高电压(直流 500V)的增压转换器组成的变压系统,可在高压下驱动电动机一发电机 1(MG1)和电动机一发电机 2(MG2),并以较小电流将与供电相关的电气损耗降到最低。

因此,可以使 MG1 和 MG2 高转速、大功率工作。

通过高转速、大功率 MG2 和高效 1NZ-FXE 发动机的协同作用,达到较高水平的驱动力,使车辆获得优良的行驶性能。

(2)良好的燃油经济性THS-II 通过优化MG2 的内部结构获得高水平的再生能力,从而实现良好的燃油经济性。

THS-II 车辆怠速运转时,发动机停止工作,并在发动机工作效率不良的情况下尽量停止发动机工作,车辆此时仅使用 MG2 来工作。

在发动机工作效率良好的情况下,发动机在发电的同时,使用 MG1 驱动车辆。

因此,该系统以高效的方式影响驱动能量的输入一输出控制,以实现良好的燃油经济性。

THS- Ⅱ车辆减速时,前轮的动能被回收并转换为电能,通过 MG2 对 HV 蓄电池再充电。

(3)低排放 THS-II 车辆怠速运转时,发动机停止工作,并在发动机工作效率不良的情况下尽量停止发动机工作,车辆此时仅使用 MG2 来工作,实现发动机尾气的零排放。

丰田双擎混动汽车工作原理

丰田双擎混动汽车工作原理

丰田双擎混动汽车工作原理
丰田双擎混动汽车是一种采用混合动力系统的汽车。

该系统由一个内燃发动机和一个电动机组成,两者可以单独或同时驱动车辆。

以下是丰田双擎混动汽车的工作原理:
1. 启动和低速驾驶阶段:当车辆启动时,电动机开始工作,提供初始扭矩以推动车辆前进。

在低速驾驶阶段,电动机继续驱动车辆,减少了内燃发动机的使用,从而降低了燃料消耗和排放。

2. 加速和高速驾驶阶段:当需要更多动力时,内燃发动机会启动并开始工作。

在这个阶段,内燃发动机提供额外的动力,同时电动机也会辅助提供动力,以提高加速性能和维持高速驾驶。

3. 制动和减速阶段:当车辆减速或制动时,电动机将转换为发电机模式,将制动能量转化为电能并储存在电池中。

这种能量回收系统称为再生制动系统,可以提高能源利用效率。

4. 停车和怠速阶段:当车辆停车或在怠速时,内燃发动机会自动关闭,而电动机继续提供动力。

这可以减少燃料消耗和排放,并降低噪音和振动。

5. 电池充电:在行驶过程中,内燃发动机可以通过发电机模式将多余的能量转化为电能,并将其储存在电池中。

此外,车辆还可以通过插入电源进行充电,以提供更多的电能供电。

通过这种工作原理,丰田双擎混动汽车实现了内燃发动机和电动机的优势互补,提高了燃料经济性和环境友好性,同时保持了良好的驾驶性能。

普锐斯的控制原理

普锐斯的控制原理

普锐斯的控制原理普锐斯是目前全球最流行的混合动力车型之一。

它采用了独特的电动机和燃油发动机混合驱动技术,为驾驶员提供高效、环保、安静且灵活的行驶体验。

普锐斯的控制原理是如何实现这些特点的呢?普锐斯的混合动力系统可以分为三个主要的部分:电动机、发动机和电池组。

这三个部分的整合和协调起着至关重要的作用,使得普锐斯可以在不同的行驶条件下提供最佳的性能和燃油经济性。

下面从普锐斯的电动机、发动机和电池组三个方面来详细介绍普锐斯的控制原理:一、电动机普锐斯的电动机主要是负责启动和加速,并在需要时为发动机提供动力支持。

它基于交流电工作,最大功率可以达到68马力,最大扭矩可达207牛·米。

电动机的控制是通过普锐斯的特殊变速器来实现的。

这个变速器可以将电动机和发动机的输出功率进行合理的分配。

变速器通过经过调整的电子控制单元(ECU)来监测电动机的转速、加速度和温度,并根据驾驶员的行驶需求和行驶条件来实现转向和离合器控制等动作。

此外,当汽车需要减速和刹车时,电动机可以通过回收制动能量的方式将刹车时产生的电能存储在电池组中,以提高能量利用率,改善油耗和碳排放。

二、发动机在普锐斯中,有一个1.8升四缸汽油发动机,它可以产生最大功率为95马力,最大扭矩为142牛·米。

它不仅能为车辆提供直接驱动动力,而且还可以通过发电机为电池组提供电源。

在普锐斯的混合动力系统中,这个发动机主要用于高速巡航和加速时的驱动。

发动机的控制是通过ECU来实现的。

ECU可以监控和调整发动机的燃油喷射、点火时间和气缸压缩率等参数,以实现最佳燃油经济性和尽可能少的污染排放。

三、电池组普锐斯的电池组是车辆的存储能量的中心,它是由氢化镍金属(NiMH)电池组成的。

这个电池组可以为电动机提供动力,并通过回收行驶中的能量来增加能源的利用率。

电池组的控制是通过ECU来实现的。

ECU可以监控和调整电池的电荷状态,以增加电池的使用寿命和充电效率。

丰田混动系统工作原理

丰田混动系统工作原理

丰田混动系统工作原理丰田混动系统是一种集电动机和内燃机于一体的混合动力系统,旨在提高汽车的燃油经济性和减少尾气排放。

该系统基于先进的电力技术,通过智能控制和协调电动机和内燃机的工作,实现高效能的动力输出。

丰田混动系统主要由以下几个组件组成:内燃机、电动机、电池组、功率分配装置和控制器。

内燃机负责提供动力,而电动机则通过电池组提供的电能辅助内燃机工作,以实现动力的高效利用。

在启动时,丰田混动系统首先通过电动机提供动力,内燃机处于关闭状态。

当车辆需要更大的动力输出时,内燃机会自动启动并提供额外的动力支持。

而在减速和制动过程中,电动机则会通过再生制动将制动能量转化为电能,并存储在电池组中供以后使用。

丰田混动系统的关键是控制器,它通过监测车辆的速度、加速度、转向角度等参数,实时调节内燃机和电动机的工作方式,以最大程度地提高系统的效率。

控制器还可以选择在纯电动模式、混合模式或内燃机模式下工作,根据实际需求灵活切换。

在纯电动模式下,丰田混动系统完全依靠电动机提供动力,内燃机保持关闭状态。

这种模式适用于低速行驶或短途驾驶,可以最大程度地减少尾气排放和燃油消耗。

而在混合模式下,内燃机和电动机将共同工作,以实现更高的动力输出和更低的燃油消耗。

在内燃机模式下,内燃机独立提供动力,电动机处于关闭状态。

除了智能的控制器,丰田混动系统还采用了一些其他技术来提高系统的效率。

例如,采用了高压电缆和电力电子设备来减少能量损失;利用电池组的辅助启动功能,减少了内燃机的启动次数;通过优化内燃机的工作参数和采用高效能的发动机设计,降低了燃油消耗和排放。

丰田混动系统通过协调和控制内燃机和电动机的工作方式,以及利用先进的电力技术,实现了高效能的动力输出和环保的行驶模式。

这一系统的工作原理使得丰田混动汽车成为了燃油经济性和环保性能兼具的理想选择。

丰田混动系统的不断创新和发展为未来的汽车科技发展提供了有益的借鉴和启示。

丰田普锐斯混动车型的结构特点及工作原理

丰田普锐斯混动车型的结构特点及工作原理

丰田普锐斯混动车型的结构特点及工作原理引言:在当今汽车市场中,混动车型已成为一种受到广泛关注的汽车动力技术,其兼顾了燃油动力与电动动力的优势,具有节能环保、减少排放等优点,在其中丰田普锐斯混动车型是混动车型中的佼佼者之一。

本文将就丰田普锐斯混动车型的结构特点及工作原理进行详细介绍。

一、结构特点:1.双引擎构架丰田普锐斯混动车型采用了双引擎构架,即包括了一个内燃引擎和一个电动引擎。

内燃引擎通常为汽油发动机,而电动引擎则是由电池供电的电动机。

两者共同协同工作,以实现不同速度下的动力输出,从而提高车辆的性能和燃油经济性。

2.电池组和电机丰田普锐斯混动车型使用了高性能的镍氢电池组和电动机。

电池组一般安装在车辆后部,用于储存来自内燃引擎和制动再生能量的电能,并通过电机将电能转化为动力。

这种配置使得车辆在低速行驶、起步和加速时更加顺畅。

3.智能能量管理系统车辆配备了智能能量管理系统,它能够根据车辆速度、功率需求和电池状态等信息,动态地调整内燃引擎和电动引擎的工作模式,从而最大程度地利用混合动力系统的优势,提高燃油经济性和动力输出的效率。

二、工作原理:1.起步和低速行驶当车辆起步或者低速行驶时,电动引擎会优先工作,从电池组中提取电能,驱动车辆前进。

这样不仅能够减少燃油消耗,还能减少排放,提高车辆的环保性能。

2.中速和高速行驶当车辆需要进行中速或者高速行驶时,内燃引擎会开始启动工作,以提供额外的动力输出。

同时电动引擎也会协同工作,以保证车辆的加速性能和燃油经济性。

这种双引擎的工作模式有效地平衡了车辆的性能和燃油消耗。

3.制动再生在制动时,电动引擎会自动切换为发电机状态,将制动能量转化为电能并存储到电池组中,起到了能量再生的作用。

这样不仅能够提高车辆的能量利用率,还能减少制动时的换挡和损耗,延长汽车零部件的使用寿命。

总结:丰田普锐斯混动车型以其独特的双引擎构架和智能能量管理系统,在性能、节能环保等方面展现出了优异的特点。

普锐斯混动工作原理

普锐斯混动工作原理

普锐斯混动工作原理嘿,朋友们!今天咱来聊聊普锐斯混动这神奇的家伙是咋工作的。

你想想看,普锐斯混动就像是一个超级会过日子的巧媳妇!它的工作原理呢,其实挺有意思。

一般的车就像是只知道吃一种食物的家伙,要么烧油,要么用电。

可普锐斯混动不这样,它可聪明啦!它能烧油,也能用电,还能油电一起用,就像人既能吃米饭又能吃菜,营养均衡得很呢!当车启动的时候,它可能先用电,悄悄地就跑起来了,一点声音都没有,就像个小幽灵。

电用完了咋办?别急呀,这时候发动机就出马啦,开始烧油,给车提供动力。

这发动机就像是家里的顶梁柱,关键时候靠得住!而且啊,普锐斯混动在行驶过程中还特别会“算计”。

比如说,在减速或者刹车的时候,它能把这部分能量给回收起来,存到电池里,下次再用。

这多会过日子呀,一点都不浪费!这就好比咱平时节约用水,把洗完菜的水留着冲厕所一样。

你说这普锐斯混动咋这么聪明呢?它能根据不同的情况,自动切换用油还是用电,或者一起用。

这就像是个机灵的小猴子,在树林里上蹿下跳,轻松自如。

那它是咋知道啥时候该干啥的呢?这里面可有好多高科技的玩意儿呢,各种传感器呀,电脑控制呀,复杂得很呢!但咱不用管那么多,咱就知道它能帮咱省油,能让咱的出行更环保就行啦。

你想想,如果满大街跑的都是普锐斯混动这样的车,那得少排放多少污染物呀!咱的天空不就更蓝了,空气不就更清新了嘛!这多好呀,对不对?普锐斯混动真的是汽车界的一个大宝贝呀!它让我们看到了科技的力量,也让我们对未来的出行充满了期待。

难道你不想拥有一辆这样聪明又环保的车吗?反正我是挺想的!它不仅能帮咱省钱,还能为环保出一份力,这不是一举两得嘛!所以呀,大家都快来了解了解普锐斯混动吧,真的很棒哦!原创不易,请尊重原创,谢谢!。

丰田普锐斯Prius混合动力车

丰田普锐斯Prius混合动力车

果内首款昏合动力轿车———普锐斯(PRIUS)2005年12月5日在长春一汽丰田合资工厂下线,此次国产1.5L排量普锐斯有织物座椅版和真皮座椅版两款,售价分别为28.8万元和30.2万元,2006年1月15日正式上市。

普锐斯在世界各地的价格对比:美国欧洲日本中国21725美元(17.38万元人民币)24950欧元(25万元人民币)15万~22万元人民币28.8万元和30.2万元普锐斯高定价主要是因为国产化率低、政府没有补贴、产量小。

据了解,目前普锐斯的国产化率只有3.4%,只有风挡玻璃和轮毂是国产的。

根据目前国家的相关政策,像普锐斯这样用进口大件组装生产的整车,国家将按照整车来收税,这成为普锐斯价高的重要原因。

另外,在日本、美国针对普锐斯这样的环保车,政府有一定的补贴,如普锐斯在美国的售价比同级车大概高了20%,但可获得美国联邦税务局税收减免2000美元的补贴,在日本,政府将补贴普锐斯高出其同级别车部分的四分之一。

普锐斯是世界首款批量生产的、也是目前为止世界上最成熟的混合动力轿车。

1997年12月第一代丰田Prius投放市场,它是一种5座小型轿车。

2000年第二代丰田Prius推出,被美国“汽车工程国际”杂志评为“2001年世界设计最佳轿车”。

发动机电动机蓄电池功率扭矩功率扭矩重量体积第一代43千瓦/4000转/分102牛顿米/4000转/分30千瓦/2000转/分305牛顿米/0-940转/分减轻了30% 减少了60%第二代53千瓦/4500转/分111牛顿米/4200转/分33千瓦/5600转/分350牛顿米/0-400转/分内部机械构造蓄电池氯氢化金属最大功率25千瓦额定电压274伏特蓄电池放在后排座与行李箱之间,通过把内部电流通路分为两处降低内电阻,实现了高性能和轻量化。

当电量降低时,即使车辆处于停驶状态,发动机仍然驱动发电机给蓄电池充电,因此不需要外接电源充电。

首次采用的无级变速系统通过无阶段地改变发动机转速、发电机及交流永磁式电动机转数(与车速成正比)来实现加速、减速和后退;通过采用了滚珠轴承和低摩擦机油,将摩擦消耗降低了30%左右。

【2019年整理】丰田普锐斯电机及驱动控制系统解析

【2019年整理】丰田普锐斯电机及驱动控制系统解析

丰田普锐斯电机及驱动控制系统解析作为全球最成功的环保车型,丰田普锐斯(PRIUS)早已成为油电混合动力车型中的全球销量冠军,即使在我们的身边,也经常可以见到它们的身影。

目前,在国内生产的丰田普锐斯(PRIUS)是采用丰田第二代混合动力系统,集发动机和电动机组合而成的并行混合动力车(图1)。

丰田第二代混合动力系统(THS-Ⅱ),可以根据车辆行驶状态,灵活地使用2种动力源,并且弥补2种动力源之间不足之处,从而降低燃油消耗,减少有害气体排放,发挥车辆的最大动力。

由于其THS-Ⅱ电机及驱动系统结构复杂,技术先进,本文将为大家详细介绍该系统的结构及基本原理,以帮助读者更进一步了解THS-Ⅱ系统。

一、THS-Ⅱ电机及驱动控制系统的特点1.在电动机和发电机之间采用AC500V高压电路传输,可以极大地降低动力传输中电能损耗,高效地传输动力。

2.采用大功率电机输出,提高电机的利用率。

当发动机工作效率低时,此系统可以将发动机停机,车辆依靠电机动力行驶。

3.极大地增加了减速和制动过程中的能量回收,提高能量的利用率。

二、THS-Ⅱ电机及驱动系统基本组成1.HV蓄电池:由168个单格镍氢电瓶(1.2V×6个电瓶×28个模块)组成,额定电压DC20 1.6V,安装在车辆后备厢内。

在车辆起步、加速和上坡时,HV蓄电池将电能提供给驱动电机。

2.混合动力变速驱动桥:混合动力变速驱动桥由发电机MG1、驱动电机MG2和行星齿轮组成(图2)。

3.变频器:由增压转换器、逆变整流器、直流转换器、空调变频器组成。

(1)增压转换器:将HV蓄电池DC201.6V电压增压到DC500V(反之从DC500V降压到DC201.6V)。

(2)逆变整流器:将DC500V转换成AC500V,给电动机MG2供电。

反之将AC500V 转换成DC500V,经降压后,给HV蓄电池充电。

(3)直流转换器:将HV蓄电池DC201.6V降为DC12V,为车身电器供电,同时为备用蓄电池充电。

丰田混动系统ths的工作原理

丰田混动系统ths的工作原理

丰田混动系统(THS)的工作原理1. 引言丰田混动系统(Toyota Hybrid System,简称THS)是一种由丰田汽车公司开发的混合动力系统,旨在提高汽车的燃油经济性和环境友好性。

THS采用了电动机和燃油发动机的组合,以实现更高效的动力传输和减少尾气排放。

本文将详细解释THS 的工作原理,包括其基本原理、电动机与燃油发动机之间的协调工作以及能量的转换和储存。

2. THS的基本原理THS是一种串联式混合动力系统,由电动机、燃油发动机、发电机和电池组成。

基本原理是通过电动机和燃油发动机的协调工作,实现汽车的动力传输和能量转换。

THS的核心是电动机和燃油发动机的组合。

电动机主要负责低速驱动和启动,而燃油发动机则用于高速驱动和长途行驶。

在加速和行驶过程中,电动机和燃油发动机可以单独或同时工作,以提供所需的动力。

3. 电动机与燃油发动机的协调工作在THS系统中,电动机和燃油发动机通过一个复杂的控制系统进行协调工作。

该控制系统根据驾驶员的需求和当前行驶条件,自动选择电动机、燃油发动机或两者同时工作。

当驾驶员需要低速驱动或启动时,电动机会独立工作。

电动机通过电池提供的电能驱动车辆,同时将制动能量转化为电能储存到电池中。

这种能量转换和储存方式称为再生制动。

当驾驶员需要高速驱动或长途行驶时,燃油发动机会启动并提供动力。

燃油发动机通过燃烧汽油产生动力,并通过发电机将多余的能量转化为电能储存到电池中,以备后续使用。

在加速和行驶过程中,电动机和燃油发动机可以同时工作。

这种情况下,电动机和燃油发动机的动力输出会通过一个功率分配装置进行协调,以实现最佳的燃油经济性和动力性能。

4. 能量的转换和储存在THS系统中,能量的转换和储存是非常重要的。

电池是能量的储存器,可以将电能储存起来,并在需要时释放。

电池通常是锂离子电池或镍氢电池,具有较高的能量密度和较长的使用寿命。

能量的转换主要通过电动机和发电机实现。

电动机可以将电能转化为机械能,驱动车辆行驶。

丰田ths工作原理

丰田ths工作原理

丰田ths工作原理丰田THS工作原理概述丰田THS(Toyota Hybrid System)是一种混合动力系统,它将传统的内燃机动力和电动机动力结合起来,以提高燃油效率和减少尾气排放。

THS被广泛应用于丰田的混合动力车型中,如普锐斯、卡罗拉混合动力等。

THS系统由多个组件组成,包括发动机、电动机、变速器、电池组等。

这些组件通过控制系统进行协调工作,实现了高效的能量转换和利用。

发动机THS系统中的发动机通常是一台汽油发动机,它与传统汽车的发动机类似。

但与传统汽车不同的是,在THS中,发动机不仅仅负责驱动车辆,还可以充当一个发电机或者一个压缩机。

当需要产生电能时,发动机会启动并驱使一个发电机旋转。

这个旋转过程会产生电能,并将其存储在电池组中。

当需要加速或者行驶时,这些存储在电池中的能量就会被释放出来,并通过一个控制器送到车辆的电驱系统中。

另外,在行驶过程中,发动机还可以通过压缩空气来制动车辆。

这种制动方式被称为“发动机制动”,它可以将车辆的动能转化为电能,并将其存储在电池组中。

电驱系统THS系统中的电驱系统是由一个或多个电动机组成的。

这些电动机通常是交流同步电机,它们可以将电能转换为机械能,并驱使车辆前进。

在THS系统中,电动机和发动机是通过一个变速器连接在一起的。

这个变速器可以根据需要调整发动机和电动机的输出转矩比例,以实现最佳的燃油效率和性能。

另外,在行驶过程中,当需要减速或者停车时,电驱系统还可以反向运转,并将车辆的运动能量转化为电能,并将其存储在电池组中。

控制系统THS系统中的控制系统是整个系统的核心。

它可以监测并控制发动机、变速器、电池组等所有组件的工作状态和输出功率,以实现最佳的燃油效率和性能。

控制系统通常由多个微处理器组成,这些微处理器会根据传感器所提供的信息来进行计算和决策。

这些传感器可以监测发动机、电池组、电动机等组件的状态和性能,以帮助控制系统做出最佳的决策。

此外,控制系统还可以根据驾驶员的需求和行驶条件来调整发动机和电动机的输出功率,并选择最佳的工作模式,以实现最佳的燃油效率和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丰田普锐斯混动车型的结构特点及工作原理引言:
在当今汽车市场中,混动车型已成为一种受到广泛关注的汽车动力技术,其兼顾了燃油动力与电动动力的优势,具有节能环保、减少排放等优点,在其中丰田普锐斯混动车型是混动车型中的佼佼者之一。

本文将就丰田普锐斯混动车型的结构特点及工作原理进行详细介绍。

一、结构特点:
1.双引擎构架
丰田普锐斯混动车型采用了双引擎构架,即包括了一个内燃引擎和一个电动引擎。

内燃引擎通常为汽油发动机,而电动引擎则是由电池供电的电动机。

两者共同协同工作,以实现不同速度下的动力输出,从而提高车辆的性能和燃油经济性。

2.电池组和电机
丰田普锐斯混动车型使用了高性能的镍氢电池组和电动机。

电池组一般安装在车辆后部,用于储存来自内燃引擎和制动再生能量的电能,并通过电机将电能转化为动力。

这种配置使得车辆在低速行驶、起步和加速时更加顺畅。

3.智能能量管理系统
车辆配备了智能能量管理系统,它能够根据车辆速度、功率需求和电池状态等信息,动态地调整内燃引擎和电动引擎的工作模式,从而最大程度地利用混合动力系统的优势,提高燃油经济性和动力输出的效率。

二、工作原理:
1.起步和低速行驶
当车辆起步或者低速行驶时,电动引擎会优先工作,从电池组中提取电能,驱动车辆前进。

这样不仅能够减少燃油消耗,还能减少排放,提高车辆的环保性能。

2.中速和高速行驶
当车辆需要进行中速或者高速行驶时,内燃引擎会开始启动工作,以提供额外的动力输出。

同时电动引擎也会协同工作,以保证车辆的加速性能和燃油经济性。

这种双引擎的工作模式有效地平衡了车辆的性能和燃油消耗。

3.制动再生
在制动时,电动引擎会自动切换为发电机状态,将制动能量转化为电能并存储到电池组中,起到了能量再生的作用。

这样不仅能够提高车辆的能量利用率,还能减少制动时的换挡和损耗,延长汽车零部件的使用寿命。

总结:
丰田普锐斯混动车型以其独特的双引擎构架和智能能量管理系统,在性能、节能环保等方面展现出了优异的特点。

通过对其结构特点和工作原理的介绍,相信读者对丰田普锐斯混动车型有了更加深入的了解。

随着科技的不断进步和混动技术的不断发展,混动车型定将在未来的汽车市场中发挥着越来越重要的作用。

相关文档
最新文档