(完整版)排列组合概率练习题(含答案)

合集下载

排列组合练习题及答案解析

排列组合练习题及答案解析

1.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是()A.16B.13C.23D.122.小孔家有爷爷、奶奶、姥爷、姥姥、爸爸、妈妈,包括他共7人,一天爸爸从果园里摘了7个大小不同的梨,给家里每人一个.小孔拿了最小的一个,爷爷、奶奶、姥爷、姥姥4位老人之一拿最大的一个,则梨子的不同分法共有()A.96种B.120种 C.480种D.720种3.从10名高三年级优秀学生中挑选3人担任校长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85B.56C.49D.284.用2种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,则3个矩形中相邻矩形颜色不同的概率是()A.18B.14C.38D.125.从0,1,2,3,4,5这六个数字中选两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216C.180D.1626.个大学生分配到三个不同的村庄当村官,每个村庄至少有一名大学生,其中甲村庄恰有一名大学生的分法种数为()A.14B.35C.70D.1007.将甲、乙等名学生分配到三个不同学校实习,每个学校至少一人,且甲、乙在同一学校的分配方案共有()A.18种B.24种C.36种D.72种8.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个小孩的现象普遍存在,某城市关系要好的,,,A B C D四个家庭各有两个小孩共8人,准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A 户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有()A.18种B.24种C.36种D.48种9.某学校周五安排有语文、数学、英语、物理、化学、体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课表的不同排法种数为( )A.600B.288C.480D.50410.设集合}{1,2,3,4,5,6,7,8,9S =,集合}{123,,A a a a =,A S ⊆,123,,a a a 满足123a a a <<且326a a -≤,那么满足条件的集合A 的个数为( )A .76B .78C .83D .8411.有4位同学在同一天的上午、下午参加“身高与体重”“立定跳远”“肺活量”“握力”“台阶”五个项目的测试,每位同学测试两个项目,分别在上午和下午,且每人上午和下午测试的项目不能相同.若上午不测“握力”,下午不测“台阶”,其余项目上午、下午都各测试一人,则不同的安排方式的种数为( )A.264B.72C.266D. 27412.三位女同学两位男同学站成一排,男同学不站两端的排法总数为__________.(用数字作答)13.某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为 .答案1、【答案】 C2、【答案】C【解析】梨子的不同分法共有1545C A 480=(种),故选C.3、【答案】C【解析】分两种情况:第一种,甲、乙只有人入选,有1227C C 42=种;第二种,甲、乙都入选,有2127C C 7=种,所以共有42749+=种方法,故选C.4、【答案】B【解析】用种不同颜色给图中个矩形随机涂色,每个矩形只涂一种颜色,由分步乘法原理可得共有涂色方法2228⨯⨯=种,其中相邻矩形颜色不同有2112⨯⨯=种,则所求概率为2184=,故选B. 5、【答案】C6、【答案】C【解析】甲村庄恰有一名大学生,有15C 5=种分法,另外四名大学生分为两组,共有21344322C C C 437A +=+=种,再分配到两个村庄,共有227A 14⨯=种不同的分法,所以每个村庄至少有一名,且甲村庄恰有一名大学生有51470⨯=种不同的分法,故选C.7.【答案】C8.【答案】B【解析】当A 户家庭的孪生姐妹乘坐甲车或乙车时,则另两个小孩是另外两个家庭的小孩,有2232C 224⨯⨯=种方法,故选B.9、【答案】D【解析】对六节课进行全排有66A 种方法,体育课排在第一节课有55A 种方法,数学课排在第四节课也有55A 种方法,体育课排在第一节课且数学课排在第四节课有44A 种方法,由排除法得这天课表的不同排法种数为654654A 2A A 504-+=. 10.【答案】C11、【答案】A【解析】先安排4位同学参加上午的“身高与体重”“立定跳远”“肺活量”“台阶”测试,共有44A 种不同的安排方式;接下来安排下午的“身高与体重”“立定跳远”“肺活量”“握力”测试,假设,,A B C 同学上午分别安排的是“身高与体重”“立定跳远”“肺活量”测试,若D 同学选择“握力”测试,安排,,A B C 同学分别交叉测试,有2种;若D 同学选择“身高与体重”“立定跳远”“肺活量”测试中的1种,有13A 种方式,安排,,A B C 同学进行测试有3 种,则共有不同安排方式的种数为()4143A 23A 264+=,故选A. 12、【答案】3613、【答案】36。

(完整版)经典排列组合问题100题配超详细解析

(完整版)经典排列组合问题100题配超详细解析

1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55—n ,那么可知下标的值为69—n ,共有69—n-(55—n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C 。

38种 D 。

108种 【答案】B【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21—n )……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21—n)……(100—n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5。

7中选两个数字,组成无重复数字的四位数。

其中偶数的个数为 ( ) A 。

56 B. 96 C. 36 D 。

360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( )A. 280种B. 240种 C 。

职高数学 排列组合二项式概率测试题(含答案)

职高数学 排列组合二项式概率测试题(含答案)

排列组合二项式概率测试题满分120分 时间 120分钟一、选择题(本题共15个小题,每小题 3分,共45分)1.某段铁路共有5个车站,共准备多少种不同的车票( ).A .10B .20C .15D .322.某地生态园有4个出入口,若某游客从任一出入口进入,并且从另外3个出入口之一走出,进出方案种数为( )A .4B .7C .10D .123.将4封不同的信投入3个不同的信箱,则不同的投送方法有多少种( ).A . 43B . 34C . 34C D . 34P4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( )A .6B .4C .8D .105.某商场有四个大门,若从一个门进入,购买商品后再从另一个门出去,不同的进出方法共有多少种 ( ).A .12B .20C .24D .286.6名学生站成一排,其中甲不能站在排尾的不同排法种数是( ).A.1556P P B .1555P P C .56P D .6565P 2P -7.n N ∈,n <25,则乘积(25-n )(26-n )⋅⋅⋅(39-n )等于( ).A.2539P n n -- B .1539P n - C .1525P n - D . 1439P n -8.从集合A ={2,3,5,7,11}中任取两个数作为对数log a x 的底数和真数,则可以得到不同的对数值为( ).A .20B .30C .40D .609.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( )A .72种B .84种C .120种D .168种10.在二项式521x -()的展开式中,含2x 的项是( ).A .25x -B .25xC .240x -D .240x11.抛掷两枚硬币,则两枚硬币都正面朝上的概率为( ).A . 12B . 14C . 18D . 3412.甲、乙两人进行射击比赛,甲击中目标的概率是0.8,乙击中目标的概率是0.6,则甲乙二人恰有一人击中目标的概率是( ).A .0.32B .0.44C .0.12D .0.5613.从“舞蹈、相声、小品……”等5个候选节目中选出4个节目参加“艺术节”的汇演,其中第一出场节目不能是“舞蹈”,也不能是“相声”,则不同的演出方案种数是( )A . 48B . 72C . 96D .10814.某人参加一次考试,4道题中解对3道题则为及格,已知他的解题正确率为0.6,则他能及格的概率是( ).A .0.3456B .0.1296C .0.4752D .0.524815.袋中有5个大小相同的球,其中2个红球,3个白球,从袋中任意抽取2个球,抽取的球为不 同颜色的概率是( ).A . 25B . 35C . 715D . 1225二、填空题(本题有15个空,每空2分,共30分)16.已知事件A 在一次试验中不发生的概率为0.2,则事件A 发生的概率为_____.17.在学校举行的演讲比赛中,共有6名选手进入决赛,则选手甲不在第一个也不在最后一个演讲的概率为______.18.从甲地到乙地有3条路可走,从乙地到丙地有4条路可走,从甲地不经过乙地到丙地有2条路可走,那么从甲地到丙地有______种走法.19.若43410n n C C C +=,则n =______.20.某铁路客运段上有9个站,那么该线路上共有______种不同的票价. 21.7个座位,3个人去坐,每人坐一个座位,有______种不同的坐法.22.612x (+)展开式中二项式系数最大的项是第______项.23.245n nC -=,则n =_________. 24.在三次独立重复试验中,事件A 至少发生1次的概率为6364.则事件A 在一次试验中发生 的概率为_________.25.抛掷两颗骰子,出现总数之和等于7的概率为_________.26.5个人用抽签的方法分配两张电影票,第二个人抽到电影票的概率是_____. 27.4名男同学和3名女同学站成一排照相,则男同学与女同学相间排列的排法种数有_____种.28.从1到100中任取一个数,则这个数既能被2整除,又能被5整除的概率是_______.29.一批产品的次品率为0.1,有放回的抽取3次,则恰好有1次取到次品的概率是_______.30.右表是某个随机变量ξ的概率分布,其中m 的值是_________.三、解答题(本题共7个小题,共45分) 31.用0,1,2,3,4,5可以组成多少个没有重复数字的三位偶数?32. 7个人站成一排照相,(1)若甲不能站在中间,共有多少种不同的排法?(2)若甲必须站在两端,共有多少种不同的排法?(3)若甲乙中间必须间隔一个人,共有多少种不同的排法?33.甲乙两人参加安全知识竞赛,共有10道不同题目,其中选择题7道,判断题3道,甲乙二人依次各抽一题,(1)甲抽到选择题,乙抽到判断题的概率是多 少?(2)甲乙二人抽到不同题型的概率是多少?34.求101x x-()的展开式中的常数项. 35. 7()2x x-的二项展开式中,求(1)第4项;(2)含3x 项的系数. 36.某小组有3名男生和2名女生,任选3个人去参加某项活动,求所选3个人中女生数目ξ的概 率分布.37.一个袋中装有10个形状和大小相同的球,其中8个红球和2个白球,(1)若从中任取1球,求出现白球的概率;(2)若从中有放回地任取1个,连取2次,求出现白球次数ξ的概率分布.排列组合二项式概率测试题答案一、 选择题1—5 B D A B A 6—10 B B A C C 11—15 B B B C B二、填空题16.0.8 17. 2318.14 19.920.36 21.21022.4 23.1024. 34 25. 1626. 2527.144 28. 11029.0.243 30.0.04三、解答题31.个位数字为0有25P 20=个位数字不为0,有11442P P 32=种 故所求没有重复数字共有211544P 2P P 52+=个. 32.(1)1666P P 4320=种 (2)1626C P 1440=种(3) 152552C P P 1200=种33.(1)设A ={甲抽到选择题,乙抽到判断题}()117311109C C 7C C 30P A ==(2)设B ={甲乙二人抽到不同题型}()1111733711109C C C C 7C C 15P A +== 34. 101101C m m m m T xx -+⎛⎫=- ⎪⎝⎭ ()102101C m m m x-=- 令1020m -=,得5m =故,第6项为常数项.()556101C 252T =-=- 35.(1)33443172C T T x x +⎛⎫==- ⎪⎝⎭()333471C 2x x ⎛⎫=- ⎪⎝⎭()43358x x -=⨯-280x =- (2)7172C mm m m T x x -+⎛⎫=- ⎪⎝⎭()77C 2m m m m x x --=-()7272C m m m x -=- 令723m -=,得2m =故第三项为含3x 的项,该项的系数为()2272C 84-= 36.ξ的可能取值为0,1,2.()032335C C 1P 0C 10ξ===;()122335C C 63P 1C 105ξ====,()212335C C 3P 2C 10ξ=== 所以,ξ的概率分布为37.(1)设A ={出现白球},则()21P 105A == (2)ξ的可能取值为0,1,2. 有放回的任取一球,取到白球的概率不变,每次取到白球的概率都是12p =. ()02214160C 5525p ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()121481C 5525p ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 所以,ξ的概率分布为。

数学概率(排列组合)练习题(含答案)

数学概率(排列组合)练习题(含答案)

数学概率(排列组合)练习题(含答案)1.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、文综4科的专题讲座,每科一节课,每节至少有一科,且数学、文综不安排在同一节,则不同的安排方法共有.2.从4名男生4名女生中选3位代表,其中至少两名女生的选法有种.3.用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答).4.将一个白球,一个红球,三个相同的黄球摆放成一排,则白球与红球不相邻的放法有.5.用1、2、3、4、5、6六个数组成没有重复数字的六位数,其中5、6均排在3的同侧,这样的六位数共有个(用数字作答).6.某工厂将4名新招聘员工分配至三个不同的车间,每个车间至少分配一名员工,甲、乙两名员工必须分配至同一车间,则不同的分配方法总数为(用数字作答).7.用4种颜色给一个正四面体的4个顶点染色,若同一条棱的两个端点不能用相同的颜色,那么不同的染色方法共有_____________种。

8.数字1,2,3,4,5,6按如图形式随机排列,设第一行的数为N1,其中N2,N3分别表示第二、三行中的最大数,则满足N1&lt;N2&lt;N3的所有排列的个数是________.9. 4名男生和2名女生站成一排照相,要求男生甲不站在最左端,女生乙不站在最右端,有种不同的站法.(用数字作答)10.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有种(用数字作答)122名女生中选派4人参加社区服务,如果要求至少有1名女11生,那么不同的选派方案种数为.(用数字作答)13.将7个市三好学生名额分配给5个不同的学校,其中甲、乙两校至少各有两个名额,则不同的分配方案种数有 _________ .xx2x?214.方程C17-C16=C16的解集是________.15.从4名男生、3名女生中任选3人参加一次公益活动,其中男生、女生均不少于1人的组合种数为(用数字作答).16.从4名同学中选出3人,参加一项活动,则不同的选方法有种(用数据作答);17.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有________种.18.将6位志愿者分配到甲、已、丙3个志愿者工作站,每个工作站2人,由于志愿者特长不同,A不能去甲工作站,B只能去丙工作站,则不同的分配方法共有__________种.19.现有一大批种子,其中优良种占30℅,从中任取8粒,记X为8粒种子中的优质试卷第1页,总9页。

高中数学选修2-3排列组合问题题目精选(附答案)

高中数学选修2-3排列组合问题题目精选(附答案)

高中数学选修2-3排列组合问题题目精选(附答案)1. 某班有20名学生,其中有5名男生和15名女生。

从中选出3名学生组成一个小组,求以下概率:- 小组中至少有1名男生的概率是多少?答案:小组中至少有1名男生的概率为1减去小组全为女生的概率。

全为女生的概率可以用排列组合来计算,即从15名女生中选出3名女生组成小组的概率。

因此,小组中至少有1名男生的概率为1减去(C(15, 3) / C(20, 3))。

2. 有6本不同的数学书和4本不同的物理书。

现从这些书中任选2本,求以下概率:- 所选的两本书中至少有1本是数学书的概率是多少?答案:所选的两本书中至少有1本是数学书的概率等于1减去两本书都是物理书的概率。

两本书都是物理书的概率可以用排列组合来计算,即从4本物理书中选出2本物理书的概率。

因此,所选的两本书中至少有1本是数学书的概率为1减去(C(4, 2) / C(10, 2))。

3. 某公司有8名员工,其中有3名男员工和5名女员工。

请问,从这8名员工中选出4名员工组成一个小组,使得小组中至少有1名男员工的概率是多少?答案:小组中至少有1名男员工的概率等于1减去小组全为女员工的概率。

全为女员工的概率可以用排列组合来计算,即从5名女员工中选出4名女员工组成小组的概率。

因此,小组中至少有1名男员工的概率为1减去(C(5, 4) / C(8, 4))。

4. 一批音乐CD包含5张古典音乐CD和7张摇滚音乐CD。

现从这批CD中随机选取3张,求以下概率:- 所选的3张CD中至少有2张是摇滚音乐CD的概率是多少?答案:所选的3张CD中至少有2张是摇滚音乐CD的概率等于1减去3张CD都是古典音乐CD的概率。

3张CD都是古典音乐CD的概率可以用排列组合来计算,即从5张古典音乐CD中选出3张古典音乐CD的概率。

因此,所选的3张CD中至少有2张是摇滚音乐CD的概率为1减去(C(5, 3) / C(12, 3))。

5. 一位学生参加了5项体育比赛,他能获得的奖牌有金牌、银牌和铜牌。

排列组合训练题(含答案)

排列组合训练题(含答案)

概率、排列组合、二项式定理专项训练1.5名志愿者随机进入3个不同的奥运场馆参加接待工作,则每个场馆至少有一名志愿者的概率为( )A.53B.151C.85D.81502.先后抛掷两枚均匀的骰子,骰子落地后朝上的点数分别为x ,y ,则2log 1x y =的概率为( ) A .16 B .536C .12D .112 3.记集合(){}22,|16A x y xy =+≤,集合()(){},|40,,B x y x y x y A =+-≤∈表示的平面区域分别为12,ΩΩ.若在区域1Ω内任取一点(),P x y ,则点P 落在区域2Ω中的概率为( ) A .24ππ- B .324ππ+ C .24ππ+ D .324ππ- 4.如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆内的黄豆数为225颗,以此实验数据为依据可以估计出椭圆的面积约为( ). A .16 B .17 C .18 D .195.已知,m n 是某事件发生的概率取值,则关于x 的一元二次方程20x nx m -+= 有实根的概率是 ( )A.12B. 14C. 18D. 1166.某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位,若采取抽签方式确定他们演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ( ) A .110 B .120 C .140 D .11207.有10个人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有( )种排法。

A .510C B .105105A A ÷ C .10102A ÷ D .55105A A8.有6个人围成一圈站,不同的站法种数为( )A .720种B .420种C .120种D .60种 9.用0、1、2、3组成个位数字不是1且没有重复数字的四位数共有( ). A .10个 B .12个 C .14个 D .16个10.某校有六间不同的电脑室,每天晚上至少开放两间,欲求不同安排方案的种数,现有3位同学分别给出了下列三个结果:①26C ;②627-;③345666662C C C C+++,其中正确的结论是( )A .①B .①与②C .②与③D .①②③11.从1,3,5,7,9这5个奇数中选取3个数字,从2,4,6,8这4个偶数中选取2个数字,再将这5个数字组成没有重复数字的五位数,且奇数数字与偶数数字相间排列.这样的五位数的个数是( ) A.180 B.360 C.480 D.72012.设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有 ( ) A. 45个B. 81个C. 165个D. 216个13.五名男同学,三名女同学外出春游,平均分成两组,每组4人,则女同学不都在同一组的不同分法有 A .30种 B .65种 C .35种 D .70种14.如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为( ) A.60 B.480 C.420 D.7015.若在231(3)2nx x-的展开式中含有常数项,则正整数n 取得最小值时的常数项为( ) A .1352- B .135- C .1352D .13516.7(1)x -展开式中系数最大的项为 ( ) A.第4项 B.第5项 C.第7项 D.第8项17.若521()1x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( )A .1B .8C .-1或-9D .1或918.在154)212(+x 的展开式中,系数是有理数的项共有( ) A.4项 B.5项 C.6项 D.7项19.若3162323()n n C C n N ++*=∈且2012(3)n n n x a a x a x a x -=++++ ,则012(1)nna a a a -+-+-= ( )A.256B.-256C.81D.-81 20.如果n 是正偶数,则C n 0+C n 2+…+C n n -2+C n n=( ) A. 2nB. 2n -1C. 2n -2D. (n -1)2n -121.若对任意实数x ,有3322103)2()2()2(-+-+-+=x a x a x a a x 成立,则=++321a a a ( ) A .1 B .8 C .19 D .27 22.若(010,)4k k k Z πθ=≤≤∈,则sin cos 1θθ+≥的概率为( )A .15 B .25 C .211 D .61123.连续抛掷一枚质地均匀的骰子,记下每次面朝上的点数,若出现三个不同的数就停止,则抛掷五次后恰好停止抛掷的不同记录结果总数是( )A .720B .840C .1200D .168024.有两个人在一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则这两个人在不同层离开的概率为 ( ) A.19 B. 29 C. 49 D. 8925.有5个不同的红球和2个不同的黑球排成一列,在两端都有红球的排列中,其中红 球甲和黑球乙相邻的排法有( )A .720B .768C .960D .144026. 4人各写一张贺卡,先集中起来,然后每人从中拿一张别人写的贺卡,则四张贺卡的分配方式有( )A. 6种B. 9种C. 11种D. 23种27.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A.24对 B.30对 C.48对 D.60对28.已知9922109)31(x a x a x a a x ++++=- ,则||||||||9210a a a a ++++ 等于( ) A .29B .49C .39D .129.已知2015220150122015(2)x a a x a x a x -=+++⋅⋅⋅+,则20242014()a a a a ++⋅⋅⋅+-21352015()a a a a ++⋅⋅⋅+= ( )A.12--B. 12-C. 1D.1- 30.已知()4220121x a a x a x +=++++ 7878a x a x +,则从集合,i j a M x x x R a ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭(0,1,2,,8;i = 0,1,2,,8j = )到集合{}1,0,1N =-的映射个数是( ) A .6561 B .316 C .2187 D .21031.设n a (2n ≥,*n N ∈)是(3)nx -的展开式中x 的一次项系数,则23182318333a a a +++= .32.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为________.33.在区间[]0,1内随机的取两个数,a b ,则满足102a b ≤+≤的概率是 ;(用数字作答) 34.若二项式1nx x ⎛⎫+ ⎪⎝⎭展开式中只有第四项的系数最大,则这个展开式中任取一项为有理项的概率是____________.35.信号兵把红旗与白旗从上到下挂在旗杆上表示信号。

数学模块2-3排列组合概率测试含答案

数学模块2-3排列组合概率测试含答案

.故选:D.
∴Eξ= (a+b+c);
设 t= (a+b+c),则 Dξ= [(a-t)2+(b-t)2+(c-t)2]
= [a2+b2+c2-2(a+b+c)t+3t2]= [a2+b2+c2-6t+3t2];
随机变量 η 取值为
的概率都是 ,
∴Eη= ( + + )= (a+b+c),
Dη= [
则 P(A)= = ,P(AB)=
=,
∴在第一次抽到次品的条件下,第二次抽到次品的概率 P(A|B)=
= = .故选 A.
11.【答案】D 解:∵E(X)= ,∴由随机变量 X 的分布列的性质得:
,解得 x= ,y= ,
∴D(X)=(1- )2×0.5+(2- )2× +(3- )2× = 12.【答案】B 解:随机变量 ξ 取值为 a,b,c 的概率都是 ,
=
第 4 页,共 9 页
故选 C. 9.【答案】C 解:∵甲、乙、丙三人独立地去译一个密码,分别译出的概率为 , , ,
∴此密码不能译出的概率(1- )(1- )(1- )= ,
故此密码能译出的概率 P=1- = , 故选:C 10.【答案】A 解:设第一次抽到次品为事件 A,第二次抽到次品为事件 B,

A. −4
B. −3
C. 2
D. 3
5. 设有编号为 1,2,3,4,5 的五个茶杯和编号为 1,2,3,4,5 的五个杯盖,将五个杯盖盖在五个茶杯
上,至少有两个杯盖和茶杯的编号相同的盖法有( )
A. 30 种

排列组合概率统计(答案)

排列组合概率统计(答案)

排列组合二项式定理概率统计(理科适用)1.某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为() A.85B.86 C.91 D.90解析:由题意,可分三类考虑:(1)男生甲入选,女生乙不入选:C13C24+C23C14+C33=31;(2)男生甲不入选,女生乙入选:C14C23+C24C13+C34=34;(3)男生甲入选,女生乙入选:C23+C14C13+C24=21,∴共有入选方法种数为31+34+21=86.答案:B2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种解析:将标号为1,2的卡片放入1个信封,有C13=3种方法,将剩下的4张卡片放入剩下的2个信封中,有C22·C24=6种方法,共有C13C24·C22=3×6=18种.答案:B3.从5张100元,3张200元,2张300元的运动会门票中任选3张,则选取的3张中至少有2张价格相同的不同的选法共有()A.70种B.80种C.90种D.100种解析:基本事件的总数是C310,在三种价格的门票中各自选取1张的方法数是C15C13C12,故其对立事件“选取的3张中至少有2张价格相同”的不同的选法共有C310-C15C13C12=90种.答案:C4.2012年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有()A.1 440种B.1 360种C.1 282种D.1 128种解析:采取对丙和甲进行捆绑的方法:如果不考虑“乙不在正月初一值班”,则安排方案有:A66·A22=1 440种,如果“乙在正月初一值班”,则安排方案有:C11·A14·A22·A44=192种,若“甲在除夕值班”,则“丙在初一值班”,则安排方案有:A55=120种.则不同的安排方案共有1 440-192-120=1 128(种).答案:D5.霓虹灯的一个部位由7个小灯泡并排组成,每个灯泡均可以亮出红色或黄色,现设计每次变换只闪亮其中的三个灯泡,且相邻的两个灯泡不同时亮,则一共可以呈现出不同的变换形式的种数为()A.20 B.30 C.50 D.80解析:按照三个灯泡同色、三个灯泡两红一黄、三个灯泡一红两黄将问题分为三类:第一类:三个灯泡同色时,可以呈现出不同的变换形式的种数为C35×2=20种;第二类:三个灯泡两红一黄时,可以呈现出不同的变换形式的种数为C35×C23=30种;第三类:三个灯泡一红两黄时,可以呈现出不同的变换形式的种数为C35×C23=30种.故呈现出满足条件的不同的变换形式的种数为20+30+30=80.答案:D二、填空题6.(2012·本溪模拟)5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有________种.(以数字作答)解析:①只有1名老队员的排法有C12·C23·A33=36种.②有2名老队员的排法有C22·C13·C12·A22=12种;所以共48种.答案:487.(2012·北京模拟)三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为________.解析:法一:根据题意,两端的座位要空着中间六个座位坐三个人,再空三个座位,这三个座位之间产生四个空,可以认为是坐后产生的空,故共有A34=24种.法二:让人占座位之间的空,因有五个座位,它们之间四个空,人去插空,共有A34=24种.答案:24三、解答题8.将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其他盒子中球的颜色齐全的不同放法共有多少种?解:先选1空盒:C14,将4白、5黑、6红分别放入其余三个盒中,每盒1个,剩1个白球有3种放法,剩2个黑球有3+C23=6种放法,剩3个红球有3+1+A23=10种放法,由分步乘法原理,得C14×6×3×10=720种.9.某中学高三年级共有12个班级,在即将进行的月考中,拟安排12个班主任老师监考数学,每班1人,要求有且只有8个班级是自己的班主任老师监考,则不同的监考安排方案共有多少种?解:先从12个班主任中任意选出8个到自己的班级监考,有C812种安排方案,设余下的班主任为A、B、C、D,自己的班级分别为1、2、3、4,安排班主任A有三种方法,假定安排在2班监考,再安排班主任B有三种方法,假定安排在3班监考,再安排班主任C、D有一种方法,因此安排余下的4个班主任共有9种方法,所以安排方案共有C812·9=4 455种.10.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙二人至少有一人参加,有多少种选法?(4)医疗队中至少有一名内科医生和一名外科医生,有几种选法?解:(1)只需从其他18人中选3人即可,共有C318=816种;(2)只需从其他18人中选5人即可,共有C518=8 568种;(3)分两类:甲、乙中有一人参加;甲、乙都参加.共有C12C418+C318=6 936种;(4)法一:(直接法):至少一名内科一名外科的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C112C48+C212C38+C312C28+C412C18=14 656种.法二:(间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C520-(C58+C512)=14 656种.1.甲:A1、A2是互斥事件;乙:A1、A2是对立事件.那么()A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 解析:由互斥、对立事件的含义知选B 答案:B2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175]的概率为0.5,那么该同学的身高超过175 cm 的概率为( )A .0.2B .0.3C .0.7D .0.8解析:因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3.答案:B3.(2012·皖南八校联考)某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.115B.35C.815D.1415解析: 记4听合格的饮料分别为A 1、A 2、A 3、A 4,2听不合格的饮料分别为B 1、B 2,则从中随机抽取2听有(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,A 4),(A 2,B 1),(A 2,B 2),(A 3,A 4),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共15种不同取法,而至少有一听不合格饮料有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共9种,故所求概率为P =915=35.答案:B4.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为( )A.16B.15C.13D.25解析:由题意可知,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为55+4+3+2+1=13.答案:C5.(2012·合肥模拟)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,A =30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a 、b ,则满足条件的三角形有两个解的概率是( )A.16B.13C.12D.34解析:要使△ABC 有两个解,需满足的条件是⎩⎪⎨⎪⎧a >b sin A ,b >a 因为A =30°,所以⎩⎪⎨⎪⎧b <2a ,b >a满足此条件的a ,b 的值有b =3,a =2;b =4,a =3;b =5,a =3;b =5,a =4;b =6,a =4;b =6,a =5,共6种情况,所以满足条件的三角形有两个解的概率是636=16.答案:A 二、填空题6.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为________.答案:357.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.解析:P =1-0.2×0.25=0.95. 答案:0.95 三、解答题8.已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止.(1)求检验次数为3的概率; (2)求检验次数为5的概率.解:(1)设“在3次检验中,前2次检验中有1次检到次品,第3次检验到次品”为事件A ,则检验次数为3的概率为P (A )=C 12C 15C 27·1C 15=221.(2)记“在5次检验中,前4次检验中有1次检到次品,第5次检验到次品”为事件B ,记“在5次检验中,没有检到次品”为事件C ,则检验次数为5的概率为P =P (B )+P (C )=C 12C 35C 47·1C 13+C 55C 57=521.9.已知向量a =(x 、y ),b =(1,-2),从6张大小相同、分别标有号码1、2、3、4、5、6的卡片中,有放回地抽取两张,x 、y 分别表示第一次、第二次抽取的卡片上的号码.(1)求满足a·b =-1的概率; (2)求满足a·b >0的概率.解:(1)设(x ,y )表示一个基本事件,则两次抽取卡片的所有基本事件有(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、…、(6,5)、(6,6),共36个.用A 表示事件“a·b =-1”,即x -2y =-1,则A 包含的基本事件有(1,1)、(3,2)、(5,3),共3个,P (A )=336=112.(2)a·b >0,即x -2y >0,在(1)中的36个基本事件中,满足x -2y >0的事件有(3,1)、(4,1)、(5,1)、(6,1)、(5,2)、(6,2),共6个,所以所求概率P =636=16.10.某次会议有6名代表参加,A 、B 两名代表来自甲单位,C 、D 两名代表来自乙单位,E 、F 两名代表来自丙单位,现随机选出两名代表发言,问:(1)代表A 被选中的概率是多少?(2)选出的两名代表“恰有1名来自乙单位或2名都来自丙单位”的概率是多少? 解:(1)从这6名代表中随机选出2名,共有15种不同的选法,分别为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).其中代表A 被选中的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),共5种,则代表A 被选中的概率为515=13.(2)法一:随机选出的2名代表“恰有1名来自乙单位或2名都来自丙单位”的结果有9种,分别是 (A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).则“恰有1名来自乙单位或2名都来自丙单位”这一事件的概率为915=35.法二:随机选出的2名代表“恰有1名来自乙单位”的结果有8种,概率为815;随机选出的2名代表“都来自丙单位”的结果有1种,概率为115.则“恰有1名来自乙单位或2名都来自丙单位”这一事件的概率为815+115=35.1.下列4个表格中,可以作为离散型随机变量分布列的一个是( ) A.B.C.D.解析:利用离散型随机变量的分布列的性质检验即可. 答案:C2.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( )A .ξ=4B .ξ=5C .ξ=6D .ξ≤5解析:由条件知“放回5个红球”事件对应的ξ为6. 答案:C3.离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为( )A.23B.34C.45D.56解析:由(11×2+12×3+13×4+14×5)×a =1.知45a =1 ∴a =54. 故P (12<X <52)=P (1)+P (2)=12×54+16×54=56.答案:D4.(2012·福州模拟)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A.1220B.2755C.27220D.2125解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:C5.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是( ) A .P (ξ=3) B .P (ξ≥2) C .P (ξ≤3)D .P (ξ=2)解析:由超几何分布知P (ξ=2)=(n -m )A 2mA 3n 答案:D 二、填空题6.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=______. 解析:∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案:237.设随机变量X 只能取5、6、7、…、16这12个值,且取每个值的概率相同,则P (X >8)=________,P (6<X ≤14)=________.解析:P (X >8)=23,P (6<X ≤14)=23.答案:23 23三、解答题8.(2012·扬州模拟)口袋中有n (n ∈N *)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值; (2)X 的分布列.解:(1)由P (X =2)=730知C 13C 1n +3×C 1nC 1n +2=730, ∴90n =7(n +2)(n +3).∴n =7.(2)X =1,2,3,4 且P (X =1)=710,P (X =2)=730,P (X =3)=7120,P (X =4)=1120.∴X 的分布列为9.一项试验有两套方案,每套方案试验成功的概率都是23,试验不成功的概率都是13.甲随机地从两套方案中选取一套进行这项试验,共试验了3次,且每次试验相互独立.(1)求3次试验都选择了同一套方案且都试验成功的概率;(2)记3次试验中,都选择了第一套方案并试验成功的次数为X ,求X 的分布列. 解:(1)记事件“一次试验中,选择第i 套方案并试验成功”为A i ,i =1,2,则P (A i )=1C 12×23=13. 3次试验选择了同一套方案且都试验成功的概率 P =P (A 1·A 1·A 1+A 2·A 2·A 2)=⎝⎛⎭⎫133+⎝⎛⎭⎫133=227.(2)由题意知X 的可能取值为0,1,2,3,则X ~B (3,23), P (X =k )=C k 3⎝⎛⎭⎫133-k ⎝⎛⎭⎫23k,k =0,1,2,3. X 的分布列为10.在某射击比赛中,比赛规则如下:每位选手最多射击3次,射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i (i =1,2,3)次射击时击中目标得4-i 分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.(1)求甲恰好射击两次的概率;(2)设选手甲停止射击时的得分总数为ξ,求随机变量ξ的分布列.解:(1)记“选手甲第i 次击中目标的事件”为A i (i =1,2,3),则P (A i )=0.8,P (A i )=0.2, 依题意可知:A i 与A j (i ,j =1,2,3,i ≠j )相互独立, 所求的概率为P (A 1A 2)=P (A 1)P (A 2)=0.8×0.2=0.16. (2)ξ的可能取值为0,3,5,6.P (ξ=0)=0.2,P (ξ=3)=0.8×0.2=0.16, P (ξ=5)=0.82×0.2=0.128,P (ξ=6)=0.83=0.512. 所以ξ的分布列为:1.若随机变量X 的分布列如下表,则E (X )等于( )A.118B.19C.209D.920解析:由分布列的性质可得2x +3x +7x +2x +3x +x =1,∴x =118.∴E (X )=0×2x +1×3x+2×7x +3×2x +4×3x +5x =40x =209.答案:C2.(2012·潍坊模拟)设X 为随机变量,X ~B ⎝⎛⎭⎫n ,13,若随机变量X 的数学期望E (X )=2,则P (X =2)等于( )A.1316B.4243C.13243D.80243解析:∵X ~B ⎝⎛⎭⎫n ,13,∴E (X )=n3=2.∴n =6. ∴P (X =2)=C 26⎝⎛⎭⎫132⎝⎛⎭⎫234=80243. 答案:D3.已知随机变量X ~B (6,22),则P (-2≤X ≤5.5)=( )A.78B.18C.6364D.3132解析:依题意,P (-2≤X ≤5.5)=P (X =0,1,2,3,4,5)=1-P (X =6)=1-C 66×(22)6=78. 答案:A4.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧.其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,若随机变量X =|a -b |的取值,则X 的数学期望E (X )=( )A.89B.35C.25D.13解析:对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126条,X 的可能取值有0,1,2.P (X =0)=6×7126=13,P (X =1)=8×7126=49,P (X =2)=4×7126=29,E (X )=89.答案:A5.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,a 、b 、c ∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为( )A.148B.124C.112D.16解析:依题意得3a +2b +0×c =1,∵a >0,b >0,∴3a +2b ≥26ab ,即26ab ≤1,∴ab ≤124.当且仅当3a =2b 即a =25,b =35时等式成立.答案:B 二、填空题6.某射手射击所得环数ξ的分布列如下:已知ξ的期望E (ξ)=8.9,则y 的值为________.解析:依题意得⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即⎩⎪⎨⎪⎧x +y =0.6,7x +10y =5.4,由此解得y =0.4. 答案:0.47.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则数学期望E (X )=________(结果用最简分数表示).解析:首先X ∈{0,1,2}.∵P (X =0)=C 25C 27=1021,P (X =1)=C 12C 15C 27=1021,P (X =2)=C 22C 27=121.∴E (X )=0×1021+1×1021+2×121=1221=47.答案:47三、解答题8.某品牌汽车的4S 店,对最近100位采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4S 店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润.(1)若以频率作为概率,求事件A :“购买该品牌汽车的3位顾客中,至多有1位采用分3期付款”的概率P (A );(2)求η的分布列及其数学期望E (η).解:(1)由题意可知“购买该品牌汽车的3位顾客中有1位采用分3期付款”的概率为0.2,所以P (A )=0.83+C 13×0.2×(1-0.2)2=0.896.(2)由a100=0.2得a =20, ∵40+20+a +10+b =100,∴b =10. 记分期付款的期数为ξ,依题意得: P (ξ=1)=40100=0.4,P (ξ=2)=20100=0.2,P (ξ=3)=20100=0.2,P (ξ=4)=10100=0.1,P (ξ=5)=10100=0.1.由题意知η的可能取值为:1,1.5,2(单位:万元). P (η=1)=P (ξ=1)=0.4,P (η=1.5)=P (ξ=2)+P (ξ=3)=0.4; P (η=2)=P (ξ=4)+P (ξ=5)=0.1+0.1=0.2. ∴η的分布列为:∴η的数学期望E (η)=1×0.4+1.5×0.4+2×0.2=1.4(万元).9.(2012·广州调研)某商店储存的50个灯泡中,甲厂生产的灯泡占60%,乙厂生产的灯泡占40%,甲厂生产的灯泡的一等品率是90%,乙厂生产的灯泡的一等品率是80%.(1)若从这50个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?(2)若从这50个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ,求E (ξ)的值.解:(1)法一:设事件A 表示“甲厂生产的灯泡”,事件B 表示“灯泡为一等品”,依题意有P (A )=0.6,P (B |A )=0.9,根据条件概率计算公式得P (AB )=P (A )·P (B |A )=0.6×0.9=0.54.法二:该商店储存的50个灯泡中,甲厂生产的灯泡有50×60%=30个,乙厂生产的灯泡有50×40%=20个,其中是甲厂生产的一等品有30×90%=27个,故从这50个灯泡中随机抽取出一个灯泡,它是甲厂生产的一等品的概率为2750=0.54.(2)依题意,ξ的取值为0,1,2,P (ξ=0)=C 223C 250=2531 225,P (ξ=1)=C 127C 123C 250=6211 225,P (ξ=2)=C 227C 250=3511 225,∴ξ的分布列为∴E (ξ)=0×2531 225+1×6211 225+2×3511 225=1.08.10.(2012·冀州模拟)今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以由此计算出自己每天的碳排放量.例如:家居用电的碳排放量(千克)=耗电度数×0.785,汽车的碳排放量(千克)=油耗公升数×0.785等.某班同学利用寒假在两个小区逐户进行了一次生活习惯是否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.这二族人数占各自小区总人数的比例P 数据如下:(1)如果甲、乙来自A 小区,丙、丁来自B 小区,求这4人中恰有2人是低碳族的概率; (2)A 小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A 小区中任选25人,记ξ表示25个人中低碳族人数,求E (ξ).解:(1)记这4人中恰好有2人是低碳族为事件A , P (A )=12×12×15×15+4×12×12×45×15+12×12×45×45=33100.(2)设A 小区有a 人,2周后非低碳族的概率P =a ×12×(1-15)2a =825,2周后低碳族的概率P =1-825=1725, 依题意ξ~B (25,1725),所以E (ξ)=25×1725=17.1.二项式6)12(xx -的展开式中的常数项是( ) A .20 B .-20 C .160D .-160解析:二项式(2x -1x )6的展开式的通项是T r +1=C r 6·(2x )6-r ·⎝⎛⎭⎫-1x r =C r 6·26-r ·(-1)r ·x 6-2r .令6-2r =0,得r =3,因此二项式(2x -1x)6的展开式中的常数项是C 36·26-3·(-1)3=-160. 答案:D 2.若二项式nxx )2(2+的展开式中所有项的系数之和为243,则展开式中x -4的系数是( )A .80B .40C .20D .10解析:令x =1,则3n =243,解得n =5.二项展开式的通项公式是T r +1=C r 5x5-r ·2r ·x -2r=2r ·C r 5·x 5-3r ,由5-3r =-4,得r =3.故展开式中x -4的系数是23C 35=80.答案:A3.(1-x )8展开式中不含x 4项的系数的和为( ) A .-1 B .0 C .1D .2解析:二项式(1-x )8各项系数和为(1-1)8=0,二项式(1-x )8展开式的通项公式为(-1)r ·C r 8·2rx ,当r =8时,可得x 4项的系数为(-1)8·C 88=1,由此可得二项式(1-x )8展开式中不含x 4项的系数的和为0-1=-1.答案:A4.若nxx )2(+的展开式中的第5项为常数,则n =( ) A .8 B .10 C .12D .15解析:∵T 4+1=C 4n (x )n -4⎝⎛⎭⎫2x 4=C 4n 24122n x -为常数,∴n -122=0,n =12. 答案:C5.若(x +y )9按x 的降幂排列的展开式中,第二项不大于第三项,且x +y =1,xy <0,则x 的取值范围是( )A .(-∞,15)B .[45,+∞)C .(-∞,-45]D .(1,+∞)解析:二项式(x +y )9的展开式的通项是T r +1=C r 9·x 9-r ·y r 依题意有 ⎩⎪⎨⎪⎧C 19·x 9-1·y ≤C 29·x 9-2·y 2,x +y =1,xy <0.由此得⎩⎪⎨⎪⎧x 8·(1-x )-4x 7·(1-x )2≤0x (1-x )<0,由此解得x >1,即x 的取值范围是(1,+∞). 答案:D 二、填空题6.设二项式6)(xa x -(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________.解析:对于T r +1=C r 6x 6-r 12ra x ⎛⎫- ⎪ ⎪⎝⎭=C r 6(-a )r 362rx -,B =C 46(-a )4,A =C 26(-a )2.∵B =4A ,a >0,∴a =2. 答案:27.(1+x )3(1+1x )3的展开式中1x的系数是________.解析:利用二项式定理得(1+x )3⎝⎛⎭⎫1+1x 3的展开式的各项为C r 3x r ·C n 3x -n =C r 3C n 3x r -n,令r -n =-1,故可得展开式中含1x 项的是C 03·C 13x +C 13·C 23x +C 23·C 33x =15x,即(1+x )3⎝⎛⎭⎫1+1x 3的展开式中1x 的系数是15. 答案:15。

初三数学概率与排列组合练习题及答案20题

初三数学概率与排列组合练习题及答案20题

初三数学概率与排列组合练习题及答案20题1、某班级有24名学生,其中12人喜欢音乐,15人喜欢篮球。

有4人既喜欢音乐又喜欢篮球。

某学生只有喜欢音乐或者喜欢篮球。

请问该班级有多少名学生既不喜欢音乐也不喜欢篮球?解答:根据题意,喜欢音乐的学生数量为12,喜欢篮球的学生数量为15,既喜欢音乐又喜欢篮球的学生数量为4。

根据集合的性质可知,喜欢音乐或者喜欢篮球的学生数量应为喜欢音乐的学生数量加上喜欢篮球的学生数量,再减去既喜欢音乐又喜欢篮球的学生数量。

即 12 + 15 - 4 = 23。

所以,该班级共有23名学生既不喜欢音乐也不喜欢篮球。

2、小明有6只不同颜色的球,他想把这些球放入4个不同的盒子中。

每个盒子至少放一个球。

问他有多少种不同的放置方法?解答:首先,我们需要找到小明将6个球分配到4个盒子中的所有可能性。

假设每个盒子中放了a、b、c、d个球,根据题意可知,a、b、c、d都是大于等于1的正整数,并且a + b + c + d = 6。

我们可以使用组合数学中的排列组合方法来解答这个问题。

首先,将6个球放到4个盒子中,相当于在6个位置中插入3个分隔符,将这6个位置分为4个区域。

例如,位置间隔和分隔符的排列可以表示为:OO|OOO|O|。

根据排列组合的知识,将3个相同的分隔符插入6个位置中的所有不同方法数为 C(6, 3) = 20。

所以,小明有20种不同的放置方法。

3、在一副标准扑克牌中,从中随机抽取3张牌。

请问有多少种可能的抽牌结果?解答:一副标准扑克牌共有52张牌,我们需要从中抽取3张牌,而每张牌的选取都是独立的,所以我们可以使用排列组合的方法计算总的可能性。

根据组合数学的知识,从n个元素中选取m个元素的组合数可以表示为 C(n, m) = n! / (m! * (n - m)!)。

所以,从52张牌中选取3张牌的组合数为 C(52, 3) = 22,100。

因此,有22,100种可能的抽牌结果。

4、一枚硬币抛掷8次,问出现正面的次数为奇数的概率是多少?解答:一枚硬币抛掷8次,每次抛掷都有两种可能的结果:正面或反面。

高考复习排列组合与概率试题含答案

高考复习排列组合与概率试题含答案

一、选择题(每题5分,计60分)1、书架上同一层任意立放着不同的10本书,那么指定的3本书连在一起的概率为(A )A 、1/15B 、1/120C 、1/90D 、1/302、甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个螺母,其中有180个A 型的,现从甲乙两盒中各任取一个,则能配成A 型的螺栓的概率为(C )A 、1/20B 、15/16C 、3/5D 、19/203、一个小孩用13个字母:3个A ,2个I ,2个M ,2个J 其它C 、E 、H 、N 各一个作组字游戏,恰好组成“MATHEMATICIAN ”一词的概率为(D )A 、!824B 、!848C 、!1324D 、!1348 4、袋中有红球、黄球、白球各1个,每次任取一个,有放回地抽取3次,则下旬事件中概率是8/9的是(B )A 、颜色全相同B 、颜色不全相同C 、颜色全不同D 、颜色无红色5、某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为(C )A 、P 3B 、(1—P)3C 、1—P 3D 、1—(1-P)36.20XX 年7月7日,甲地下雨的概率是0.15,乙地下雨的概率是0.12。

假定在这天两地是否下雨相互之间没有影响,那么甲、乙都不下雨的概率是( C )(A ) 0.102 (B ) 0.132(C ) 0.748 (D ) 0.9827.电灯泡使用时数在1000小时以上的概率为0.8,则3个灯泡在使用1000小时后坏了1个的概率是( D )(A ) 0.128 (B ) 31(C ) 0.104 (D ) 0.3848. 从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率BA.小B.大C.相等D.大小不能确定9.16支球队,其中6支欧洲队、4支美洲队、3支亚洲队、3支非洲队,从中任抽一队为欧洲队或美洲队的概率为( D )()A 1101416C C C ()1101416C C C B + ()1161416C C C C ()1161416C C C D + 10.两袋分别装有写着0、1、2、3、4、5六个数字的6张卡片,从每袋中各任取一张卡片,所得两数之和等于7的概率为(B )()111A ()91B ()152C ()154D 11.在100个产品中有10个次品,从中任取4个恰有1个次品的概率为( D ) ()()()31091014100C A ()101B ()()3109101C ()4100390110C C C D 12.某人有9把钥匙,其中一把是开办公室门的,现随机取一把,取后不放回,则第5次能打开办公室门的概率为( A )()91A ()()()49859159C B ()95C ()5944A A D 二、填空题(每题5分,计20分)13.两名战士在一次射击比赛中,甲得1分,2分,3分的概率分别是0.2,0.3,0.5,乙得1分,2分,3分的概率分别是0.1,0.6,0.3,那么两名战士哪一位得胜的希望较大_____战士甲________.14.有两组问题,其中第一组中有数学题6个,物理题4个;第二组中有数学题4个,物理题6个。

高中数学概率统计排列组合有答案

高中数学概率统计排列组合有答案

排列组合一、一、 选择题选择题1.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有名女生的选法共有 ( A )A .36种B .30种C .42种D .60种 2.将5名大学生分配到3个乡镇去任职,每个乡镇至少一名,不同的分配方案有( B )种 .A 240 .B 150 .C 60 .D 1803.甲、乙、丙、丁、戌5人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为(人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为( C )A .72种B .54种C .36种D .24种 4.某班要从6名同学中选出4人参加校运动会的4×100m 接力比赛,其中甲、乙两名运动员必须入选,而且甲、乙两人中必须有一个人跑最后一棒,则不同的安排方法共有(入选,而且甲、乙两人中必须有一个人跑最后一棒,则不同的安排方法共有( B )A .24种B .72种C .144种D .360种 5.从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是(三位数的个数是( B )A .36 B .48 C .52 D .54 6.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为(法种数为( C )A .12B .16C .24D .327.(7.(某小组有某小组有4人,负责从周一至周五的班级值日,每天只安排一人,每人至少一天,则安排方法共有C A .480种 B B..300种 C C..240种 D D..120 8.8.从从5男4女中选4位代表,其中至少有2位男生,且至少有1位女生,分别到四个不同的工厂调查,不同的分派方法有12. D A .100种 B B..400种 C C..480种 D D..2400种9、(江苏省启东中学高三综合测试三)有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位学要站在一起,则不同的站法有并且乙、丙两位学要站在一起,则不同的站法有A .240种B .192种C .96种D .48种 答案:B 10、将A、B、C、D四个球放入编号为1,2,3,4的三个盒子中,每个盒子中至少放一个球且A、B两个球不能放在同一盒子中,则不同的放法有且A、B两个球不能放在同一盒子中,则不同的放法有 ( )A.15;A.15; B.18;B.18; C.30;C.30; D.36;D.36; 11、在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A 、56个B 、57个C 、58个D 、60个本题主要考查简单的排列及其变形. 解析:万位为3的共计A44=24个均满足;个均满足;万位为2,千位为3,4,5的除去23145外都满足,共3×3×A33A33-1=17个;个; 万位为4,千位为1,2,3的除去43521外都满足,共3×3×A33A33-1=17个;个;以上共计24+17+17=58个 答案:C 12、(北京市东城区2008年高三综合练习二)某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有广告不能连续播放,则不同的播放方式有( ) A .120种 B .48种C .36种D .18种答案:C 13、(北京市宣武区2008年高三综合练习一)编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是(的五个座位,其中有且只有两个的编号与座位号一致的坐法是( ) A 10种 B 20种 C 30种 D 60种 答案:B 14、(北京市宣武区2008年高三综合练习二)从1到10这是个数中,任意选取4个数,其中第二大的数是7的情况共有的情况共有 ( )A 18种 B 30种 C 45种 D 84种 答案:C 15、(福建省莆田一中2007~2008学年上学期期末考试卷)为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,12名参赛同学中有4人获奖,且这4人来自3人不同的代表队,则不同获奖情况种数共有(人不同的代表队,则不同获奖情况种数共有( ) A .412CB .1312121236C C C C CC .12121336C C C CD .221312121136A C C C C C答案:C 16、(甘肃省河西五市2008年高三第一次联考)某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:节目编排成节目单,如下表:序号序号 1 2 3 4 5 6 节目节目如果A 、B 两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有号位置,那么节目单上不同的排序方式有 ( )A 192种B 144种C 96种D 72种答案:B 17、(河南省濮阳市2008年高三摸底考试)设有甲、乙、丙三项任务,甲需要2人承担,乙、丙各需要1人承担,现在从10人中选派4人承担这项任务,不同的选派方法共有( ) A .1260种 B .2025种 C .2520种 D .5040种 答案:C 18、若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为(空子集中,具有伙伴关系的集合的个数为( ) A .15 B .16 C .28 D .25答案:A 具有伙伴关系的元素组有-1,1,21、2,31、3共四组,它们中任一组、二组、三组、四组均可组成非空伙伴关系集合,个数为C 14+ C 24+ C 34+ C 44=15, 选A .19、(吉林省吉林市2008届上期末)有5名学生站成一列,要求甲同学必须站在乙同学的后面(可以不相邻),则不同的站法有(,则不同的站法有( )A .120种B .60种C .48种D .150种 答案:B 20、若国际研究小组由来自3个国家的20人组成,其中A 国10人,B 国6人,C 国4人,按分层抽样法从中选10人组成联络小组,则不同的选法有(人组成联络小组,则不同的选法有( )种. )()))且甲车在乙车前开出,那么不同的调度方案有 种.种数是 . 种数是(2)能组成多少个无重复数字的四位偶数?)能组成多少个无重复数字的四位偶数?(3)能组成多少个无重复数字且被25个整除的四位数?个整除的四位数? (4)组成无重复数字的四位数中比4032大的数有多少个?大的数有多少个? 解:(1)1355300A A =(2)31125244156A A A A +=(3)11233421A A A +=(4)312154431112A A A A +++=8、()()34121x x +-展开式中x 的系数为__2_________。

排列组合和概率习题及答案

排列组合和概率习题及答案

C 2n k (1/2) 2n独立重复试验。

如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率为P n (K )=C n k P k (1-P) n-k(一夫妇生四孩子,问生2男2女的情况之几率;每次生男女概率相同,1/2,如抛硬币问题(抛四次,2次朝上),即C 42(1/2) 4=3/812、 有5个白色珠子和4个黑色珠子,从中任取3个,问其中至少有一个是黑色的概率。

1- C 53 /C 93 13、 自然数计划S 中所有满足n 100, 问满足n(n+1)(n+2) 被6整除的n 的取值概率?由于3个连续自然数必包括一个偶数及一个可被3整除的数,因此100% 14、 设0为正方形ABCD[ 坐标为(1,1),(1,-1),(-1,1),(-1,-1)]中的一点,求起落在x 2+y 2 1的概率。

面积法。

x 2+y 2=1为一个以原点为圆心,半径为1的圆,面积为л,正方形面积为4,ANSWER: л/415、 A>B (成功的概率)?(1) A 前半部分的成功概率为1%,B 前半部分成功概率为1.4%.(2) A 后半部分的成功概率为10%,B 后半部分成功概率为8.5%.C. P(A)=1%*10% P(B)=1.4%*8.5%16、 集合A 中有100个数,B 中有50个数,并且满足A 中元素于B 中元素关系a+b=10的有20对。

问任意分别从A 和B 中各抽签一个,抽到满足a+b=10的a,b 的概率。

C 201 /C 1001 C 50117、 有两组数,都是『1,2,3,4,5,6』,分别任意取出两个,其中一个比另一个大2的概率?2*4/ C 61 C 61由于注明分别,即分两次取。

18、 从0到9这10个数中任取一个数并且记下它的值,再取一个数也记下它的值。

当两个值的和为8时,出现5的概率是多少?2/9. 总共有{(8,0)(0,8)(1,7)(7,1)(6,2)(2,6)(5,3)(3,5)(4,4)}集合中不能有重复元素。

排列组合概率【含答案】

排列组合概率【含答案】

排列组合概率【含答案】【知识点】
【例题选讲】
例3 采购员要购买10个⼀包的电器元件. 他的采购⽅法是:从⼀包中随机抽查3个, 如这3个元件都是好的,他才买下这⼀包. 假定含有4个次品的包数占 30%,⽽其余包中各含 1个次品. 求采购员拒绝购买的概率。

解记
B B A 1241==={},{},{}
取到的是含个次品的包取到的是含个次品的包采购员拒绝购买
则B B 12,构成样本空间的⼀个正划分,且P B P B ().,()..120307== ⼜由古典概型计算知
103
1)(6
5
1)(310
392310361=-
==
-=C
C B A P C C B A P
从⽽由全概率公式得到
50
23
10310765103)()()()()(2211=
+=
+=B A P B P B A P B P A P 例4 已知甲、⼄两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,⼄箱中仅装有3件合格品,从甲箱中任取3件放⼊⼄箱后,试求从⼄箱中任取⼀件产品是次品的概率。

解设A 表⽰事件 “从⼄箱中任取⼀件产品是次品”, 根据全概率公式, 有
∑====3
)()|()(k k X P k X A P A P
4
1
63626103
6
0333
361323362313363303=
+++=C C C C C C C C C C C C。

排列组合概率练习

排列组合概率练习

排列组合概率练习一、选择题(10×5'=50')1. 8本不同的书分给甲、乙、丙3人,其中有两人各得3本,一人得2本,则不同的分法共有( ) A.560种 B.280种 C.1 680种 D.3 360种2.从不同号码的5双鞋中任取4只,其中恰好有一双的取法种数为( ) A.120 B.240 C.180 D.603.停车场划出一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法有( )A.A 88种B.A 812种C.A 88·C18种D.A 88·C 19种4.设集合M ={a |a ∈N ,1≤a ≤10},A 是M 的三元素子集且至少有两个偶数元素,则如此的集合A 的个数是( )A.60B.100C.120D.1605.某单位有三个科室,为实现减员增效,每科室抽调2人去参加再就业培训,培训后这6人中有2人返回单位,但不回到原科室工作,且每科室至多安排一人,问共有多少种不同的安排方法( ) A.75种 B.42种 C.30种 D.15种6.两个事件对立是这两个事件互斥的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.不充分且不必要条件7.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一次,他们都中靶的概率为 ( )A.53 B. 43 C. 2512 D.2514 8.一学生通过某种英语听力测试的概率为21,他连续测试2次,则恰有1次获得通过的概率为 ( )A. 41B. 31C. 21D. 349.一个小组有8个学生在同年出生,每个学生的生日都不相同的概率是 ( )A. 83658365C C B.3658C. 88365365AD.88365365C10.在正方体8个顶点中任取4个,其中4点恰好能构成三棱锥的概率是 ( ) A.3532 B. 3531C. 3528D. 3529二、填空题(4×3'=12')11.将数字1、2、3、4、5、6、7填入一排编号1、2、3、4、5、6、7的七个方格中,现要适当调换,但每次调换时,恰有四个方格中的数字不变,共有不同的调换方式种数为 .12.在分别标有2、4、6、8、11、12、13的七张卡片中任取两张,用卡片上的两个数组成一个分数,在所得分数中既约分数的概率为 .13.有6群鸽子任意分群放养在甲、乙、丙3片不同的树林里,则甲树林恰有3群鸽子的概率为.14.电子设备的某一部件由9个元件组成,其中任何一个元件损坏了,那个部件就不能工作.假定每个元件能使用3 000小时的概率为0.99,则那个部件能工作3 000小时的概率为(结果保留两位有效数字).三、解答题(10'+4×12'=58')15.从7个班中抽出10名学生去做某项工作,每班至少抽出1人,若只考虑各班抽出的人数,而不考虑具体人选,有几种不同抽法?16.已知函数y=f(x)的定义域为A={x|1≤x≤7,x∈N},值域为B={0,1}.(1)试问如此的函数有多少个?(2)使定义域中恰有4个不同元素,对应的函数值差不多上1,如此的函数有多少个?17.一批高梁种子,其发芽率是0.8,现每穴种3粒.问:(1)一穴中有两粒出芽的概率是多少?(2)一穴中小于3粒出芽的概率是多少?18.排队人数0 1 2 3 4 5人以上概率0.1 0.16 0.3 0.3 0.1 0.04求:(1)至多有2个人排队的概率;(2)至少有2人排队的概率.19.一个口袋内装有大小相同的7个白球和3个黑球,从中任意摸出2个,得到1个白球和1个黑球的概率是多少?排列、组合、概率练习120分答案1.C33223538A A C C ••=1 680.2.C 2C 11·C 24+C 25·C 12·C 13=180或C 15·C24·2·2=180.3.D 插空法.空车位插入8辆车的9个空格,故有C 19·A 88.4.A.M 中有5个奇数,5个偶数,至少取2个偶数,∴C 25C 15+C 35C 05=60个.5.B分两类:(1)返回两人来自同一科室,返回有A 22种,故有C 13·A22=6;(2)两人来自不同的科室,返回有2+1=3,故有(C 26C 13)·3=36种.共有42种.6.A 由定义知选A .7.D ∵54×107=2514,∴选D. 8.C ∵21×21+21×21=21,∴选C.9.C 8个学生的生日占用8天,每个学生的生日都有365种可能.10.D 所有4点的组合数为48C ,共面的情形:6个面、6个对角面;三棱锥的4个顶点不共面,故所求概率为48C -1235294844=C C .11.70 从7个方格选出3个方格,有C 37,3个方格的数字重排,但没有一个数字与先前数字相同有2种,故共有C 37·2=70(种).12.2111 从中取一奇数、一偶数组成的分数既约,又11、13互质,∴概率为2722221215A A A C C +=2111. 13.729160 ∵72916032C 6336=•.14. 0.91 因为各元件能否正常工作是相互独立的,因此所求概率P =0.999≈0.91.15.解析一:由于只考虑抽出的人数而不考虑具体人选,同时每班至少一人,因此只需考虑除去每班1人外的剩余3个名额的抽取方法.而三个名额的分组形式为“1,1,1”或“2,1,0”或“3,0,0”.因此可分三类:第一类:若再从7个班中抽出3个班每班1人,有C 37种方法.第二类:若再从7个班中抽出2个班每班分别有2人或1人,有A27种方法.第三类:若再从7个班中抽出1个班,从中抽出3人,有C 17种方法.依照加法原理共有:N=C 37+P 27+C 17=84种方法.解析二:[隔板法]本题相当于将10个名额分成7组(每组至少1个名额)对应7个班.因此,可作如下考虑:10人形成9个相邻空位,欲分成7部分,需用6个“隔板”任意插入9个空位中,不同的插入方法共有:C 69=84(种).点评:本例由于只考虑人数,而不考虑具体人选.即元素之间不可区分,故才可用上述两种方法.16.(1)先对A 中7个元素分为两组有C 17+C27+C37=63种,再将每次分组分别对应0,1有A 22种,故共有63×2=126个如此的函数.(2)从B 中0,1分别在A 中选元素入手,由(1)先有C 47种,第二步由0选只有1种,故共有C 47=35种.17.事件A 恰好发生k 次的概率为kn C P k (1-P )n-k ,事件A 发生偶数次的概率为0n C P 0(1-P )n +2n C P 2(1-P )n -2+ 4n C ·P (1-P )n -4+…+[(1-P )+P ]n=0n C (1-P )n P 0+1n C (1-P )n -1P +2n C ·(1-P )n -2·P 2+3n C (1-P )n -3P 3+… ①[(1-P )+(-P )]n =0n C (1-P )n (-P )n +1n C (1-P )n -1·(-P )+ 2n C (1-P )n -2(-P )2+3n C (1-P )n -3(-P )3+… ②①+②得[(1-P )+P ]n +[(1-P )+(-P )]n =2[0n C (1-P )n P 0+0n C (1-P )n -2·P 2+…]. 因此0n C (1-P )n ·P 0+2n C (1-P )n -2·P 2+…=21[1+(1-2P )n ]. 故事件A 发生偶次的概率为2)21(1nP -+.18.(1)设没有人排除为事件A ,1个人排队为事件B ,2个人排队为事件C ,则P (A )=0.1, P (B )=0.16, P (C )=0.3,依题意A 、B 、C 彼此互斥,因此至多2个人排队的概率为: P (A +B +C )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56. (2)设至少2个人排队为事件D ,则D 为至多1个人排队,即D =A +B ,因此 P (D )=1-P (D )=1-P (A +B )=1-[P (A )+P (B )]=1-(0.1+0.16)=0.74.19. 我们想像着给白球编号,因此有白1,白2,白3,白4,白5,白6,白7共7个白球;又想像着给黑球编号,有黑1,黑2,黑3共3个黑球.从这十个不同的球中,任意取出两个球的取法共有12910210⨯⨯=C =45种.每一种取法确实是一个差不多事件.由于这些球大小相同,我们认为取得白1和白2的可能性与取得黑1和黑2的可能性是相等的.这确实是说,这45种取法中,每两种的可能性差不多上相等的.如此就得到一个含有45个差不多事件的等可能差不多事件集.如此来假设等可能性就合乎情理了.取得一个黑球和白球的取法共有多少呢?依照分步计数原理,共有⨯=⨯71317C C 3=21种取法.∴P (摸得一个白球和一个黑球)=1574521=.。

排列组合与概率初步练习试卷3(题后含答案及解析)

排列组合与概率初步练习试卷3(题后含答案及解析)

排列组合与概率初步练习试卷3(题后含答案及解析) 题型有:1. 问题求解 2. 条件充分性判断 5. 解答题问题求解本大题共15小题,每小题3分,共45分。

下列每题给出的五个选项中,只有一项是符合试题要求的。

1.将3封信投入4个不同的信箱,则不同的投信方法种数是( ).A.12B.34C.43D.7E.以上答案均不正确正确答案:C解析:做这件事情可以分三步完成:第一步,将第一封信投入信箱有4种不同的投放方法;第二步,将第二封信投入信箱有4种不同的投放方法;第三步,将第三封信投入信箱仍有4种不同的投放方法.所以由乘法原理,将3封信投入4个不同的信箱有4×4×4=43种不同的投放方法.故本题的正确选项为C.知识模块:排列组合与概率初步2.A.46B.64C.24D.240E.480正确答案:E解析:完成这件事情共分4个步骤,可计算出依次为①②③④着色时各自的方法数,再由乘法原理确定总的着色方法数,因此有为①着色有6种方法,为②着色有5种方法,为③着色有4种方法,为④着色有4种方法;所以共有6×5×4×4=480种.故本题的正确选项为E.知识模块:排列组合与概率初步3.A.B.C.D.E.正确答案:C解析:从甲地到丙地不同的路可以分为两类:第一类,从甲地经乙地到丙地(分两步):第一步,从甲地到乙地有2条路;第二步,从乙地到丙地有3条路。

由乘法原理,从甲地经乙地到丙地共有2×3=6条路.第二类,从甲地经丁地到丙地(分两步):第一步,从甲地到丁地有4条路;第二步,从丁地到丙地有2条路。

由乘法原理,从甲地经丁地到丙地共有4×2=8条路.再由加法原理,得从甲地到丙地不同的路共有6+8=14条路.故本题的正确选项为C.知识模块:排列组合与概率初步4.A.B.C.D.E.正确答案:B解析:知识模块:排列组合与概率初步5.A.B.C.D.E.正确答案:B解析:知识模块:排列组合与概率初步6.7名同学排成一排,其中甲,乙,丙3人必须排在一起的不同的排法有( ).A.680种B.700种C.710种D.720种E.760种正确答案:D解析:知识模块:排列组合与概率初步7.7名同学排成一排,其中甲,乙2人必须不相邻的不同的排法有( )种.A.3 200B.3 400C.3 600D.3 800E.4 000正确答案:C解析:知识模块:排列组合与概率初步8.某大学派出5名志愿者到西部4所中学支教,每所中学至少有1名志愿者,则不同的分配方案共有( )种.A.240B.144C.120D.60E.24正确答案:A解析:知识模块:排列组合与概率初步条件充分性判断本大题共30分。

排列组合概率测验(答)

排列组合概率测验(答)

排列组合、二项式定理姓名 学号 成绩一、填空题(每小题3分) 1.从二项式24321()x x-展开式的所有项中任取一项,则该项为有理项的概率 是 .(用分数作答)答案9252.设n a 是*(3)()n x n N +∈展开式中x 的一次项的系数,则2320132320132013333()2012a a a +++=L .18. 3.设复数ii x -+=11(i 是虚数单位),则0122201420142014201420142014C C x C x C x++++=L 10072i - 4.有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有 种192.5.“,A B 是对立事件”是“,A B 是互斥事件”成立的 条件.充分非必要 6.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加。

当甲、乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为 .600.7.某公司计划在 A B C D E 、、、、五个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该公司不同的投资方案种数是 . (用数字作答)120.8.形如45132的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为________.169.用|S|表示集合S 中的元素的个数,设A 、B 、C 为集合,称(A ,B ,C )为有序三元组.如果集合A 、B 、C 满足|A ∩B|=|B ∩C|=|C ∩A|=1,且A ∩B ∩C=∅,则称有序三元组(A ,B ,C )为最小相交.由集合{1,2,3,4}的子集构成的所有有序三元组中,最小相交的有序三元组的个数为______.(用数字作答).9610.由0、1、2、3、4、5、6七个数字中,任取三个组成没有重复数字的三位数,那么这个三位数是3的倍数的概率是________. .1232231266581745C P P P C P +== 11.一个人把六根草紧握在手中,仅露出他们的头和尾,然后随机地把六个头两两相接,六个尾也两两相接,则放开手后六根草恰好连成一个环的概率是________.815二.选择题(每小题4分)11.四张卡片上分别标有数字“0”“0”“2”“9”,其中“9”能当“6”用,则有这四张卡片可组成不同的四位数的个数为(B )A. 6B. 12C. 18D. 2412. 20,27-)(28)(34)a N a a a a ∈<--且则(等于L ( D )(A )827-P a(B )2734-P aa - (C )734-P a (D )834-P a13. 两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( C )A 10种B 15种C 20种D 30种14.设 13,a Z a ∈≤≤且0 若201251a + 能被13整除,则a = (D)A.0 B .1 C . 11 D .12 三、解答题15、(6分)求 12314710(31)n n n n n n S C C C n C =++++++L1(32)2n n -+g16.(3+3+3=9分)杨辉三角(又称贾宪三角,西方称帕斯卡三角)中蕴藏了许多优美的规律.以下所示是一个7阶杨辉三角: 第0行 第1行 第2行 第3行 第4行 第5行 第6行 第7行⑴求第20行中从左到右的第4个数; ⑵若第n 行中从左到右第14与第15个数的比为32,求n 的值; ⑶求n 阶(包括0阶)杨辉三角的所有数的和.答案:⑴1140320=C ⑵由321413=n n C C ,得321314=-n ,解得34=n . ⑶12222112-=+⋅⋅⋅++++n n17. (4+4+4=12分)4个不同的球,4个不同的盒子,把球全部放入盒内 (1)恰有1个盒不放球,共有几种放法?144 (2)恰有1个盒内有2个球,共有几种放法?144 (3)恰有2个盒不放球,共有几种放法?8411 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1 16 15 20 15 6 1 17 21 35 35 21 7 118. (6+6=12分)设数列{}n a 是等比数列,11=a ,公比q 是4241⎪⎭⎫ ⎝⎛+x x 的展开式的第二项(按x 的降幂排列).⑴用n ,x 表示数列{}n a 的前n 项和n S ;⑵若n nn n n n S C S C S C T +⋅⋅⋅++=2211,用n ,x 表示n T .答案:x x x C T T q =⎪⎭⎫ ⎝⎛∙∙===+1231411241.1-=∴n n x a .⑴1=x 时,n S n =; 1≠x 时,xx S nn --=11.⑵1=x 时,122112-∙=+⋅⋅⋅++=n n n n n n n n S C S C S C T ;1≠x 时,()xx S C S C S C T nn n n nnn n -+-=+⋅⋅⋅++=1122211 19.(6+6=12分)已知n个人的生日全不相同的概率为365!121111365(365)!365365365n n n p n -⎛⎫⎛⎫⎛⎫==--- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. 上式看似简单,但其具体计算是烦琐的,对此可用以下方法作近似计算:12(1)(1)ln 365730n n n n p +++--≈-=-,例如当10n =时,由该式给出的近似值为0.8840,而精确值为0.8831n p =.许多人认为:一年365天,30个人的生日全不相同的可能性是较大的,至少会大于12.甚至有人会认为:60个人的生日全不相同的可能性也是较大的.(1)判断这两种想法的正误,并说明理由. (2)如果n 个人中至少有两个人生日相同的概率大于12,求n 的范围 (1)错误,当30n =时,由题意0.30370.5n p =<. 当60n =时,0.0078n p =,可能性很小. (2)由10.5n p ->得23n ≥。

高中数学排列组合二项式定理与概率检测试题及答案.doc

高中数学排列组合二项式定理与概率检测试题及答案.doc

摆列组合二项式定理与概率训练题一、选择题 ( 本大题共 12 小题,每题 5 分,共 60 分)1.3 名老师随机从 3 男 3 女共 6 人中各带 2 名学生进行实验,此中每名老师各带 1 名男生和 1 名女生的概率为()2349A. B. C. D.555102.某人射击 5 枪,命中3 枪, 3 枪中恰有 2 枪连中的概率为()2311A. B. C. D.5510203.一批产品中,有 n 件正品和 m 件次品,对产品逐一进行检测,假如已检测到前 k( k< n )次均为正品,则第k+1 次检测的产品仍为正品的概率是()A.n k k 1C.n k 1D.k1 n m kB.n m k 1n m kn m4.有一人在打靶中,连续射击 2 次,事件“起码有 1 次中靶”的对峙事件是()A. 至多有 1 次中靶B.2 次都中靶C.2 次都不中靶D.只有 1 次中靶5.在一块并排 10 垄的土地上,选择 2 垄分别栽种A、 B 两栽种物,每栽种物栽种 1 垄,为有益于植物生长,则A、B 两栽种物的间隔不小于 6 垄的概率为()A.142D.1 30B. C.3015156.某机械部件加工由 2 道工序构成,第一道工序的废品率为a,第二道工序的废品率为 b,假设这 2 道工序出废品是相互没关的,那么产品的合格率是()A. ab- a-b+1B.1- a- bC.1- abD.1 - 2ab7.有 n 个同样的电子元件并联在电路中,每个电子元件能正常工作的概率为 0.5,要使整个线路正常工作的概率不小于0.95, n 起码为()A.3B.4C.5D.68.一射手对同一目标独立地进行 4 次射击,已知起码命中一次的概率为80 ,81则此射手的命中率是()1212A. B. C. D.33459. (| x |13)5的睁开式中的x 2的系数是()| x |A.275B.270C.540D.54510.有一道,甲解出它的概率1,乙解出它的概率1,丙解出它23的概率1,甲、乙、丙三人独立解答此,只有 1 人解出此的概率是()4A.111C.17D.1B.24242411.事件 A 与事件 B 互斥是事件 A、事件 B 立的()A. 充足不用要条件;B. 必需不充足条件;C.充足必需条件;D. 既不充足也不用要条件12.若 P( AB)=0,事件 A 与事件 B 的关系是()A. 互斥事件;B.A、B 中起码有一个是不行能事件;C.互斥事件或起码有一个是不行能事件;D.以上都不二、填空题(每题 4 分,共 16 分)13.四封信投入 3 个不一样的信箱,其不一样的投信方法有种14.如,一个地域分 5 个行政地区,地着色,要求相地区不得2使用同一色,有 4 种色可315供,不一样的着色方法共有4种15.若以投两次骰子分获得的点数m、n 作点 P 的坐,点 P落在直 x+y=5 下方的概率是 ________16.在号 1, 2,3,⋯, n 的 n 卷中,采纳不放回方式抽,若1号号,在第k次(1≤ k≤ n)抽抽到 1 号卷的概率________三、解答(本大共 6 小,共 74 分解答写出文字明、明程或演算步)17.(本小分12 分)m,n∈ Z +,m、n≥ 1,f( x)=( 1+x)m+(1+x )n的睁开式中, x 的系数 19( 1)求 f( x)睁开式中x2的系数的最大、小;( 2)于使f( x)中 x2的系数取最小的m、 n 的,求x7的系数18.(本小题满分 12 分)从 5 双不一样的鞋中任意拿出 4 只,求以下事件的概率:(1)所取的 4 只鞋中恰巧有 2 不过成双的;(2)所取的 4 只鞋中起码有 2 不过成双的19.(本小题满分12 分)有8 位旅客乘坐一辆旅行车随机到 3 个景点中的一个景点观光,假如某景点无人下车,该车就不断车,求恰巧有 2 次泊车的概率本小题满分12 分)已知(3x x 2 ) 2n的睁开式的系数和比 (3x1) n的睁开式的系数和大1)2 n的睁开式中 : ①二项式系数最大的项; ②系数的绝992, 求( 2xx对值最大的项21.(本小题满分12 分)有 6 个房间安排 4 个旅行者住宿,每人能够任意进哪一间,并且一个房间也能够住几个人求以下事件的概率:(1)事件A:指定的 4 个房间中各有 1 人;( 2)事件B:恰有 4 个房间中各有 1 人;(3)事件 C:指定的某个房间中有两人;(4)事件D:第 1 号房间有 1 人,第 2 号房间有 3人22.(本小题满分14 分)已知 { a n } (n是正整数)是首项是a1,公比是q 的等比数列( 1)乞降: a1C 20a2C 21a3C 22 , a1C30a2 C31a3C 32a4C 33;( 2)由( 1)的结果归纳归纳出对于正整数n 的一个结论,并加以证明;( 3)设 q1, S n是等比数列的前 n 项的和,求S1 C n0S2 C n1S3 C n2S4 C n3( 1)n S n 1C n n摆列组合二项式定理与概率参照答案:1.A2.B3.A4. C5.C6.A7.C8.B9.C10.B11. B12. C13.3414. 7215.116.16n17.设 m, n∈ Z+, m、 n≥ 1,f ( x) =( 1+x)m+( 1+x)n的睁开式中, x 的系数为 19( 1)求 f( x)睁开式中 x2的系数的最大、小值;( 2)对于使 f( x)中 x2的系数取最小值时的m、 n 的值,求 x7的系数解: C m1 C n119,即 m n 19m19n( 1)设 x2的系数为T= C m2C n2n219n171(n19 )217119 224∵n∈Z +, n≥1,∴当 n 1或 n 18时 ,T max 153, 当 n 9或 10时 ,T min 81 ( 2)对于使 f ( x)中 x2的系数取最小值时的 m、 n 的值,即f ( x) (1 x)9(1x)10进而 x7的系数为 C 97C10715618.从5 双不一样的鞋中任意拿出 4 只,求以下事件的概率:(1)所取的 4 只鞋中恰巧有 2 不过成双的;(2)所取的 4 只鞋中起码有 2 不过成双的解:基本领件总数是C104=210( 1)恰有两只成双的取法是C15C 24 C12 C12=1C15C42 C12C121204∴所取的 4 只鞋中恰巧有 2 不过成双的概率为C1042107(2)事件“ 4 只鞋中起码有 2 不过成双”包括的事件是“恰有 2 只成双”和“ 4 只恰成两双” ,恰有两只成双的取法是C15C42C12C12 =1 只恰成两双的取法是C 52=10∴所取的 4 只鞋中起码有 2 不过成双的概率C 15C 42 C 12C 12 C 52130 13 C 104210 2119.有 8 位旅客乘坐一 旅行 随机到3 个景点中的一个景点参 ,假如某景点无人下 , 就不断 ,求恰巧有2 次停 的概率解: 8 位旅客在 3 个景点随机下 的基本领件 数有38=6561 种有两个景点停 ,且停 点起码有1 人下 的事件数有C 32 ( C 18 + C 28 +⋯+ C 78 + C 88 )=3(28-1) =381 种∴恰巧有 2 次停 的概率381 12765612187知 ( 3 xx 2 ) 2 n 的睁开式的系数和比( 3x 1) n的睁开式的系数和大992, 求12n的睁开式中 : ①二 式系数最大的; ②系数的 最大的( 2x)x解:由 意 2 2n 2n 992 , 解得 n 5① (2x1)10 的睁开式中第 6 的二 式系数最大 ,x即 T 6 T 51C 105( 2x) 5 ( 1 )58064x② 第 r 1 的系数的 最大,T1C r ( 2x)10 r ( 1 ) r( 1) r C r210 r x 10 2rr10 x10∴C10r210 rC10r 1210 r 1 ,得C10r2C 10r 1 , 即 11 r 2rC 10r210 r C 10r 1 210 r12C 10r C 10r 12( r1) 10 r∴8r 11 , ∴ r 3 , 故系数的 最大的是第4 即33T 4 C 103 (2x) 7 ( 1 ) 315360 x 4x21.有 6 个房 安排4 个旅行者住宿,每人能够任意 哪一 ,并且一个房也能够住几个人 求以下事件的概率:(1)事件 A :指定的 4 个房 中各有 1人;( 2)事件 :恰有 4 个房 中各有1 人; ( 3)事件:指定的某个房BC中有两人;( 4)事件 D :第 1 号房 有 1 人,第2号房 有 3人解: 4 个人住 6 个房 ,全部可能的住宅 果 数 :(种)( 1)指定的 4 个房间每间1 人共有A44种不一样住法P( A)A44 / 641/ 54( 2)恰有4 个房间每间1 人共有A64种不一样住法P(B)A64 / 64 5 /18( 3)指定的某个房间两个人的不一样的住法总数为:C425 5 (种),P(C) C 4252 /6425 / 216( 4)第一号房间1 人,第二号房间3 人的不一样住法总数为:134C 4 C3(种),(D )4/641/ 32422.已知 { a n } (n是正整数)是首项是a1,公比是q的等比数列⑴乞降: a1C 20a2 C21a3C 22 ,a1C 30a2C 31a3C 32a4C 33;⑵由( 1)的结果归纳归纳出对于正整数n 的一个结论,并加以证明;⑶设 q1, S n是等比数列的前n 项的和,求S C0S C 1S C 2S4C3( 1)n S C n1n 2 n 3 n n n 1n解:(1)a1C20a2 C 21a3C 22a12a1q a1q 2a1 (1q) 2;a1 C30a2 C31a3 C 32a4 C 33a13a1 q 3a1q 2a1 q3a1 (1 q)3( 2)归纳归纳出对于正整数n 的一个结论是:已知{ a n } (n是正整数)是首项是 a1,公比是q的等比数列,则a C 0 a C1a3C2a4C3( 1) n an 1C n a1(1 q) n1 n2n n n n证明以下:a1 C n0a2 C n1a3 C n2a4 C n3( 1)n a n 1 C n n= a C0a1qC 1 a q2 C 2 a q3C 3( 1) n a q n C n1n n1n1n1na [C0C1 q C 2 q 2 C 3q 3 C n( q)n ] a (1 q) n1n n n n n1( 3)由于S n a1 (1qn),因此 S k1C n k a1 (1q n ) C n k1q1qS C0S C 1S C 2S4C3( 1)n S C n1n 2 n 3 n n n 1n=a1 [ C n0 C n1Cn2 C n3( 1)n C n n ]a1q[C n0qC n1q2 C n2C n n ( q)n ] 1q 1 q=-a1q(1 q) n 1 q。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列与组合练习题
1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三
个数,则至少有两个数位于同行或同列的概率是
(A )37 (B )47 (C )114 (D )1314 答案:D
解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114
C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有
(A )6种 (B )9种 (C )11种 (D )13种
答案:B
解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.
3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有
(A )30个 (B )20个 (C )35个 (D )15个
答案:A
解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一
的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最
多有30个交点.
推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的
交点最多有22m n C C ⋅个
变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点.
答案:412C
4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是
(A )15 (B )25 (C )35 (D ) 45
答案:B
111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭
解析:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为
(A )13 (B )12 (C )23 (D )34
答案:A
解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193
=. 6.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(|)P B A =
A .18
B .14
C .25
D .12
答案:B 解析:2()5P A =
,1()10P AB =,()1(|)()4P AB P B A P A ==. 7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为
A .
12 B .35 C .23 D .34 答案:D
解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率11132224
P =+⋅=.所以选D . 8.如图,用K 、A 1、A 2三类不同的元件连成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为
K
A 2
A 1
A .0.960
B .0.864
C .0.720
D .0.576
答案:B
解析:系统正常工作概率为12
0.90.8(10.8)0.90.80.80.864C ⨯⨯⨯-+⨯⨯=,所以选B.
9.甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是
(A )136 (B )19 (C )536 (D )16 答案:D
解析:各自独立地从1到6号景点中任选4个进行游览有11111111
66554433C C C C C C C C 种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C 种,则最后一小时他们同在一个景
点的概率是11111116554433111111116655443316C C C C C C C p C C C C C C C C ==,故选D . 10.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,
则m n =( ) (A )415 (B )13 (C )25 (D )23
答案:B
解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其
中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153
m n ==. 11.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于
A .14
B .13
C .12
D .23
答案:C
解析:显然ABE ∆面积为矩形ABCD 面积的一半,故选C .
12.在204(3)x y +展开式中,系数为有理数的项共有 项.
答案:6
解析:二项式展开式的通项公式为202044120
20(3)(3)(020)r r r r r r r r T C x y C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.
13.集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.
答案:35
解析:其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因
此这样的集合P 共有4735C =个.
14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.
答案:732
解析:共分三类:(1)A 、C 、E 三块种同一种植物;(2)A 、B 、C 三块种两种植物(三块中有两块种相同植物,而与另一块所种植物不同);(3)A 、B 、C 三块种三种不同的植物.将三类相加得732.
15.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.
(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望()E X .
解:(I )设A 表示事件“购买甲种保险”,B 表示购买乙种保险. ()A B A A B =并且A 与A B 是互斥事件,所以
()()()0.50.30.8P A B P A P A B =+=+=
答:该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8. (II )由(I )得任意1位车主两种保险都不购买的概率为()10.80.2p p A B ==-=. 又(3,0.2)X
B ,所以()20E X =.所以X 的期望()20E X =.。

相关文档
最新文档