六年级奥数定义新运算与答案解析
2024六年级专项训练定义新运算练习及答案解析
第11讲定义新运算第一关1个新运算符【知识点】定义新运算是指用一个符号和已知运算表达式表示一种新的运算.注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算.(2)我们还要知道,这是一种人为的运算形式.它是使用特殊的运算符号,如:*、▲、★、◎、△、◆、■等来表示的一种运算.(3)新定义的算式中,有括号的,要先算括号里面的.【例1】规定:a△b=3a-2b.已知x△(4△1)=7,求x△5。
【答案】17【例2】定义a⊕b=2a+b,求(3⊕4)⊕5。
【答案】25【例3】设a、b为自然数,定义a⊕b=4a+b+2,求3⊕2。
【答案】16【例4】定义:a⊕b=a+b+ab,则(2⊕3)⊕4的值是多少?【答案】59【例5】已知a@b=2×a+b,求99@1。
【答案】199【例6】定义:a☆b=a1b-,求2☆(3☆4)。
【答案】2【例7】A、B表示两个数,若规定A*B=3243A B-,求12*6。
【答案】5【例8】把“△”定义为一种运算符号,其意义为:a△b=ba,求2△1+3△1+6△1。
【答案】1【例9】定义:△(A,B,C,D)=A×4+B×3+C×2+D×1,那么,△(2,0,1,6)【答案】16【例10】对不为零的自然数a,b,c,规定新运算“☆”:☆(a,b,c)=a-b ca+b c÷⨯,求☆(1,2,3)。
【答案】1 21【例11】规定一种运算“~”,a~b表示a,b中较大的数减较小的数的差,例如6~3=6-3=3,2~5=5-2=3.试求:(9~4)+(1~8)×(2~6)。
【答案】33【例12】定义a*b=a×b+a-2b,若3*m=17,求m。
【答案】14【例13】已知a、b为自然数,a∨b=2a+b,a∨2a∨3a∨4a∨5a∨6a∨7a∨8a∨9a=3039,求a。
小学奥数 定义新运算 精选练习例题 含答案解析(附知识点拨及考点)
定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)
第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2、设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3、设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【答案】1.648 2.112、65 3.193.25【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
练习2:1、设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2、设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3、设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【答案】1.36 2.902 3.412【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,7*4=7+77+777+7777=8638210*2=210+210210=2104203*3=3+33+333,……那么4*4=________。
小学六年级奥数题:定义新运算(C)---习题详解
小学六年级奥数题:定义新运算(C)---习题详解简介本文详细解析了小学六年级奥数题目中关于定义新运算(C)的题。
通过这些题,学生能够熟悉并理解如何定义和应用新的运算法则。
题解析1. 问题:已知定义了新的运算法则"C",其中$x C y = x^2 +y^2$,求 $3 C 4$ 的值。
解析:根据定义,$3 C 4 = 3^2 + 4^2 = 9 + 16 = 25$。
所以 $3 C 4$ 的值为25。
2. 问题:定义了运算法则"C",其中$x C y = \frac{x}{y}$,求$24 C 3$ 的值。
解析:根据定义,$24 C 3 = \frac{24}{3} = 8$。
所以 $24 C3$ 的值为8。
3. 问题:已知定义了运算法则"C",其中$x C y = x - y$,求$10 C 5$ 的值。
解析:根据定义,$10 C 5 = 10 - 5 = 5$。
所以 $10 C 5$ 的值为5。
4. 问题:定义了运算法则"C",其中$x C y = x^3 + 2y$,求 $2C -1$ 的值。
解析:根据定义,$2 C -1 = 2^3 + 2(-1) = 8 - 2 = 6$。
所以 $2 C -1$ 的值为6。
5. 问题:给定定义了运算法则"C",其中$x C y = \sqrt{x} +\sqrt{y}$,求 $16 C 9$ 的值。
解析:根据定义,$16 C 9 = \sqrt{16} + \sqrt{9} = 4 + 3 = 7$。
所以 $16 C 9$ 的值为7。
总结通过解析以上题,我们可以看到,定义新的运算法则(C)可以使我们对数学运算有更多的理解和应用。
在研究中,我们应该灵活运用各种运算法则,深入理解数学的本质和规律。
以上是关于小学六年级奥数题目中关于定义新运算(C)的题详解。
希望能对同学们的研究有所帮助,提高数学能力。
定义新运算题目及答案解析-小学奥数
专题定义新运算知识点1 直接运算型【基础训练】1、【★】设a,b都表示两个不同的数,规定:a△b=2×a+3×b,表示a的2倍加上b的3倍的和.(1)求4△7的值.(2)求2△3的值.【答案】(1)29;(2)13【解析】(1)找到a与b对应的数,根据定义的新运算,将算式中的a与b换成对应的数,再进行计算,即a=4,b=7,4△7=2×4+3×7=29;(2)方法同上,即a=2,b=3,2△3=2×2+3×3=13.2、【★★】设a、b都表示两个不同的数,规定:a▽b=a×b-(a+b).(1)求5▽6▽7的值.(2)求7▽(5▽4)的值.【答案】107;59【解析】(1)按照从左往右的顺序计算,①先算5▽6=5×6-(5+6)=30-11=19,②再算19▽7=19×7-(19+7)=133-26=107,所以5▽6▽7=107.(2)有括号的要先算括号里面的,①先算5▽4=5×4-(5+4)=20-9=11,②再算7▽11=7×11-(7+11)=77-18=59,所以7▽(5▽4)=59.3、【★★】x,y表示两个数,规定新运算“☆”及“○”如下:x☆y=2×x+3×y,x○y=6×x×y.(1)求10☆2的值.(2)求4○25的值.【答案】26;600【解析】(1)原式=2×10+3×2=26;(2)原式=6×4×25=600【拓展提升】1、【★★★】规定:a□b=a+(a+1)+(a+2)+…+(a+b-1),其中a、b表示自然数.求1□100的值.【答案】5050【解析】1□100=1+2+3+…+100=(1+100)×100÷2=50502、【★★★】已知x、y是任意有理数.我们规定:x☆y=x+y-1,x○y=x×y-2.(1)求10☆9.(2)求7○8.(3)求4○[(6☆8)☆(3○5)]的值.【答案】18;54;98【解析】(1)10☆9=10+9-1=18;(2)7○8=7×8-2=54(3)先算小括号里面的6☆8和3○5,6☆8=6+8-1=13,3○5=3×5-2=13.再计算中括号里面的13☆13=13+13-1=25.最后计算4○25=4×25-2=98.知识点2 反解未知型【拓展提升】1、【★★★】设x、y都表示两个不同的数,规定:x□y=x×y+2A,已知3□4=16.(1)求常数A是多少?(2)求3□(4□5)【答案】2;76【解析】(1)建立方程,3×4+2A=16,解得A=2.(2)先算括号里面的,①4□5=4×5+2×2=20+4=24,②再算3□24=3×24+2×2=72+4=762、【★★★★】规定:()()()121a b a a a a b ∆=+++++++-,其中a 、b 表示自然数. 已知1465x ∆∆=(),求x .【答案】x=2【解析】先求1△4=1+2+3+4=10,再算x △10=65,那么x+(x+1)+(x+2)+(x+3)+…+(x+9)=65,即10x+45=65,解得x=2知识点3 总结规律型【拓展提升】1、【★★★】已知:13123*=⨯⨯,242345*=⨯⨯⨯,4545678*=⨯⨯⨯⨯,…(1)求33*的值.(2)求25*的值.【答案】60;7202、【★★★】已知:12111∇=+,23222222∇=++,444444444444∇=+++,……(1)求73∇的值 。
完整版)六年级奥数定义新运算及答案
完整版)六年级奥数定义新运算及答案1.根据定义,(2※3)※5=(3+2)×3※5=5×15=75.2.根据定义,a△5=(a-2)×5=30,解得a=8.3.根据定义,(18,12)+[18,12]=6+36=42.4.先计算括号内的值:(68)(35)=(6+8-1)+(3×5-2)=(13)+(13)=26,再将4与26相乘,得到104.5.=8,=25,=2,因此++××>=+>=29.6.根据定义,x⊙5=3x-10,5⊙x=3×5-2x,因此有3x-10+5=2x+15,解得x=20.7.根据定义,a※b=(b+a)×b,因此4※5=(5+4)×5=45.8.根据定义,(x※3)※4=x(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7),因此x=7.9.根据定义,1※2=a+b-c,2※3=2a+3b-6c,因此有a+b-c=3,2a+3b-6c=4,解得a=2,b=1,c=0,因此m的数值是0.10.(1) 根据定义,4△3=1,8△5=3,因此(4△3)+(8△5)=1+3=4;(2) 根据定义,2△3=-1,(-1)△4=3,因此(2△3)△4=3;(3) 根据定义,2△5=-3,3△4=1,因此(2△5)△(3△4)=-2.11.(1) 根据定义,3※4=1,1※9=8,因此(3※4)※9=8;(2) 这个运算不满足交换律,也不满足结合律,因为a※b的结果取决于a和b的大小关系。
12.(1) 根据定义,(2※3)※4=13,2※(3※4)=28;(2) 根据定义,a※3=(2a+3)/(2b+a),因此有2a+3=6,2b+a=9,解得a=3,b=3/2.13.根据定义,12⊙21=252-3=249,5⊙15=75-5=70.4⊗26。
4×26﹣2。
六年级奥数定义新运算及答案
界说新运算之羊若含玉创作1.划定:a※b=(b+a)×b,那么(2※3)※5=.△b例如3△那么,当a△5=30时, a=.“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4△6=(4,6)+[4,6]=2+12=14.依据上面界说的运算,18△12=.4.已知a,b是任意有理数,我们划定: a⊕那5.x为正数,<x>暗示不超出x的质数的个数,如<5.1>=3,即不超出5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是.⊙b例如4⊙5=3×4-2×5=2,那么,当x⊙5比5⊙x 大5时, x=.※4=1234,2※3=234,7※2=78,那么4※5=.“※”: a※如果(x※3)※4=421200,那么x=.9.对于任意有理数x, y,界说一种运算“※”,划定:x※2=3,2※3=4,x※m=x(m≠0),则m的数值是.10.设a,b为自然数,界说a△(1)盘算(4△3)+(8△5)的值;(2)盘算(2△3)△4;(3)盘算(2△5)△(3△4).11.设a,b为自然数,界说a※b如下:如果a≥b,界说a※b=a-b,如果a<b,则界说a※b= b-a.(1)盘算:(3※4)※9;(2)这个运算知足交流律吗?知足联合律吗?也是就是说,下面两式是否成立?①a※b= b※a;②(a※b)※c= a※(b※c).12.设a,b是两个非零的数,界说a※(1)盘算(2※3)※4与2※(3※4).(2)如果已知a是一个自然数,且a※3=2,试求出a的值.“⊙”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a⊙b.比方:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68.(1)求12⊙21,5⊙15;(2)说明,如果c整除a和b,则c也整除a⊙b;如果c整除a 和a⊙b,则c也整除b;(3)已知6⊙x=27,求x的值.答案一、填空题(共10小题,每小题3分,满分30分)1.(3分)划定:a※b=(b+a)×b,那么(2※3)※5= 100.考点:界说新运算.剖析:依据a※b=(b+a)×b,得出新的运算办法,再依据新的运算办法解答(2※3)※5的值.解答:解:因为,2※3=(3+2)×3=15,所以,(2※3)※5=15※5=(5+15)×5=100,故答案为:100.点评:解答此题的症结是,依据所给的等式,找出新的运算办法,再运用新的运算办法,解答出要求式子的值.2.(3分)如果a△b暗示(a﹣2)×b,例如3△4=(3﹣2)×4=4,那么,当a△5=30时,a=8.考点:界说新运算.剖析:依据“a△b暗示(a﹣2)×b,3△4=(3﹣2)×4=4,”得出新的运算办法,再用新的运算办法盘算a△5=30,即可写成方程的形式,解此方程得出a的值.解答:解:因为,a△5=30,所以,(a﹣2)×5=30,5a﹣10=30,5a=40,a=8,故答案为:8.点评:解答此题的症结是依据题意找出新运算办法,再依据新运算办法解答即可.3.(3分)界说运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4△6=(4,6)+[4,6]=2+12=14.依据上面界说的运算,18△12= 42.考点:界说新运算.剖析:依据新运算知道,求18△12,就是求18和12的最大公约数与最小公倍数的和,由此即可解答.解答:解:因为,18和12的最大公约数是6,最小公倍数是36,所以,18△12=(18,12)+[18,12]=6+36=42;故答案为:42.点评:解答此题的症结是,依据界说的新运算,找出运算办法,列式解答即可.4.(3分)已知a,b是任意有理数,我们划定:a⊕b=a+b﹣1,a⊗b=ab﹣2,那么4⊗[(6⊕8)⊕(3⊗5)]=98.考点:界说新运算.剖析:依据a⊕b=a+b﹣1,a⊗b=ab﹣2,得出新的运算办法,再运用新的运算办法盘算4⊗[(6⊕8)⊕(3⊗5)]的值.解答:解:4⊗[(6⊕8)⊕(3⊗5)],=4⊗[(6+8﹣1)⊕(3×5﹣2)],=4⊗[13⊕13],=4⊗[13+13﹣1],=4⊗25,=4×25﹣2,=98,故答案为:98.点评:解答此题的症结是依据给出的式子,找出新的运算办法,用新运算办法解答即可.5.(3分)x为正数,<x>暗示不超出x的质数的个数,如<5.1>=3,即不超出5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是11.考点:界说新运算.剖析:依据题意,先求出不超出19的质数的个数,再求出不超出93的质数的个数,而不超出1的质数的个数是0,所以<4>×<1>×<8>的值是0,因此即可求出要求的答案.解答:解:因为,<19>为不超出19的质数,有2,3,5,7,11,13,17,19共8个,<93>为不超出的质数,共24个,并且,<1>=0,所以,<<19>+<93>+<4>×<1>×<8>>,=<<19>+<93>>,=<8+24>,=<32>,=11,故答案为:11.点评:解答此题的症结是,依据题意,找出新的符号暗示的意义,再依据界说的新运算,找出对应量,解答即可.6.(3分)如果a⊙b暗示3a﹣2b,例如4⊙5=3×4﹣2×5=2,那么,当x⊙5比5⊙x大5时,x=6.考点:界说新运算.剖析:依据所给的运算办法,将x⊙5比5⊙x大5写成方程的形式,解答方程即可.解答:解:由x⊙5﹣5⊙x=5,可得:(3x﹣2×5)﹣(3×5﹣2x)=5, 5x﹣25=5,x=6,故答案为:6.点评:解答此题的症结是,依据题意找出新的运算办法,再依据新的运算办法,列式解答即可.7.(3分)如果1※4=1234,2※3=234,7※2=78,那么4※5=45678.考点:界说新运算.剖析:依据“1※4=1234,2※3=234,7※2=78”,得出新的运算办法:※的前一个数字是等号后面数的第一个数字,※后面的数字暗示持续数的个数,是从※前面的数开端持续,然后运用新的运算办法盘算4※5的值即可.解答:解:由于1※4=1234,2※3=234,7※2=78,所以4※5=45678;故答案为:45678.点评:解答此题的症结是,依据所给出的式子,找出新的运算办法,再应用新的运算办法解答即可.8.(3分)我们划定:符号○暗示选择两数中较大数的运算,例如:5○3=3○5=5,符号△暗示选择两数中较小数的运算,例如:5△3=3△5=3.请盘算:=.考点:界说新运算.剖析:依据符号○暗示选择两数中较大数的运算,符号△暗示选择两数中较小数的运算,得出新的运算办法,用新的运算办法,盘算所给出的式子,即可得出答案.解答:解:○=○=,0.625△=△=,△=△=,О2.25=О=,所以:==;故答案为:.点评:可.9.(3分)划定一种新运算“※”:a※b=a×(a+1)×…×(a+b ﹣1).如果(x※3)※4=421200,那么x=2.考点:界说新运算.剖析:先依据“a※b=a×(a+1)×…×(a+b+1)”,知道新运算“※”的运算办法,由于(x※3)※4=421200,这个式子里有两步新运算,所以令其中的一步运算式子为y,再依据新的运算办法,由此即可求出要求的答案.解答:解:令x※3=y,则y※4=421200,又因为,421200=24×34×52×13=24×25×26×27,所以,y=24,即x※3=24,又因为,24=23×3=2×3×4,所以,x=2;故答案为:2.点评:解答此题的症结是,依据新运算办法的特点,只要将整数写成几个自然数连乘的形式,即可得出答案.10.(3分)对于任意有理数x,y,界说一种运算“※”,划定:x※y=ax+by﹣cxy,其中的a,b,c暗示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x※m=x(m≠0),则m的数值是4.考点:界说新运算.剖析:依据x※y=ax+by﹣cxy,找出新的运算办法,依据新的运算办法,将1※2=3,2※3=4,x※m=x写成方程的形式,即可解答.解答:解:由题设的等式x※y=ax+by﹣cxy及x※m=x(m≠0),得a•0+bm﹣c•0•m=0,所以bm=0,又m≠0,故b=0,因此x※y=ax﹣cxy,由1※2=3,2※3=4,得,解得a=5,c=1,所以x※y=5x﹣xy,令x=1,y=m,得5﹣m=1,故m=4;故答案为:4.点评:解答此题的症结是,依据题意找出新的运算办法,再依据新的运算办法,列式解答即可.二、解答题(共4小题,满分0分)11.设a,b为自然数,界说a△b=a2+b2﹣ab.(1)盘算(4△3)+(8△5)的值;(2)盘算(2△3)△4;(3)盘算(2△5)△(3△4).考点:界说新运算.剖析:依据“a△b=a2+b2﹣ab”得出新的运算办法,然后运用新的运算办法进行盘算即可.解解:(1)(4△3)+(8△5),答:=(42+32﹣4×3)+(82+52﹣8×5),=1++49,=62;(2)(2△3)△4,=(22+32﹣2×3)△4,=7△4,=72+42﹣7×4,=37;(3)(2△5)△(3△4),=(22+52﹣2×5)△(32+42﹣3×4),=19△13,=192+132﹣19×13,=283;答:(1)62,(2)37,(3)283.点评:解答此题的症结是,依据所给出的式子,找出新的运算办法,再应用新的运算办法解答即可.12.设a,b为自然数,界说a※b如下:如果a≥b,界说a※b=a﹣b,如果a<b,则界说a※b=b﹣a.(1)盘算:(3※4)※9;(2)这个运算知足交流律吗?知足联合律吗?也是就是说,下面两式是否成立?①a※b=b※a;②(a※b)※c=a※(b※c).考点:界说新运算.剖析:(1)依据“如果a≥b,界说a※b=a﹣b,如果a<b,则界说a※b=b﹣a,”得出新的运算办法,再应用新的运算办法盘算(3※4)※9的值即可;(2)要证明这个运算是否知足交流律和知足联合律,也就是证明①和②这两个等式是否成立.解答:解:(1)(3※4)※9=(4﹣3)※9=1※9=9﹣1=8;(2)因为暗示a※b暗示较大数与较小数的差,显然a※b=b※a成立,即这个运算全是交流律,但一般来说其实不知足联合律,例如:(3※4)※9=8,而3※(4※9)=3※(9﹣4)=3※5=5﹣3=2,所以,这个运算知足交流律,不知足联合律;答:这个运算知足交流律,不知足联合律.点评:解答此题的症结是,依据所给出的式子,找出新的运算办法,再依据新的运算办法解答即可.13.设a,b是两个非零的数,界说a※b=.(1)盘算(2※3)※4与2※(3※4).(2)如果已知a是一个自然数,且a※3=2,试求出a的值.考点:界说新运算.剖析:(1)依据a※b=,找出新的运算办法,再依据新的运算办法,盘算(2※3)※4与2※(3※4)即可;(2)依据新运算办法将a※3=2,转化成方程的形式,再依据a是自然数,即可求出a的值.解答:(1)依照界说有2※3=,3※4=,于是(2※3)※4=※4=,2※(3※4)=2※;(2)由已知得①若a≥6,则≥2,从而与①抵触,因此a≤5,对一一代入①式中检讨知,只有a=3相符要求.点评:解答此题的症结是依据所给的式子,找出新运算的运算办法,再用新运算办法盘算要求的式子即可.14.界说运算“⊙”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a⊙b.比方:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70﹣2=68.(1)求12⊙21,5⊙15;(2)说明,如果c整除a和b,则c也整除a⊙b;如果c整除a和a⊙b,则c也整除b;(3)已知6⊙x=27,求x的值.考点:界说新运算.剖析:(1)依据新的界说运算,先求出12与21的最小公倍数和最大公约数,5与15的最小公倍数和最大公约数,问题即可解决;(2)依据整除的界说及公约数、最大公约数与最小公倍数之间的关系进行说明;(3)由于运算“⊙”没有直接的表达式,解这个方程有一些艰苦,我们设法逐步缩小探索规模,即依据6与x的最小公倍数不小于27+1,不大于27+6,由此即可得出答案.解答:解:(1)因为,12与21的最小公倍数和最大公约数分离为84,3,所以,12⊙21=84﹣3=81,同样道理5⊙15=15﹣5=10;(2)如果c整除a和b,那么c是a和b的公约数,则c整除a,b的最大公约数,显然c也整除a,b最小公倍数,所以c整除最小公倍数与最大公约的差,即c整除a⊙b,如果c整除a和a⊙b,由c整除a推知c整除a,b的最小公倍数,再由c整除a⊙b推知,c整除a,b的最大公约数,而这个最大公约数整除b,所以c整除b;(3)因为6与x的最小公倍数不小于:27+1=28,不大于:27+6=33,而28到33之间,只有30是6的倍数,可见6和x的最小公倍数是30,因此,它们的最大公约数是30﹣27=3,由“两个数的最小公倍数与最大公约数的积=这两个数的积”,得到:30×3=6×x,6x=90,x=15,所以x的值是15.点评:解答此题的症结是,依据界说新运算,得出新的运算意义,再应用新的运算意义和运算办法,解答即可.。
定义新运算题目及答案解析-小学奥数
定义新运算题目及答案解析-小学奥数答案】A=5,x=2,y=7解析】将已知条件代入式子得:12+2A=16,解得A=2.再将A代入式子得:x×y+4=3×4+2A=14,解得x=2,y=7.知识点3多步运算型基础训练】1、【★★】设x、y都表示两个不同的数,规定:x△y=x+y,x○y=x×y.(1)求2△3○4的值.2)求5○3△8的值.答案】(1)14;(2)55解析】(1)先算3○4=12,再算2△12=14;(2)先算5○3=15,再算15△8=55.2、【★★★】设a、b都表示两个不同的数,规定:a△b=a+b+3,a○b=a×b+2.(1)求3△4○5的值.2)求2○5△7的值.答案】(1)29;(2)39解析】(1)先算4○5=20,再算3△20=29;(2)先算2○5=10,再算10△7=39.拓展提升】1、【★★★】设x、y都表示两个不同的数,规定:x□y=x+y,x◇y=x+y+2xy.已知3□a=10,a◇4=28,求a 的值.答案】a=2解析】将已知条件代入式子得:3+a=10,解得a=7.再将a 代入式子得:7◇4=7+4+2×7×4=56,解得7+2×a+8=28,解得a=2.1、求常数A的值和3□(4□5)的结果常数A的值可以通过建立方程解得,即3×4+2A=16,解得A=2.对于3□(4□5),需要先计算括号里面的值,即4□5=4×5+2×2=20+4=24.然后再计算3□24,即3×24+2×2=72+4=76.2、求x的值根据题目所给的规定,a b a a1a2…(a+b-1),其中a、b表示自然数。
已知x(14)65,需要先计算1△4=1+2+3+4=10,然后计算x△10=65.根据等式x+(x+1)+(x+2)+(x+3)+…+(x+9)=65,可以得到10x+45=65,解得x=2.拓展提升:1、求33的值和25的值根据规定,a b a!(a+b-1),其中a、b表示自然数。
小学奥数:定义新运算.专项练习及答案解析
定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同. 二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
例题精讲知识点拨教学目标定义新运算由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
六年级奥数定义新运算及答案
定义新运算1.规定:玄※b=(b+a) Xb,那么(2探3)探5= _________ 。
2•如果a△)表示(a 2) b,例如3也(3 2) 4 4,那么,当a药=30时,a= _________ 。
3. 定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4Z6=(4,6)+[4,6]=2+12=14. 根据上面定义的运算,18 42= ___________ 。
4. 已知a,b是任意有理数,我们规定:a ®b= a+b-1, a b ab 2,那么4 (6 8) (3 5) _________ 。
5. x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4> X<1> X<8>> 的值是__________ 。
6. 如果a O b 表示3a 2b ,例如4 O 5=3 X4-2 X5=2,那么,当x O 5 比5 O x 大5 时,x= ________ 。
7. 如果1 探4=1234,2 ※^3=234,7 ※^2=78,那么4 探5= _____ 。
8. 规定一种新运算“※”:a探b= a (a 1) (a b 1).如果(x※可^4=421200,那么x= ___________ 。
9. 对于任意有理数x, y,定义一种运算"※”,规定:x※尸ax by cxy ,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1沁=3,2探3=4,x※口=x(m工0),则m的数值2 210. 设a,b为自然数,定义a△)a b ab。
(1)计算(4 43)+(8 △的值;⑵计算(2△ 44;⑶计算(2 45) A(3 △!)。
11. 设a, b为自然数,定义a※匕如下:如果a >b,定义a探b=a-b,如果a<b,则定义a探b= b-a 。
小学六年级奥数第1讲 定义新运算(含答案分析)
第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2、设a*b=a2+2b,那么求10*6和5*(2*8)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
练习2:1、设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2、设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。
2、规定,那么8*5=________。
【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?练习4:1、规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么A=________。
奥数专题_定义新运算(带答案完美排版)
定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?解:① 6 ⊕2=6×2+6+2=20,2 ⊕6=2×6+2+6=20.②(1 ⊕2)⊕3=(1×2+1+2)⊕3=5 ⊕3=5×3+5+3=231 ⊕(2 ⊕3)=1 ⊕(2×3+2+3)=1 ⊕11=1×11+1+11=23.③先看“⊕”是否满足交换律:a ⊕b=a×b+a+bb ⊕a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕b=b ⊕a,因此“⊕”满足交换律.再看“⊕”是否满足结合律:(a ⊕b)⊕c=(a×b+a+b)⊕c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕b)⊕c=a ⊕(b ⊕c),因此“⊕”满足结合律.说明:“⊕”对于普通的加法不满足分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?解:通过对2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25这几个算式的观察,找到规律:a ⊗b =2a +b ,因此7⊗3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.m=1n =2 m=2 n =23(舍去)m=3 n =1课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a +, ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+⋯+9)=10x + 45 因此有10x + 45=65,解出x=2.定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?例5、x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a , ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b ÷a ba +,在x ※(5※1)=6中,求x 的值.9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?。
六年级思维训练4 定义新运算(原卷+解析)
六年级思维训练定义新运算1、规定:如果A大于B,则【A-B】=A-B,如果A等于B,则【A-B】=0,如果A小于B,则【A-B】=B-A,根据上述规律计算:【4.1-1.3】+【2.3-5.6】+【3.2-2.3】=2、对于正整数 A与B,规定A*B=A×(A+1)×(A+2)×……×(A+B+1)。
如果(X*3)*2=3660,那么X=3、国际统一书号ISBN由10个数字组成,前面9个数字分成3组,分别用来表示区域、出版社和书名,最后一个数字则作为核检之用,核检码可以根据前面9个数字按照一定的顺序算得。
如某书的书号是ISBN 7-107-17543-2,它的核检验码的计算顺序是①7×10+1×9+0×8+7×7+1×6+7×5+5×4+4×3+3×2=207②207÷11=18 (9)③11-9=2,这里的2就是该书号的检验码。
依照上面的顺序,求书号ISBN7-303-07618-□的检验码。
4、若A 、B 、C 为任意正整数,定义:[A,B,C]=(A ×B+C,D);(D,E )-(F ,G )=(D ×G-E ×F )则[11,2,5]-[3,1,7]=( , )5、有ABCD 四种计算机装置,装置A ;将输入的数乘以5;装置B 将输入的数加上3;装置C 将输入的数除以4,装置D 将输入的数减去6,这些装置可以连接,如装置A 后面连接装置B ,就写成A*B ,输入4,结果就是23,输入装置B 后面连接A ,就写成B*A ,输入4,其结果是35①装置A*C*D 连接,输入19,结果是多少?②装置D*C*B*A 连接,输入什么数,结果是96?6、规定A@B===+⨯++⨯2010@2009322@1)111,求,已知)((X B A B A7、用A*B 表示A 和B 中较大的数除以较小的数所得的余数。
小学六年级奥数题:定义新运算(A)---习题详解
小学六年级奥数题:定义新运算(A)---习题详解三、定义新运算(一)1.规定新运算$a☉b=$2.规定“※”为一种运算,对任意两数$a,b$,有$a※b=$3.设$a,b,c,d$是自然数,定义$\langle a,b,c,XXX则$\langle\langle 1,2,3,4\rangle,\langle 4,1,2,3\rangle,\langle3,4,1,2\rangle,\langle 2,3,4,1\rangle\rangle=$4.$[A]$表示自然数$A$的约数的个数。
例如,4有1,2,4三个约数,可以表示成$[4]=3$。
计算:$([18]+[22])÷[7]=$5.规定新运算※:$a※b=3a-2b$。
若$x※(4※1)=7$,则$x=$6.两个整数$a$和$b$,$a$除以$b$的余数记为$a☆b$。
例如,$13☆5=3$,$5☆13=5$,$12☆4=0$。
根据这样定义的运算,$(26☆9)☆4=$7.对于数$a,b,c,d$,规定$\langle a,b,c,d\rangle=2ab-c+d$。
如果$\langle 1,3,5,x\rangle=7$,那么$x=$8.规定:$6※2=6+66=72$,$2※3=2+22+222=246$,$1※4=1+11+111+1111=1234$。
$7※5=$9.规定:符号“△”为选择两数中较大数,“☉”为选择两数中较小数。
例如:$3△5=5$,$3☉5=3$。
那么,$[(7☉3)△5]×[5☉(3△7)]= $10.假设式子$a\#a\times b$表示经过计算后,$a$的值变为原来$a$与$b$的值的积,而式子$b\#a-b$表示经过计算后,$b$的值为原来$a$与$b$的值的差。
设开始时$a=2$,$b=2$,依次进行计算$a\#a\times b$,$b\#a-b$,$a\#a\times b$,$b\#a-b$,则计算结束时,$a$与$b$的和为$\frac{a+b}{ab}-$,则$2☉(5☉3)$之值为$.$ 若$6※x=33$,则$x=$二、解答题11.设$a,b,c,d$是自然数,对每两个数组$(a,b)$,$(c,d)$,我们定义运算※如下:$(a,b)※(c,d)=(a+c,b+d)$;又定义运算△如下:$(a,b)△(c,d)=(ac+bd,ad+bc)$。
(完整版)六年级奥数定义新运算及答案(2)
定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。
2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。
3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。
4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。
5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。
6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。
7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。
8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。
9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。
10.设a,b 为自然数,定义a △b ab b a -+=22。
(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。
六年级奥数第一讲定义新运算
第一讲定义新运算知识提纲:定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
解答定义新运算,关键是要正确的理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、⊙、⊕、△、▽等,这与四则运算中的“+、-、×、÷”不同。
新定义的运算中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
【课前小练笔】若规定a※b=3a-2b,计算7※8和8※7。
【典型例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
解析:这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
解答:【随堂练习1】设a*b=(a+b)×(a-b),求27*9。
【随堂练习2】设a*b=a2+2b,求10*6和5*(2*8)。
【典型例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
解析:根据定义先算4△6。
在这里“△”是新的运算符号。
解答:【随堂练习3】设p 、q 是两个数,规定:p △q=4×q -(p +q )÷2。
求5△(6△4)。
【随堂练习4】设M 、N 是两个数,规定:M*N=N M +M N ,求10*20-41。
【典型例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
解析:经过观察,可以发现本题的新运算“*”被定义为 。
解答:【随堂练习5】如果a*b=a +aa +aaa +…+aaaa …aa,求8*5。
(完整版)六年级奥数定义新运算及答案
定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。
2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。
3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。
4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。
5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。
6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。
7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。
8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。
9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。
10.设a,b 为自然数,定义a △b ab b a -+=22。
(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。
2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。
3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。
4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。
5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。
6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。
7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。
8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。
9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。
10.设a,b 为自然数,定义a △b ab b a -+=22。
(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。
(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a ※b= b ※a;②(a ※b)※c= a ※(b ※c)。
12.设a,b 是两个非零的数,定义a ※b ab b a +=。
(1)计算(2※3)※4与2※(3※4)。
(2)如果已知a是一个自然数,且a※3=2,试求出a的值。
13.定义运算“⊙”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a ⊙b。
比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68。
(1)求12⊙21,5⊙15;(2)说明,如果c整除a和b,则c也整除a⊙b;如果c整除a和a⊙b,则c也整除b;(3)已知6⊙x=27,求x的值。
答案一、填空题(共10小题,每小题3分,满分30分)1.(3分)规定:a※b=(b+a)×b,那么(2※3)※5=100 .考点:定义新运算。
分析:根据a※b=(b+a)×b,得出新的运算方法,再根据新的运算方法解答(2※3)※5的值.解答:解:因为,2※3=(3+2)×3=15,所以,(2※3)※5=15※5=(5+15)×5=100,故答案为:100.点评:解答此题的关键是,根据所给的等式,找出新的运算方法,再运用新的运算方法,解答出要求式子的值.2.(3分)如果a△b表示(a﹣2)×b,例如3△4=(3﹣2)×4=4,那么,当a△5=30时,a= 8 .考点:定义新运算。
分析:根据“a△b表示(a﹣2)×b,3△4=(3﹣2)×4=4,”得出新的运算方法,再用新的运算方法计算a△5=30,即可写成方程的形式,解此方程得出a的值.解答:解:因为,a△5=30,所以,(a﹣2)×5=30,5a﹣10=30,5a=40,a=8,故答案为:8.点评:解答此题的关键是根据题意找出新运算方法,再根据新运算方法解答即可.3.(3分)定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12=42 .考点:定义新运算。
分析:根据新运算知道,求18△12,就是求18和12的最大公约数与最小公倍数的和,由此即可解答.解答:解:因为,18和12的最大公约数是6,最小公倍数是36,所以,18△12=(18,12)+[18,12]=6+36=42;故答案为:42.点评:解答此题的关键是,根据定义的新运算,找出运算方法,列式解答即可.4.(3分)已知a,b是任意有理数,我们规定:a⊕b=a+b﹣1,a⊗b=ab﹣2,那么4⊗[(6⊕8)⊕(3⊗5)]= 98 .考点:定义新运算。
分析:根据a⊕b=a+b﹣1,a⊗b=ab﹣2,得出新的运算方法,再运用新的运算方法计算4⊗[(6⊕8)⊕(3⊗5)]的值.解答:解:4⊗[(6⊕8)⊕(3⊗5)],=4⊗[(6+8﹣1)⊕(3×5﹣2)],=4⊗[13⊕13],=4⊗[13+13﹣1],=4⊗25,=4×25﹣2,=98,故答案为:98.点评:解答此题的关键是根据给出的式子,找出新的运算方法,用新运算方法解答即可.5.(3分)x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是11 .考点:定义新运算。
分析:根据题意,先求出不超过19的质数的个数,再求出不超过93的质数的个数,而不超过1的质数的个数是0,所以<4>×<1>×<8>的值是0,因此即可求出要求的答案.解答:解:因为,<19>为不超过19的质数,有2,3,5,7,11,13,17,19共8个,<93>为不超过的质数,共24个,并且,<1>=0,所以,<<19>+<93>+<4>×<1>×<8>>,=<<19>+<93>>,=<8+24>,=<32>,=11,故答案为:11.点评:解答此题的关键是,根据题意,找出新的符号表示的意义,再根据定义的新运算,找出对应量,解答即可.6.(3分)如果a⊙b表示3a﹣2b,例如4⊙5=3×4﹣2×5=2,那么,当x⊙5比5⊙x大5时,x= 6 .考点:定义新运算。
分析:根据所给的运算方法,将x⊙5比5⊙x大5写成方程的形式,解答方程即可.解答:解:由x⊙5﹣5⊙x=5,可得:(3x﹣2×5)﹣(3×5﹣2x)=5,5x﹣25=5,x=6,故答案为:6.点评:解答此题的关键是,根据题意找出新的运算方法,再根据新的运算方法,列式解答即可.7.(3分)如果1※4=1234,2※3=234,7※2=78,那么4※5=45678 .考点:定义新运算。
分析:根据“1※4=1234,2※3=234,7※2=78”,得出新的运算方法:※的前一个数字是等号后面数的第一个数字,※后面的数字表示连续数的个数,是从※前面的数开始连续,然后运用新的运算方法计算4※5的值即可.解答:解:由于1※4=1234,2※3=234,7※2=78,所以4※5=45678;故答案为:45678.点评:解答此题的关键是,根据所给出的式子,找出新的运算方法,再利用新的运算方法解答即可.8.(3分)我们规定:符号○表示选择两数中较大数的运算,例如:5○3=3○5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3.请计算:= .考点定义新运算。
:分析:根据符号○表示选择两数中较大数的运算,符号△表示选择两数中较小数的运算,得出新的运算方法,用新的运算方法,计算所给出的式子,即可得出答案.解答:解:○=○=,0.625△=△=,△=△=,О2.25=О=,所以:==;故答案为:.点评:解答此题的关键是,根据题意找出新的运算方法,再根据新的运算方法,解答即可.9.(3分)规定一种新运算“※”:a※b=a×(a+1)×…×(a+b﹣1).如果(x※3)※4=421200,那么x= 2 .考点:定义新运算。
分析:先根据“a※b=a×(a+1)×…×(a+b+1)”,知道新运算“※”的运算方法,由于(x※3)※4=421200,这个式子里有两步新运算,所以令其中的一步运算式子为y,再根据新的运算方法,由此即可求出要求的答案.解答:解:令x※3=y,则y※4=421200,又因为,421200=24×34×52×13=24×25×26×27,所以,y=24,即x※3=24,又因为,24=23×3=2×3×4,所以,x=2;故答案为:2.点评:解答此题的关键是,根据新运算方法的特点,只要将整数写成几个自然数连乘的形式,即可得出答案.10.(3分)对于任意有理数x,y,定义一种运算“※”,规定:x※y=ax+by﹣cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x※m=x (m≠0),则m的数值是 4 .考点:定义新运算。
分析:根据x※y=ax+by﹣cxy,找出新的运算方法,根据新的运算方法,将1※2=3,2※3=4,x※m=x写成方程的形式,即可解答.解答:解:由题设的等式x※y=ax+by﹣cxy及x※m=x(m≠0),得a•0+bm﹣c•0•m=0,所以bm=0,又m≠0,故b=0,因此x※y=ax﹣cxy,由1※2=3,2※3=4,得,解得a=5,c=1,所以x※y=5x﹣xy,令x=1,y=m,得5﹣m=1,故m=4;故答案为:4.点评:解答此题的关键是,根据题意找出新的运算方法,再根据新的运算方法,列式解答即可.二、解答题(共4小题,满分0分)11.设a,b为自然数,定义a△b=a2+b2﹣ab.(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4).考点:定义新运算。
分析:根据“a△b=a2+b2﹣ab”得出新的运算方法,然后运用新的运算方法进行计算即可.解答:解:(1)(4△3)+(8△5),=(42+32﹣4×3)+(82+52﹣8×5),=1++49,=62;(2)(2△3)△4,=(22+32﹣2×3)△4,=7△4,=72+42﹣7×4,=37;(3)(2△5)△(3△4),=(22+52﹣2×5)△(32+42﹣3×4),=19△13,=192+132﹣19×13,=283;答:(1)62,(2)37,(3)283.点评:解答此题的关键是,根据所给出的式子,找出新的运算方法,再利用新的运算方法解答即可.12.设a,b为自然数,定义a※b如下:如果a≥b,定义a※b=a﹣b,如果a<b,则定义a※b=b ﹣a.(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a※b=b※a;②(a※b)※c=a※(b※c).考点:定义新运算。