材料科学基础知识点总结电子教案

合集下载

《材料科学基础》教学教案

《材料科学基础》教学教案

《材料科学基础》教学教案导论一、材料科学的重要地位生产力发展水平,时代发展的标志二、各种材料概况金属材料陶瓷材料高分子材料电子材料、光电子材料和超导材料三、材料性能与内部结构的关系原子结构、结合键、原子的排列方式、显微组织四、材料的制备与加工工艺对性能的影响五、材料科学的意义第一章材料结构的基本知识§1-1 原子结构一、原子的电子排列泡利不相容原理最低能量原理二、元素周期表及性能的周期性变化§1-2 原子结合键一、一次键1.离子键2.共价键3.金属键二、二次键1.范德瓦尔斯键2.氢键三、混合键四、结合键的本质及原子间距双原子模型五、结合键与性能§1-3 原子排列方式一、晶体与非晶体二、原子排列的研究方法§1-4 晶体材料的组织一、组织的显示与观察二、单相组织等轴晶、柱状晶三、多相组织§1-5 材料的稳态结构与亚稳态结构稳态结构亚稳态结构阿累尼乌斯方程第二章材料中的晶体结构§ 2-1 晶体学基础一、空间点阵和晶胞空间点阵,阵点(结点)晶格、晶胞坐标系二、晶系和布拉菲点阵7 个晶系14 个布拉菲点阵表2-1三、晶向指数和晶面指数1.晶向指数确定方法,指数含义,负方向,晶向族2.晶面指数确定方法,指数含义,负方向,晶向族3.六方晶系的晶向指数和晶面指数确定方法,换算4.晶面间距密排面间距大5.晶带相交和平行于某一晶向直线的所有晶面的组合晶带定律:hu+kv+lw=0• 晶向指数和晶面指数确定练习,例题§2-2 纯金属的晶体结构一、典型金属晶体结构体心立方bcc面心立方fcc密排六方hcp1.原子的堆垛方式面心立方:ABCABCAB—C—密排六方:ABABA—B —2.点阵常数3.晶胞中的原子数4.配位数和致密度晶体结构中任一原子周围最邻近且等距离的原子数晶体结构中原子体积占总体积的百分数5.晶体结构中的间隙四面体间隙,八面体间隙二、多晶型性:-Fe, :-Fe, :-Fe例:碳在:-Fe中比在-Fe中溶解度大三、晶体结构中的原子半径1温度与压力的影响2.结合键的影响3.配位数的影响§ 2-3离子晶体的结构一、离子晶体的主要特点正、负离子二、离子半径、配位数和离子的堆积1.离子半径2.配位数表2-63.离子的堆积三、离子晶体的结构规则1.负离子配位多面体规则一鲍林第一规则配位多面体是离子晶体的真正结构基元2.电价规则一鲍林第二规则3.负离子多面体共用点、棱与面的规则一鲍林第三规则四、典型离子晶体的结构6 种§ 2-4共价晶体的结构一、共价晶体的主要特点原子晶体二、典型共价晶体的结构第三章晶体缺陷点缺陷、线缺陷、面缺陷§3-1 点缺陷一、点缺陷的类型空位、间隙原子Schottky, Frenkel 缺陷晶个畸变二、点缺陷的产生1.平衡点缺陷及其浓度2.过饱和点缺陷的产生高温淬火、辐照、冷加工3.点缺陷与材料行为扩散物理性能:电阻,密度减小体积增加力学性能:蠕变,强度,脆性§3-2 位错的基本概念一、位错与塑性变形实际屈服强度远低于刚性滑移模型得到的G/30.50 年代中期证实位错的存在二、晶体中位错模型及位错易动性1.刃型位错2.螺型位错3.混合型位错4.位错的易动性图4-12三、柏氏矢量1.确定方法2.柏氏矢量的意义原子畸变程度已滑移区与未滑移区的边界滑移矢量位错线的性质3.柏氏矢量的表示方法练习四、位错的运动1.位错的滑移外加切应力方向、晶体滑移方向、位错线运动方向与柏氏矢量之间关系图4-18 、4-19 、4-20 ,表4-12.位错的攀移通过扩散实现割阶的产生正应力影响3.作用在位错上的力F d二:b五、位错密度=SN:二n/A六、位错的观察图4-24 , 4-25§ 3-3位错的能量及交互作用一、位错的应变能U= :Gb二、位错的线张力图4-30:=Gb/(2R)三、位错的应力场及与其它缺陷的交互作用1位错的应力场螺位错:纯剪切刃位错:正应力为主2.位错与点缺陷的交互作用溶质原子形成的应力场与位错应力场可发生交互作用。

材料科学基础课程总结

材料科学基础课程总结

Schokley分位错--FCC中位于{111}面上
b1
1 6
[121]的分位错
扩展位错:由两条平行的Shockley分位错和二者之间的层错 区组成。
通过插入或抽走部分{111}面也能形成局部层错,这样形成
的分位错称为Frank分位错。
12
Schokley分位错的一些特点:
1)
b
1 6
[121]
双滑移系统)、最后的稳定取向、切变量
(5)参考面、参考方向的变化 (6)硬化曲线:单、多晶体 (7)孪生:四要素(三种典型晶体结构)、基本特点、伸
缩规律
(8)多晶体只要求硬化曲线特征,其它不要求
3
流变应力随应变增加而增加的现象,叫应变硬化(strain hardening),也称为加工硬化(work hardening)。
I--弹性变形区
❖ 明显的硬化只发生在抛物线硬化区
II--过渡区-由变形不均匀引起 ❖ 应力-应变曲线只有三个区:
III--线性硬化区-由多滑移引起
I--弹性变形区
IV--抛物线硬化区-由交滑移引起
II--流动区 III--抛物线硬化区
5
第四章 晶体中的缺陷
(1)缺陷的分类 (2)点缺陷的基本属性
• 位错(dislocation)是晶体中的一维缺陷,即线缺陷
位错分类:刃(型)位错 ,螺(型)位错,混合位错 柏氏回路:在有缺陷的晶体中围绕缺陷区将原子逐个连接
而成的封闭回路。 柏氏矢量:是完整晶体中对应回路的不封闭段。
运动方式:滑移、攀移等
滑移运动面:l b面
l()v规则V f
运动方向:
❖ 非共格界面Incoherent interface: 界面可能含零星分布的共格点 e.g. Large angle grain boundaries

材料科学基础(各章总结)讲诉

材料科学基础(各章总结)讲诉

第一章:结晶学基础一、晶体的基本概念晶体:晶体是内部质点在三维空间按周期性重复排列的固体。

晶胞:是指晶体结构中的平行六面体单位,其形状大小与对应的空间格子中的平行六面体一致。

晶体的基本性质:晶体均一性、各向异性、自限性、对称性、最想内能性。

等同点:晶体结构中物质环境和几何环境完全相同的点。

空间格子:联结分布在三维空间内的结点就构成了空间格子。

单位平行六面体:在空间格子中,所选取的平行六面体的对称性符合整个空间点阵的对称性;棱与棱之间的直角应力求最多;在遵循上两个条件的前提下,所选取的平行六面体的体积应最小。

考虑到对称性不能为直角时,选结点间距最小的行列做平行六面体的棱,棱间交角接近直角。

按照上述选择原则选取的平行六面体称为单位平行六面体。

点群(对称型):结晶多面体中全部对称要素的组合,称为该结晶多面体的对称型。

由于在结晶多面体中,全部对称要素相交于一点(晶体几何中心),在进行对称操作时该点不移动,所以对称型也称为点群。

平移群:晶体结构中所有平移轴的结合。

空间群:在一个晶体结构中所存在的一切对称要素的集合。

二、晶体的对称要素对称中心(符号C):假想的几何点,相应的对称变换是对于这个点的倒反。

对称面(符号P):假想的平面,相应的对称变换是对此平面的反映。

对称轴(符号L n):假想的直线,相应的对称变换是绕此直线的旋转。

倒转轴(符号L i n):一种复合对称要素,由一根假想的直线和此直线上的一个定点构成。

相应的对称变换是绕此直线旋转一定角度以及对此定点的倒反。

映转轴(符号L s n):一种复合对称要素,由一根假想的直线和垂直此直线的一个平面构成。

相应的对称变换是绕此直线旋转一定角度以及对此平面的反映。

三、晶体的对称分类七个晶系包括:三斜晶系、单斜晶系、正交(斜方)、三方晶系、四方(正方)晶系、六方晶系和等轴(立方)晶系四、各晶系的几何常数五、结晶符号1、晶面符号(米氏符号也称晶面符号):(hkl)表示2、晶棱符号::[uvw]表示六、晶体的微观对称要素(1)平移轴:是一直线方向,相应的对称变换为沿此直线方向平移一定的距离。

材料科学基础教案第一章

材料科学基础教案第一章
包括:静电力(electrostatic)、诱导力(induction)和色散力(dispersive force) 属物理键 ,系次价键,没有方向性和饱和性,不如化学键强大,但能很大程度改变材料性质。






静电力(electrost高分子链
Atomic Structure and Interatomic Bonding
第一章原子结构和键合
第二节 原子间的键合
材料的微观结构(Microstructure of Materials)
决定材料性质最为本质的内在因素: 组成材料各元素原子结构; 原子间相互作用、相互结合; 原子或分子在空间的排列和运动规律; 以及原子集合体的形貌特征。
取代基围绕特定原子在空间的排布规律。
构型
构造
近程结构
单体通过聚合反应连接而成的链状分子,称为高分子链。 高分子中的重复结构单元的数目称为聚合度。 高分子链的化学组成不同,化学和物理性能也不同。
链结构单元的化学组成(the Chemistry of mer unito) 碳链高分子 聚乙烯(见书9)
一、金属键(Metallic bonding)
典型金属原子结构:最外层电子数很少,即价电子(valence electron)极易挣脱原子核之束缚而成为自由电子(Free electron),并在整个晶体内运动,弥漫于金属正离子组成的晶格之中而形成电子云(electron cloud)。 金属中自由电子与金属正离子之间相互作用构成的键合称为金属键。 绝大多数金属均以金属键方式结合,基本特点——电子的共有化
诱导力(induction)
色散力(dispersive force)

《材料科学基础》教学教案要点

《材料科学基础》教学教案要点

《材料科学基础》教学教案要点第一篇:《材料科学基础》教学教案要点《材料科学基础》教学教案导论一、材料科学的重要地位生产力发展水平,时代发展的标志二、各种材料概况金属材料陶瓷材料高分子材料电子材料、光电子材料和超导材料三、材料性能与内部结构的关系原子结构、结合键、原子的排列方式、显微组织四、材料的制备与加工工艺对性能的影响五、材料科学的意义 1第一章材料结构的基本知识§1-1 原子结构一、原子的电子排列泡利不相容原理最低能量原理二、元素周期表及性能的周期性变化§1-2 原子结合键一、一次键 1.离子键 2.共价键 3.金属键二、二次键 1.范德瓦尔斯键 2.氢键三、混合键四、结合键的本质及原子间距双原子模型五、结合键与性能§1-3 原子排列方式一、晶体与非晶体二、原子排列的研究方法§1-4 晶体材料的组织一、组织的显示与观察二、单相组织等轴晶、柱状晶三、多相组织§1-5 材料的稳态结构与亚稳态结构稳态结构亚稳态结构阿累尼乌斯方程第二章材料中的晶体结构§2-1 晶体学基础一、空间点阵和晶胞空间点阵,阵点(结点)晶格、晶胞坐标系二、晶系和布拉菲点阵 7个晶系 14个布拉菲点阵表2-1三、晶向指数和晶面指数 1.晶向指数确定方法,指数含义,负方向,晶向族 2.晶面指数确定方法,指数含义,负方向,晶向族3.六方晶系的晶向指数和晶面指数确定方法,换算 4.晶面间距密排面间距大 5.晶带相交和平行于某一晶向直线的所有晶面的组合晶带定律:hu+kv+lw=0● 晶向指数和晶面指数确定练习,例题§2-2 纯金属的晶体结构一、典型金属晶体结构体心立方bcc 面心立方fcc 密排六方hcp 1.原子的堆垛方式面心立方:ABCABCABC——密排六方:ABABAB——2.点阵常数 3.晶胞中的原子数 4.配位数和致密度晶体结构中任一原子周围最邻近且等距离的原子数晶体结构中原子体积占总体积的百分数 5.晶体结构中的间隙四面体间隙,八面体间隙二、多晶型性α-Fe, γ-Fe, δ-Fe 例:碳在γ-Fe 中比在α-Fe中溶解度大三、晶体结构中的原子半径 1.温度与压力的影响 2.结合键的影响 3.配位数的影响§2-3 离子晶体的结构一、离子晶体的主要特点正、负离子二、离子半径、配位数和离子的堆积 1.离子半径 2.配位数表2-6 3.离子的堆积三、离子晶体的结构规则1.负离子配位多面体规则—鲍林第一规则配位多面体是离子晶体的真正结构基元 2.电价规则—鲍林第二规则3.负离子多面体共用点、棱与面的规则—鲍林第三规则四、典型离子晶体的结构 6种§2-4 共价晶体的结构一、共价晶体的主要特点原子晶体二、典型共价晶体的结构第三章晶体缺陷点缺陷、线缺陷、面缺陷§3-1 点缺陷一、点缺陷的类型空位、间隙原子Schottky, Frenkel 缺陷晶个畸变二、点缺陷的产生1.平衡点缺陷及其浓度neN=C-ue=AexpkT 2.过饱和点缺陷的产生高温淬火、辐照、冷加工 3.点缺陷与材料行为扩散物理性能:电阻,密度减小体积增加力学性能:蠕变,强度,脆性§3-2 位错的基本概念一、位错与塑性变形实际屈服强度远低于刚性滑移模型得到的G/30.50年代中期证实位错的存在二、晶体中位错模型及位错易动性1.刃型位错2.螺型位错3.混合型位错 4.位错的易动性图4-12三、柏氏矢量 1.确定方法 2.柏氏矢量的意义原子畸变程度已滑移区与未滑移区的边界滑移矢量位错线的性质 3.柏氏矢量的表示方法练习四、位错的运动 1.位错的滑移外加切应力方向、晶体滑移方向、位错线运动方向与柏氏矢量之间关系图4-18、4-19、4-20,表4-1 2.位错的攀移通过扩散实现割阶的产生正应力影响 3.作用在位错上的力 Fd=τb Fd=σb五、位错密度ρ=S/V ρ=n/A六、位错的观察图4-24,4-25§3-3 位错的能量及交互作用一、位错的应变能 U=αGb2二、位错的线张力图4-30 τ=Gb/(2R)三、位错的应力场及与其它缺陷的交互作用 1.位错的应力场螺位错:纯剪切刃位错:正应力为主 2.位错与点缺陷的交互作用溶质原子形成的应力场与位错应力场可发生交互作用。

《材料科学基础教案》PPT课件

《材料科学基础教案》PPT课件

1学时 1学时 2学时 3学时 2学时 1学时
教材及教学参考书
1.,《材料科学基础教程》 赵品 XX工业大学出版社 2.《材料科学基础教程习题与解答》 赵品 XX工业大学出版社 3.《材料科学基础》 赵品 XX工业大学出版社 1999年 4.《金属学原理》 刘国勋主编 工业冶金出版社 1980年 5.《金属学》 胡庚祥主编 上海科技出版社 1980年 6.《金属学教程》卢光熙主编 机械工业出版社 1985年 7.《金属学原理》 李 超主编 哈工大出版社 1996年 8.《材料科学基础》 马泗春主编 XX科学技术出版社 1998年 9.《材料科学基础》石德珂主编 XX交大出版社 1995年
第二部分 总纲
• 一、课程性质及教学目的 • 二、课程内容 • 三、与其它课程的关系 • 四、教学对象 • 五、教学时间 • 六、教学地点 • 七、教学指导思想 • 八、教学重点 • 九、教学难点 • 十、教学方法 • 十一、学时分配 • 十二、教学过程 • 十三、实验内容 • 十四、教材及教学参考书
编 XX科学技术出版社 1998年
7《材料科学基础》石德珂主编 XX交大出版社
1995年
讲授内容
1、材料在国民经济中的重要地位与作用 2、材料的分类 3、材料的发展历史 4、材料科学的发展方向 5、本课程的任务与内容
材料在国民经济中的重要地位与作用
材料是用来制造各种有用物件的物质. 它是人类生存与发展、征服和改造自然的物质基础,也是 人类社会现代文明的重要支柱.因此史学家将人类发展分为石 器时代、青铜器时代、铁器时代、水泥时代、钢时代、硅时 代和新材料时代.材料科学的发展及进步成为衡量一个国家科 学技术发展的重要标准.材料科学的发展在国民经济中占有极 其重要的地位,因此,材料、能源、信息被誉为现代经济发展 的三大支柱.

《材料科学基础教案》课件

《材料科学基础教案》课件

《材料科学基础教案》PPT课件第一章:材料科学导论1.1 材料科学的定义和发展历程1.2 材料的分类和特性1.3 材料科学的研究内容和方法1.4 材料科学在工程中的应用第二章:材料的力学性能2.1 弹性、塑性和脆性2.2 材料的强度、硬度和韧性2.3 材料的热膨胀和导热性2.4 材料的疲劳和腐蚀性能第三章:材料的结构3.1 原子结构与元素的电子配置3.2 金属晶体结构3.3 非金属晶体结构3.4 材料的微观结构与宏观性能的关系第四章:材料的热处理和加工4.1 材料的热处理工艺和性能4.2 金属的铸造、焊接和热轧4.3 非金属材料的加工方法4.4 新型材料的加工技术和应用第五章:材料的选择与应用5.1 材料的选用原则和标准5.2 工程常用金属材料的选择与应用5.3 常用非金属材料的选择与应用5.4 新型材料在工程中的应用案例分析第六章:金属的腐蚀与防护6.1 金属腐蚀的基本类型和机理6.2 金属腐蚀的影响因素6.3 金属的腐蚀防护方法6.4 实例分析:金属腐蚀与防护的应用第七章:陶瓷材料7.1 陶瓷材料的定义和特性7.2 陶瓷材料的制备方法7.3 陶瓷材料的分类与应用7.4 先进陶瓷材料的最新发展第八章:高分子材料8.1 高分子材料的定义和结构8.2 高分子材料的制备方法8.3 高分子材料的性能与应用8.4 生物基高分子材料和可持续发展的关系第九章:复合材料9.1 复合材料的定义和特点9.2 复合材料的制备方法9.3 常见复合材料的类型与应用9.4 复合材料在航空航天和汽车工业中的应用第十章:纳米材料10.1 纳米材料的定义和特性10.2 纳米材料的制备方法10.3 纳米材料的应用领域10.4 纳米材料的发展趋势和挑战重点和难点解析重点一:材料科学的定义和发展历程解析:理解材料科学的定义是掌握整个学科的基础,对材料科学的发展历程有一个全面的了解,能够帮助我们更好地理解其在不同历史阶段的重要性。

重点二:材料的分类和特性解析:材料的分类是理解不同材料性质的基础,而特性则是材料应用的关键。

材料科学基础教案

材料科学基础教案

材料科学基础(Foundations of Materials Science)材料工程系材料成型与控制工程专业任课教师-张敬尧绪论(Introduction)一.什么是《材料科学基础》二. 材料科学的重要地位三.学习《材料科学基础》的必要性四.《材料科学基础》涵盖的主要内容五.怎样学好《材料科学基础》一.什么是《材料科学基础》什么是材料科学?什么是材料科学基础?材料科学是研究材料的成分、组织结构、制备工艺、材料的性能与应用之间的相互关系的科学。

其核心为研究材料组织结构与性能的关系。

它是当代科技发展的基础、工业生产的支柱,是当今世界的带头学科之一。

作为分支之一的新兴的纳米材料科学与技术是20世纪80年代发展起来的新兴学科,成为21世纪新技术的主导中心。

材料科学基础是进行材料科学研究的基础理论,它将各种材料(包括金属、陶瓷、高分子材料)的微观特性和宏观规律建立在共同的理论基础上,用于指导材料的研究、生产、应用和发展。

它涵盖了材料科学和材料工程的基础理论。

二、材料科学的重要地位●人类社会发展的历史阶段常常根据当时使用的主要材料来划分。

从古代到现在人类使用材料的历史共经历了6个时代:石器时代→青铜器时代→铁器时代→钢时代→半导体时代→新材料时代●20世纪70年代,人们把信息、材料和能源称为当代文明的三大支柱;80年代,又把新材料、信息技术和生物技术并列为新技术革命的重要标志;90年代以来,把材料、信息、能源和生物技术作为国民经济发展的四大支柱产业。

●1986年《科学的美国人》杂志指出“先进材料对未来的宇航、电子设备、汽车以及其他工业的发展是必要的,材料科学的进步决定了经济关键部门增长速率的极限范围。

” 1990年美国总统的科学顾问Allany.Bromley明确指出“材料科学在美国是最重要的学科”。

1991年日本为未来工业规划技术列举的11项主要项目中有7项是基于先进材料基础之上。

故材料科学是科技发展的基础、技术进步和工业化生产的支柱。

考研《材料科学基础》教学教案及笔记

考研《材料科学基础》教学教案及笔记

第一章材料结构的基本知识§1-1 原子结构一、原子的电子排列泡利不相容原理最低能量原理二、元素周期表及性能的周期性变化§1-2 原子结合键一、一次键1.离子键2.共价键3.金属键二、二次键1.范德瓦尔斯键2.氢键三、混合键四、结合键的本质及原子间距双原子模型五、结合键与性能§1-3 原子排列方式一、晶体与非晶体二、原子排列的研究方法§1-4 晶体材料的组织一、组织的显示与观察二、单相组织等轴晶、柱状晶三、多相组织§1-5 材料的稳态结构与亚稳态结构稳态结构亚稳态结构阿累尼乌斯方程第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

材料科学基础知识总结-辽宁科技大学金材10-1

材料科学基础知识总结-辽宁科技大学金材10-1

第0章 绪论1.材料的分类①金属材料 ②无机非金属材料 ③高分子材料 ④复合材料2.无机非金属材料分类①水泥 ②玻璃 ③耐火材料 ④陶瓷(器)第一章 固体结构1.要求掌握的内容⑴晶体、晶体结构、空间点阵、对称、配位数、配位多面体、合金、固溶体、置换固溶体⑵晶体结构与空间点阵的关系和区别、点阵几何元素表示法、球体的最紧密堆积、金属的晶体结构、固溶体、鲍林规则、用鲍林规则分析离子晶体结构.⑶重点:晶体结构与空间点阵的关系和区别、点阵几何元素表示法、典型离子晶体的结构.⑷ 难点:空间点阵,点阵几何元素表示法,鲍林规则,硅酸盐晶体结构2.⑴晶体:内部质点在三维空间呈周期性重复排列的固体,即晶体是具有格子构造从理想晶体结构中抽象出来,相当于晶体结构中结构⑶晶体结构与空间格子晶体结构:客观实体,有实际内容,质点代表原子、离子、分子等。

空间格子:抽象几何图形,结点为几何点。

⑷根据6个点阵参数间的相互关系,可将全部空间点阵归属于7种类型,即7个晶系。

⑸布拉菲点阵:用数学方法推导出能够反映空间点阵全部特征的单位平面六面体只有14种,这14种空间点阵也称布拉菲点阵。

⑹晶胞-能代表整个晶体全部结构特征的最小单位。

(与单位平行六面体(单位空间格子)相对应,从实际晶体选取的这种最小单位。

)单位平行六面体(单位空间格子):能代表整个空间点阵全部特点的最小单位。

晶体结构:晶体内部质点在三维空间作周期性重复排列构成。

晶胞与平行六面体比较:区别:点的意义不同相同:晶胞与平行六面体的大小、形状、参数相同,“点”排列规律相同2.晶向符号①符号[212] ②符号[]210晶向符号不仅代表一根直线方向,而且代表所有平行于这根直线的直线方向。

3.晶面指数X C A ZO AX Z OXm 面: ()233 晶面符号代表了一组平行等距的晶面。

P 面: ()2334.晶带:⑴晶带:所有平行或相交于某一直线的这些晶面构成一个晶带,此直线称为晶带轴。

材料科学基础教案

材料科学基础教案

材料科学基础(Foundations of Materials Science)材料工程系材料成型与控制工程专业任课教师-张敬尧绪论(Introduction)一.什么是《材料科学基础》二. 材料科学的重要地位三.学习《材料科学基础》的必要性四.《材料科学基础》涵盖的主要内容五.怎样学好《材料科学基础》一.什么是《材料科学基础》什么是材料科学?什么是材料科学基础?材料科学是研究材料的成分、组织结构、制备工艺、材料的性能与应用之间的相互关系的科学。

其核心为研究材料组织结构与性能的关系。

它是当代科技发展的基础、工业生产的支柱,是当今世界的带头学科之一。

作为分支之一的新兴的纳米材料科学与技术是20世纪80年代发展起来的新兴学科,成为21世纪新技术的主导中心。

材料科学基础是进行材料科学研究的基础理论,它将各种材料(包括金属、陶瓷、高分子材料)的微观特性和宏观规律建立在共同的理论基础上,用于指导材料的研究、生产、应用和发展。

它涵盖了材料科学和材料工程的基础理论。

二、材料科学的重要地位●人类社会发展的历史阶段常常根据当时使用的主要材料来划分。

从古代到现在人类使用材料的历史共经历了6个时代:石器时代→青铜器时代→铁器时代→钢时代→半导体时代→新材料时代●20世纪70年代,人们把信息、材料和能源称为当代文明的三大支柱;80年代,又把新材料、信息技术和生物技术并列为新技术革命的重要标志;90年代以来,把材料、信息、能源和生物技术作为国民经济发展的四大支柱产业。

●1986年《科学的美国人》杂志指出“先进材料对未来的宇航、电子设备、汽车以及其他工业的发展是必要的,材料科学的进步决定了经济关键部门增长速率的极限范围。

” 1990年美国总统的科学顾问Allany.Bromley明确指出“材料科学在美国是最重要的学科”。

1991年日本为未来工业规划技术列举的11项主要项目中有7项是基于先进材料基础之上。

故材料科学是科技发展的基础、技术进步和工业化生产的支柱。

材料科学基础前三章课程要点总结

材料科学基础前三章课程要点总结

1.绪论材料科学基础的核心问题:材料结构和性能的关联2. 第一章第1节(1)晶体和非晶体的区别(2)空间点阵和结点的定义(3)点阵的基本特征:周期性和等同性(4)晶胞和晶格常数的定义(5)七大晶系的名称、结构特征和对称性规律(要求记忆)(6)14种布拉维点阵并理解其来源(去掉重复的和保持对称性)(7)布拉维点阵和晶体结构的关系,如何从晶体结构获得点阵信息(熟悉ɑ铀, NaCl, Zn三个例子)(8)掌握密排六方HCP的结构,画出完整的中间层原子结构图,掌握c/a比值(9)晶胞与原胞的区别3. 第一章第2节(1)掌握三种晶体结构FCC,BCC,HCP并记住代表性材料(2)理解钢球模型,掌握原子半径、晶胞原子数、配位数、堆垛密度的计算方法(3)间隙的概念和种类,间隙大小的定义(4)掌握FCC,BCC,HCP三种晶体结构中八面体、四面体间隙的位置(坐标),数量以及尺寸。

4. 第三章第3节(1)晶面指数的标定步骤及立方晶系常见的晶面指数(2)掌握晶面族的概念,能写出{100},{110},{111},{112}, {123}晶面族所包含的晶面(3)掌握晶向指数的标定方法,常见的晶向指数,了解行走法确定晶向指数,能写出<100>, <111>, <110>, <112>晶向族所包括的晶向;(4)六方晶系四指数晶面指数标定方法,能写出底面、侧面、对角面的晶面指数;掌握四指数晶向指数的标定方法,熟记轴向、角二等分线方向的晶向的写法及长度,基于此能够熟练写出特殊晶向的指数。

掌握六方晶系的中由三指数晶向变换为四指数的方法;(5)面密度和线密度的概念及计算方法。

5. 第一章第4节(1)掌握晶体的堆垛方式和堆垛次序的概念;(2)简单立方沿{100},{110}晶面的堆垛次序;(3)HCP{0001}面的堆垛次序以及错位矢量;(4)FCC{200}面的堆垛次序以及错位矢量,重点掌握{111}面的堆垛次序及错位矢量。

第一章 材料科学基础电子讲义

第一章  材料科学基础电子讲义

2. 工程材料的键性
广东石油化工学院
第一章 材料的结构
第一节 材料的结合方式
1 ). 结合键的概念 物质内部质点之间的结合力叫结合键
材 料 科 学 基 础
由于质点相互作用时,其吸引力与排斥力的情况 不同,形成了不同类型的结合键。使材料产生不 同的结合方式,从而形成了不同类型的固体材料; 如:金属材料、陶瓷材料、聚合物材料等。
广东石油化工学院
第一章 材料的结构
第二节 晶体学基础
材 料 科 学 基 础
1.2.1 晶体与非晶体 1.2.2 空间点阵 1.2.3 晶向指数与晶面指数
广东石油化工学院
第一章 材料的结构
第二节 晶体学基础
1.2.1 晶体与非晶体
材 料 科 学 基 础
1. 晶体: 原子(或分子)在空间按一定几何规律 作周期性排列而形成的固体物质叫晶体 2. 晶体的特性: (1) 金属晶体具有确定的熔点 T (2) 金属晶体具有各向异性 (3) 金属晶体内部质点的排列 Tm 具有规律性(长程有序) 3. 晶体与非晶体的本质区别:
广东石油化工学院
第一章 材料的结构
第二节 晶体学基础
2. 晶胞
材 料 科 学 基 础
七大晶系及其晶胞特征
(1)三斜晶系: a≠b≠c, α≠β≠γ≠90o (2)单斜晶系: a≠b≠c, α=γ=90o≠β (3)正交晶系: a≠b≠c, α=β=γ=90o (4)三角晶系; a=b=c: α=β=γ≠90o (5)六角晶系: a=b≠c, α=β=90o,γ=120o (6)四方晶系 a=b≠c, α=β=γ=90o (7)立方晶系: a=b=c, α=β=γ=90o
材 料 科 学 基 础
广东石油化工学院

(完整版)厦大材料科学基础知识点总结.doc

(完整版)厦大材料科学基础知识点总结.doc

第一章原子结构和键合原子中一个电子的空间和能量的描述(1)主量子数 ni:决定原子中电子能量和核间平均距离,即量子壳层,取正整数 K、L 、M 、N、O、 P、Q(2)轨道动量量子数 li :给出电子在同一量子壳层内所处的能级(电子亚层),与电子运动的角动量有关, s, p,d, f(3)磁量子数 mi:给出每个轨道角动量数或轨道数,决定原子轨道或子云在空间的伸展方向(4)自旋角动量量子数 si:表示电子自旋的方向,取值为 +1/2 或 -1/2 核外电子的排布规律(1)能量最低原理:电子总是占据能量最低的壳层,使体系的能量最低。

而在同一电子层,电子依次按 s,p,d,f 的次序排列。

(2)Pauli 不相容原理:在一个原子中不可能有运动状态完全一样的两个电子。

因此,主量子数为 n 的壳层,最多容纳2n2 电子。

(3)Hund 原则:在同一个亚能级中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。

原子间的键(见作业)第二章固体结构晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列。

即存在长程有序。

性能上两大特点:( 1)固定的熔点;( 2)各向异性空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点)即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵特征:每个阵点在空间分布必须具有完全相同的周围环境晶胞:代表性的基本单元(最小平行六面体)选取晶胞的原则:Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性;Ⅱ)平行六面体内的棱和角相等的数目应最多;Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;Ⅳ)在满足上条件,晶胞应具有最小的体积。

晶体结构与空间点阵的区别:空间点阵是晶体中质点的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各点阵的周围环境相同,只有14 种。

晶体是指晶体中实际质点(原子、离子和分子)的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。

材料科学基础知识点总结

材料科学基础知识点总结

金属学与热处理总结一、金属的晶体结构重点容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。

晶体的特征、晶体中的空间点阵。

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:晶体中原子的排列在一定围发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

二、纯金属的结晶重点容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。

基本容:结晶过程、阻力、动力,过冷度、变质处理的概念。

铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。

相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。

过冷度:理论结晶温度与实际结晶温度的差称为过冷度。

变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。

过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。

从热力学的角度上看,没有过冷度结晶就没有趋动力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属学与热处理总结一、金属的晶体结构重点内容: 面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。

晶体的特征、晶体中的空间点阵。

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。

基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。

铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。

相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。

过冷度:理论结晶温度与实际结晶温度的差称为过冷度。

变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。

过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。

从热力学的角度上看,没有过冷度结晶就没有趋动力。

根据T R k ∆∝1可知当过冷度T ∆为零时临界晶核半径R k 为无穷大,临界形核功(21TG ∆∝∆)也为无穷大。

临界晶核半径R k 与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。

晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。

细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。

铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。

柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。

垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。

中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。

由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。

三、二元合金的相结构与结晶重点内容:杠杆定律、相律及应用。

基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。

合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。

相律:f = c – p + 1其中,f 为自由度数,c为组元数,p为相数。

伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。

合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。

合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。

四、铁碳合金重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算。

基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。

钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的计算;五种渗碳体的来源及形态。

奥氏体与铁素体的异同点:相同点:都是铁与碳形成的间隙固溶体;强度硬度低,塑性韧性高。

不同点:铁素体为体心结构,奥氏体面心结构;铁素体最高含碳量为0.0218%,奥氏体最高含碳量为2.11%,铁素体是由奥氏体直接转变或由奥氏体发生共析转变得到,奥氏体是由包晶或由液相直接析出的;存在的温度区间不同。

二次渗碳体与共析渗碳体的异同点。

相同点:都是渗碳体,成份、结构、性能都相同。

不同点:来源不同,二次渗碳体由奥氏体中析出,共析渗碳体是共析转变得到的;形态不同二次渗碳体成网状,共析渗碳体成片状;对性能的影响不同,片状的强化基体,提高强度,网状降低强度。

成分、组织与机械性能之间的关系:如亚共析钢。

亚共析钢室温下的平衡组织为F+P,F的强度低,塑性、韧性好,与F相比P 强度硬度高,而塑性、韧性差。

随含碳量的增加,F量减少,P量增加(组织组成物的相对量可用杠杆定律计算)。

所以对于亚共析钢,随含碳量的增加,强度硬度升高,而塑性、韧性下降六、金属及合金的塑性变形与断裂重点内容:体心与面心结构的滑移系;金属塑性变形后的组织与性能。

基本内容:固溶体强化机理与强化规律、第二相的强化机理。

霍尔——配奇关系式;单晶体塑性变形的方式、滑移的本质。

塑性变形的方式:以滑移和孪晶为主。

滑移:晶体的一部分沿着一定的晶面和晶向相对另一部分作相对的滑动。

滑移的本质是位错的移动。

体心结构的滑移系个数为12,滑移面:{110},方向<111>。

面心结构的滑移系个数为12,滑移面:{111},方向<110>。

金属塑性变形后的组织与性能:显微组织出现纤维组织,杂质沿变形方向拉长为细带状或粉碎成链状,光学显微镜分辨不清晶粒和杂质。

亚结构细化,出现形变织构。

性能:材料的强度、硬度升高,塑性、韧性下降;比电阻增加,导电系数和电阻温度系数下降,抗腐蚀能力降低等。

七、金属及合金的回复与再结晶重点内容:金属的热加工的作用;变形金属加热时显微组织的变化、性能的变化,储存能的变化。

基本内容:回复、再结的概念、变形金属加热时储存能的变化。

再结晶后的晶粒尺寸;影响再结晶的主要因素性能的变化规律。

变形金属加热时显微组织的变化、性能的变化:随温度的升高,金属的硬度和强度下降,塑性和韧性提高。

电阻率不断下降,密度升高。

金属的抗腐蚀能力提高,内应力下降。

再结晶:冷变形后的金属加热到一定温度之后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态,这个过程称之为再结晶。

热加工的主要作用(或目的)是:①把钢材加工成所需要的各种形状,如棒材、板材、线材等;②能明显的改善铸锭中的组织缺陷,如气泡焊合,缩松压实,使金属材料的致密度增加;③使粗大的柱状晶变细,合金钢中大块状碳化物初晶打碎并使其均匀分布;④减轻或消除成分偏析,均匀化学成分等。

使材料的性能得到明显的改善。

影响再结晶的主要因素:①再结晶退火温度:退火温度越高(保温时间一定时),再结晶后的晶粒越粗大;②冷变形量:一般冷变形量越大,完成再结晶的温度越低,变形量达到一定程度后,完成再结晶的温度趋于恒定;③原始晶粒尺寸:原始晶粒越细,再结晶晶粒也越细;④微量溶质与杂质原子,一般均起细化晶粒的作用;⑤第二相粒子,粗大的第二相粒子有利于再结晶,弥散分布的细小的第二相粒子不利于再结晶;⑥形变温度,形变温度越高,再结晶温度越高,晶粒粗化;⑦加热速度,加热速度过快或过慢,都可能使再结晶温度升高。

塑性变形后的金属随加热温度的升高会发生的一些变化:显微组织经过回复、再结晶、晶粒长大三个阶段由破碎的或纤维组织转变成等轴晶粒,亚晶尺寸增大;储存能降低,内应力松弛或被消除;各种结构缺陷减少;强度、硬度降低,塑性、韧度提高;电阻下降,应力腐蚀倾向显著减小。

八、扩散重点内容:影响扩散的因素;扩散第一定律表达式。

基本内容:扩散激活能、扩散的驱动力。

柯肯达尔效应,扩散第二定律表达式。

柯肯达尔效应:由置换互溶原子因相对扩散速度不同而引起标记移动的不均衡扩散现象称为柯肯达尔效应。

影响扩散的因素:①温度:温度越高,扩散速度越大;② 晶体结构:体心结构的扩散系数大于面心结构的扩散系数; ③ 固溶体类型:间隙原子的扩散速度大于置换原子的扩散速度; ④ 晶体缺陷:晶体缺陷越多,原子的扩散速度越快;⑤ 化学成分:有些元素可以加快原子的扩散速度,有些可以减慢扩散速度。

扩散第一定律表达式:扩散第一定律表达式:dxdC D J -=其中,J 为扩散流量;D 为扩散系数;dxdC 为浓度梯度。

扩散的驱动力为化学位梯度,阻力为扩散激活能 九、钢的热处理原理重点内容:冷却时转变产物(P 、B 、M )的特征、性能特点、热处理的概念。

基本内容:等温、连续C-曲线。

奥氏体化的四个过程;碳钢回火转变产物的性能特点。

热处理:将钢在固态下加热到预定的温度,并在该温度下保持一段时间,然后以一定的速度冷却下来,让其获得所需要的组织结构和性能的一种热加工工艺。

转变产物(P、B、M)的特征、性能特点:片状P体,片层间距越小,强度越高,塑性、韧性也越好;粒状P体,Fe3C颗粒越细小,分布越均匀,合金的强度越高。

第二相的数量越多,对塑性的危害越大;片状与粒状相比,片状强度高,塑性、韧性差;上贝氏体为羽毛状,亚结构为位错,韧性差;下贝氏体为黑针状或竹叶状,亚结构为位错,位错密度高于上贝氏体,综合机械性能好;低碳马氏体为板条状,亚结构为位错,具有良好的综合机械性能;高碳马氏体为片状,亚结构为孪晶,强度硬度高,塑性和韧性差。

等温、连续C-曲线。

一、论述四种强化的强化机理、强化规律及强化方法。

1、形变强化形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。

机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。

规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。

方法:冷变形(挤压、滚压、喷丸等)。

形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。

相关文档
最新文档