变化率问题

合集下载

变化率问题

变化率问题

当空气容量V从1L增加到2L时, 气球的平均膨胀率为
r 2 r 1 2 1 0.16 dm / L .
可见 0.62>0.16
这就说明: 随着气球体积逐渐变大,气球的平均膨胀率 请用用一句话描述得到的结论 逐渐变小。
思考:一般地,当空气容量从V1增加到V2时, 气球的平均膨胀率是多少?
继续观察平均变化率的代数表达式: 由式子你还会想到什么?
f x 2 f x1 x 2 x1

几何意义
观察函数f(x)的图 象 f(x y
x
2
) f ( x1 )
y f(x2) f(x2)-f(x1)=△y A f(x1) O
x 2 x1
Y=f(x)
平均变化率 表示:
T (℃) C (34, 33.4) B (32, 18.6)
30
20 (注: 3月18日
为第一天)
10 A (1, 3.5)
2
思考
0
2
10
20
30
34
t(天)
你能从图中观察出各时间段的温度变化情况吗? 温度快慢的变化情况怎么刻画?
问题二 气球膨胀率
这是一段吹气球的视频,细细体会气球 的膨胀过程,你有什么发现?随着气球内空 气容量的增加,气球的半径增加得越来越慢. 怎样从数学角度描述这种现象呢?
状态有什么问题吗 ?
四.课堂小结
三个实际变 化率问题
函数的平均变化率
代数表示 意义(实际、
几何)
思想方法
平均速度
从特殊到一般
瞬时速度
如何求瞬时速度, 课下你怎么去做?
五、作 业
应用:
求函数 y 率.

5.1.1变化率问题课件-高二上学期数学人教A版选择性必修第二册

5.1.1变化率问题课件-高二上学期数学人教A版选择性必修第二册

4.8
.
计算运动员在 0 t 48 这段时间里的平均速度,发现了什么? 49
用平均速度描述运动员的运动状态有什么问题吗?
运动员在 0 t 48 这段时间里的平均速度为 0. 显然,在这段时间内, 49
运动员并不处于静止状态. 因此,用平均速度不能准确反映运动员在这 一时间段里的运动状态.
1.瞬时速度的概念:
1.999999
x 0
x
k Δx 2
0.01
2.01
0.001
2.001
0.0001
2.0001
0.00001
2.00001
0.000001
2.000001
……
……
当 x 无限趋近于 0 时,即无论 x 从小于 1 的一边,还是从大于 1 的一边
无限趋近于 1 时,割线 P0 P 的斜率 k 都无限趋近于 2.
给出 t 更多的值,利用计算工具计算对应的平均速度 v 的值. 当 t 无限趋近于 0 时,
即无论 t 从小于 1 的一边,还是从大于 1 的一边无限趋近于 1 时,平均速度 v 都无限
趋近于 5 .

v
h(1 Δt) h(1) (1 Δt) 1
4.9Δt
5
发现,当
t
无限趋近于
0
时,
4.9Δt
也无限趋近于
0,
所以 v 无限趋近于 5 ,这与前面得到的结论一致.
数学中,我们把
5
叫做“当
t
无限趋近于
0
时,
v
h(1
Δt) Δt
h(1)
的极限”,记为
h(1 Δt) h(1)
lim
5 .

课件1:5.1.1 变化率问题

课件1:5.1.1 变化率问题

∴ΔΔyx=-ΔΔxx++242,
∴k= lim Δx→0
ΔΔyx=Δlixm→0
-ΔxΔ+x-242=-44=-1.
又 x=2 时 y=242=1,
∴切线方程为 y-1=-1×(x-2),即 x+y-3=0.
【课堂小结】
1.函数 y=f (x)在 x=x0 处的切线斜率反映了函数在该点处的
瞬时变化率,它揭示了事物在某时刻的变化情况.即:
【学以致用】
1.一物体的运动方程是 s=3+2t,则在[2,2.1]这段时间
内的平均速度是( )
A.0.4
B.2
C.0.3
D.0.2
B [ v =s22.1.1--s22=4.02-.1 4=2.]
2.物体自由落体的运动方程为 s(t)=12gt2,g=9.8 m/s2,若 v
=lim Δt→0
率及瞬时速度的概念.(易混点) 及数学运算的核心素养.
1.平均变化率
【新知初探】
对于函数 y=f (x),从 x1 到 x2 的平均变化率:
(1)自变量的改变量:Δx=__x_2-__x_1_. (2)函数值的改变量:Δy=__f_(_x_2_)-__f_(_x_1)__.
(3)平均变化率ΔΔyx=
【例 2】 某物体的运动路程 s(单位:m)与时间 t(单位:s)的关
系可用函数 s(t)=t2+t+1 表示,求物体在 t=1 s 时的瞬时速度.
[解] ∵ΔΔst=s1+ΔΔtt-s1
=1+Δt2+1+ΔΔtt+1-12+1+1=3+Δt,
∴lim Δt→0
ΔΔst =Δlitm→0
(3+Δt)=3.
5.1.1 变化率问题
学习目标
核心素养

《变化率问题》课件

《变化率问题》课件

从以上的例子中,我们可以了解到,平均变化率 是指在某个区间内数值的平均变化量. 如果上述问题中的函数关系用 f ( x) 表示,那么问 f x2 f x1 题中的变化率可用式子: 表示。 x2 x1
函数f ( x)从x1到x2的平均变化率
f x2 f x1 平均变化率: x2 x1
习惯上:用 x表示x2 -x1,即:x x2 x1
注意:x是一个整体符号,而不是与x相乘。
可把x看作是相对于x1的一个增量, 可用x1 x代替x2 ;
“增量”:x
x2 x1
令“增量” x x2 x1
f f x2 f x1
可以看出: 随着气球体积逐渐变大,它的 平均膨胀率逐渐变小。
思 考 ?
当空气பைடு நூலகம்量从V1增加到V2时,气
球的平均膨胀率是多少?
r (V2 ) r (V1 ) V2 V1
探究活动
气球的平均膨胀率是一个特殊的情况,我们把
这一思路延伸到函数上,归纳一下得出函数的平均
变化率:
r (V2 ) r (V1 ) f ( x2 ) f ( x1 ) V2 V1 x2 x1
3.1.1 变化率问题
很多人都吹过气球,回忆一下吹气球的过程。
发现:
随着气球内空气容量的增加,气球的半径增加 的越来越慢。 从数学的角度,如何描述这种现象呢?
气球的体积V(单位:L)与半径r(单位:dm)之 间的函数关系是:
4 3 3V 3 V (r ) r r (V ) 3 4
f x2 f x1 f x1 x f x1 f x x2 x1 x
f 于是:平均变化率可以表示为: x

变化率问题

变化率问题

(1) 梯子下端离墙 3 米时,梯子上端向下滑 落的速率;
( 2) 梯子与墙的夹角为 解
π
3
时,该夹角的增加率.
设梯子下端离墙的距离 为 x ,
梯子上端到地面的高度 为 y ,
θ
5m
梯子与墙的夹角为 θ .
y
dx π 已知 = 0.5, x = 3, θ = . 3 dt
x
0.5 m / s
(1)
x 2 + y 2 = 52 dy x dx dx dy =− 两边对 t 求导: 2 x + 2 y = 0 即有 dt y dt dt dt dx 由 x = 3,得 y = 4, 及 = 0.5 代入上式, dt dy 3 3 dy 3 = − ⋅ 0.5 = − m / s 得 = m / s, 从而 dt 4 8 dt 8 3 m / s. 即梯子上端向下滑落的 速率为 8 x (2) 由题意 sin θ = , 5 dθ 1 dx dθ 1 dx = ∴ = 两边对 t 求导: cosθ dt 5 dt dt 5 cosθ dt π dx dθ 1 将 θ = , = 0.5 m / s 代入上式得 = × 2 × 0.5 = 0.2 弧度 / s 3 dt dt 5
§4.5 相关变化率 若两个变量之间具有某种关系, 并且两个变量又是 另一变量 t 的函数.
F ( x, y) = 0
并且
x = x( t ) y = y( t )
dy dx , , 去推导另一个变量的变化率 若已知变化率 dt dt
我们称之为相关变化率问题.
例 1 雨滴 (假定为球状 ) 在下落过程中, 由于水分的不断蒸发而
dr 由 (1)、 ( 2) 得 4π r = − kS dt

5.1.1变化率问题

5.1.1变化率问题
1)处的切线.
合作探究
曲线割线的斜率
记∆ = − ,则点P的坐标是( + ∆, + ∆ ).
则割线 的斜率

+∆ −
=
=

+ ∆ −
= ∆ +
合作探究
切线的斜率

+ ∆ −
=
=
= ∆ +
=


+ ∆ + − +
=

= + ∆
课堂练习
3 某河流在一段时间 x min内流过的水量为y ,y是x的函数, = =

问:当x从1变到8时,y关于x的平均变化率是多少?它代表什么实际意义?
解:
当 x 从 1 变到 8 时,y 关于 x 的平均变化率是
因此,用平均速度不能准确反映运动员在这一时间段里的运动状态.
为了精确刻画运动员的运动状态,需要引入瞬时速度的概念.
我们把物体在某一时刻的速度称为瞬时速度.
新知讲解
探究
瞬时速度与平均速度有什么关系?
求运动员在 t=1 s 时的瞬时速度?
不断缩短时间间隔,得到如下表格.
设 在 时刻附近某一时间段内
5.1.1 变化率问题
人教A版(2019)
选择性必修第二册
新知导入
在必修第一册中,我们研究了函数的单调性,并利用函数单调
性等知识定性地研究了一次函数、指数函数、对数函数增长速度的
差异,知道“对数增长”是越来越慢,“指数爆炸”比“直线上升”
快得多.
进一步地,能否精确定量地刻画变化速度的快慢呢?下面我们

变化率 问题

变化率 问题
y y=f(x) B (x2, f(x2))
(x1, f(x1)) A
x O x1 x2
问题2
这是某市2007年3月18日至4月20日每天最高气温 的变化图,
T (℃ )
C (34, 33.4) 30
20
10
B (32, 18.6)
A (1, 3.5) 10 20 30 34 t(d)
2 0 2
t=1到t=32与t=32到t=34这两段时间,哪段气温变化大?
例题讲解
小远从出生到第12个月的体重变化如图所示, 试分别计算小远从出生到第3个月与第6个月到 第12个月体重的平均变化率。 比较这两个时间段小远体重变化的快慢情况。
W(kg)
11 8(月)
例2 在高台跳水运动中,运动
员相对于水面的高度h(单位:
m)与起跳后的时间t(单位:s)
“形” 曲线“陡峭”程度
2.平均变化率的几何意义. 曲线上A、B两点连线的斜率。
“数” 平均变化率
已知函数 f ( x) x 2 ,分别计算 f ( x) 在下列区 间上的平均变化率:
(1)[1,3];
(2)[1,2]; (3)[1,1.1]; (4)[1,1.001]。
4
3 2.1
2.001
34 t(天)
(1)t=32到t=34这两天的温差达到了多少?
(2)t=1到t=32与t=32到t=34这两段时间,哪段气温变化大?
定义:
f ( x2 ) - f ( x1 ) 平均变化率: 式子 x2 - x1
称为函数 f (x)从x1到 x2的平均变化率.
令△x = x2 – x1 , △ y = f (x2) – f (x1) ,则
存在函数关系 h(t)=-4.9t2+6.5t+10. 分别计算运动员在0到0.5秒时 间段,1秒到2秒时间段,以及 65 时间段内的平均 0到 秒 49 速度. (1)运动员在这段时间里是静止的吗?

变化率问题资料课件

变化率问题资料课件
详细描述
三角函数包括正弦函数、余弦函数等。它们的变化率具有周期性,即在每个周期内,变化率呈现单调性。例如, 正弦函数在每个周期内先增后减,余弦函数则先减后增。
04 变化率问题与导数的关系
导数的定义与性质
总结词
导数是描述函数在某一点附近的变化率 的重要工具,具有丰富的性质和定义方 式。
VS
详细描述
详细描述
在物理学中,变化率问题被广泛应用于各种 物理现象的分析,如速度、加速度、角速度 等物理量的变化率分析。通过对这些物理量 的变化率进行建模和分析,物理学家可以揭 示物理现象的内在规律和机制,为科学技术 的发展提供理论支持。
生物种群增长模型
总结词
生物种群增长模型是变化率问题在生物学领 域的应用,通过分析种群数量的变化率,可 以预测种群未来的发展趋势和生态平衡。
THANKS FOR WATCHING
感谢您的观看
瞬时变化率
总结词
描述某一特定点处函数值随自变量变 化的速度
详细描述
瞬时变化率是在某一特定点处,函数 值随自变量变化的速率。它通过求导 数来获得,用于描述函数在某一点的 切线斜率。
变化率的计算公式
总结词
提供计算变化率的数学公式
详细描述
平均变化率的计算公式为 [(末值 - 初值) / 时间跨度]。瞬时变化率则通过求导数 来获得,常用的导数公式包括链式法则、乘积法则、商的导数公式等。
要点二
详细描述
在经济学中,变化率问题常常被用来分析经济增长、通货 膨胀、就业率等经济指标的变化情况。通过对这些经济指 标的变化率进行建模和分析,经济学家可以预测未来的经 济走势和趋势,为企业和政府提供决策依据。
物理现象分析
总结词
物理现象分析是变化率问题的另一个重要应 用领域,通过分析物理量的变化率,可以揭 示物理现象的内在规律和机制。

变化率问题 课件

变化率问题 课件

解析:(1)∵Δt=3,Δs=s(3)-s(0)=15, ∴该物体在0≤t≤3这段时间里的平均速度 v 1=ΔΔst=5(m/s). (2)∵Δt=3-2=1,Δs=s(3)-s(2)=7, ∴该物体在2≤t≤3这段时间里的平均速度 v 2=ΔΔst=7(m/s). (3)∵Δs=s(t0+Δt)-s(t0)=(2t0+2)·Δt+(Δt)2, ∴该物体在t0≤t≤t0+Δt这段时间里的平均速度 v =ΔΔst =2t0+2+ Δt.
(3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1,则Δy =f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
(4)在平均变化率中,当x1取定值后,Δx取不同的数值时,函数的 平均变化率不一定相同;当Δx取定值后,x1取不同的数值时,函数的 平均变化率也不一定相同.
点评:求平均变化率的步骤: 通常用“两步”法,一作差,二作商,即: ①先求出Δx=x2-x1,再计算Δy=f(x2)-f(x1); ②对所求得的差作商,即得 ΔΔxy=fxx22--xf1x1=fx1+ΔΔxx-fx1.
考点二 求平均速度 例2 已知某物体的运动方程为s=t2+2t(s的单位:m,t的单位: s).求: (1)该物体在0≤t≤3这段时间里的平均速度; (2)该物体在2≤t≤3这段时间里的平均速度; (3)该物体在t0≤t≤t0+Δt这段时间里的平均速度.
π 2
附近的平均变化率.
解析:函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为 fxx0+ 0+ΔΔxx- -fxx00=[3x0+Δx2+Δx2]-3x20+2 =6x0·ΔxΔ+x3Δx2=6x0+3Δx. 当x0=2,Δx=0.1时, 函数y=3x2+2在区间[2,2.1]上的平均变化率为 6×2+3×0.1=12.3.

变化率问题通用课件

变化率问题通用课件

变化率问题解析方法
导数与微分解析法
总结词 详细描述
差分解析法
总结词 详细描述
近似解析法
总结词
近似解析法是通过建立近似函数来研究变化率问题的方法。
详细描述
当函数过于复杂或难以直接求解时,可以采用近似解析法,通过近似函数的性质和结论来研究原函数的变化率问 题。常用的近似解析法包括泰勒级数展开、幂级数展开等。
数值解析法
总结词
详细描述
变化率问题应用实例
经济领域应用
总结词
经济领域中变化率问题应用广泛,涉及 经济增长、通货膨胀、利率变化等方面。
VS
详细描述
在经济学中,变化率问题广泛应用于分析 经济增长、通货膨胀、利率变化等现象。 例如,研究国内生产总值的变化率可以了 解经济增速;分析通货膨胀率的变化有助 于制定货币政策和财政政策;研究利率变 化率则对投资和储蓄决策具有指导意义。
MATLAB具有友好的用户界面和图形化编程方式,使得用户可以更加便捷地进行数值计算和数据处理。
Python软件介绍
Python是一种解释型、高级编程语言,具有简单易学、语法简洁、可读 性强等特点。
Python拥有丰富的第三方库和框架,如NumPy、Pandas、SciPy等,可 以进行科学计算、数据分析、机器学习等多种任务。
工程领域应用
总结词
详细描述
生物领域应用
总结词 详细描述
物理领域应用
总结词
详细描述
变化率问题求解软件介绍
MATLAB软件介绍
MATLAB是一款由MathWorks公司开发的商业数学软件,广泛应用于算法开发、数据可视化、数据分 析以及数值计算等领域。
MATLAB提供了丰富的函数库和工具箱,支持多种编程语言和脚本语言,方便用户进行算法设计和数据 分析。

相关变化率问题题目

相关变化率问题题目

相关变化率问题题目
2.一辆汽车以60km/h的速度行驶,在 10 秒后加速到 80km/h,求此过程中汽车的加速度。

3. 已知 y = e^x,求当 x = 1 时,y 的变化率。

4. 求函数 f(x) = 2x^2 + 3x - 5 在 x = -1 处的导数和变化率。

5. 一根杆的长度为 10m,下端固定在地面上,上端固定在墙上,当地面与杆之间的距离为 6m 时,墙与杆之间的距离变化的速率是0.2m/s,求地面与杆之间的距离的变化速率。

6. 已知函数 y = x^2 + 2x,求当 x = 3 时,y 的导数和变化率。

7. 一架飞机以 800km/h 的速度飞行,在 5 秒后加速到
1000km/h,求此过程中飞机的加速度。

8. 求函数 f(x) = 3x^2 + 2x + 1 在 x = 0 处的导数和变化率。

9. 已知 y = ln(x),求当 x = 2 时,y 的变化率。

10. 一张正方形的边长为 5cm,在此正方形的四个角落各铺一只蚂蚁,当蚂蚁开始沿着正方形的边爬行时,正方形的面积的变化率是多少?
- 1 -。

相关变化率问题题目

相关变化率问题题目

相关变化率问题题目
1.一条杆子长度为10cm,其中心靠左的4cm处挂一重物,偏离
杆子中心线1cm。

若将杆子向左转动,则重物距离中心线的距离将如何变化?
2. 一辆汽车从A点出发,以每小时60公里的速度向B点行驶,同时另一辆汽车从B点出发,以每小时80公里的速度向A点行驶。

两车在D点相遇,若D点距A点120公里,则两车在D点停留了多长时间?
3. 一坛子装有一定质量的水,下面有一个小孔,小孔直径为1mm。

当水面下降了5cm时,流出的水的体积是多少?(已知水密度为1g/cm)
4. 一架飞机从地面起飞,以每小时800公里的速度向东飞行。

同一时刻,另一架飞机从同一地点起飞,以每小时600公里的速度向南飞行。

两架飞机在4小时后相遇,此时它们距离起点的距离分别是多少?
5. 一张长方形纸片,宽为x cm,长为y cm,从其中一角剪掉一个正方形,使得剩余部分的宽和长的比为2:3。

求剪掉的正方形边长。

- 1 -。

高中数学选择性必修二 5 1 1变化率问题(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 5 1 1变化率问题(知识梳理+例题+变式+练习)(含答案)

5.1.1变化率问题要点一 平均速度与瞬时速度1.平均速度:时间段[1,1+Δt ]内的平均速度 v -=h (1+Δt )-h (1)(1+Δt )-1.2.瞬时速度:当Δt 无限趋近于0时, v -=h (1+Δt )-h (1)Δt的极限,记为lim Δt →h (1+Δt )-h (1)Δt ,即为t =1时的瞬时速度.【重点小结】在t =1之后或之前,任意取一个时刻1 +Δt ,Δt 是时间改变量,可以是正值,也可以是负值,但不为0.当Δt >0时,1 +Δt 在1之后;当Δt<0时,1 +Δt 在1之前.当Δt 无限趋近于0,即无论t 从小于1的一边,还是从大于1的一边无限趋近于1时,平均速度v 无限趋近v(1),即为t =1时的瞬时速度. 要点二 抛物线的切线的斜率抛物线f (x )在点P (1,1)处的切线斜率为k =lim Δx →0f (1+Δx )-f (1)Δx.【重点小结】当Δx 无限趋近于0时,k =f (1 +Δx ) -f (1)Δx的极限,记为lim Δx →f (1 +Δx ) -f (1)Δx .Δx 可以是正值也可以是负值,但不为0.【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)Δx 趋近于0表示Δx =0.( )(2)平均速度与瞬时速度有可能相等.( )(3)平均变化率是刻画某函数在某区间上变化快慢的物理量.( )(4)一物体的运动方程是S =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是at 0.( )【答案】(1)× (2)√ (3)√ (4)√ 2.质点运动规律s (t )=t 2+3,则从3到3.3内,质点运动的平均速度为( ) A .6.3 B .36.3 C .3.3 D .9.3 【答案】A【解析】s (3)=12,s (3.3)=13.89 ∴v -=s (3.3)-s (3)3.3-3=1.890.3=6.3,故选A.3.如果质点M 按照规律s =3t 2运动,则在t =3时的瞬时速度为( ) A .6 B .18 C .54 D .81【答案】B【解析】Δs Δt =3(3+Δt )2-3×32Δt =18+3Δt ,s ′=li m Δt →0ΔsΔt =li m Δt →(18+3Δt )=18,故选B.4.抛物线f (x )=x 2在点(-1,1)处切线的斜率为________.【答案】-2【解析】切线斜率为k =lim Δx →0 f (-1+Δx )-f (-1)(-1+Δx )-(-1)=lim Δx →0 (-1+Δx )2-1(-1+Δx )-(-1)=lim Δx →0(Δx -2)=-2.题型一 求平均速度【例1】已知一物体的运动方程为s (t )=t 2+2t +3,求该物体在t =1到t =1+Δt 这段时间内的平均速度. 【解析】物体在t =1到t =1+Δt 这段时间内的位移增量Δs =s (1+Δt )-s (1)=[(1+Δt )2+2(1+Δt )+3]-(12+2×1+3) =(Δt )2+4Δt .物体在t =1到t =1+Δt 这段时间内的平均速度为Δs Δt =(Δt )2+4ΔtΔt=4+Δt .【方法归纳】求平均速度的一般步骤(1)作差,计算Δs ;(2)作商:计算ΔsΔt.【跟踪训练1】已知一物体的运动方程为s (t )=3t -t 2,求t =0到t =2时平均速度.(s 的单位是m ,t 的单位是s). 【答案】1 m/s【解析】v -=Δs Δt =S (2)-S (0)2-0=(3×2-22)-02=1 (m/s).题型二 求瞬时速度【例2】如果某物体的运动路程s 与时间t 满足函数s =2(1+t 2)(s 的单位为m ,t 的单位为s),求此物体在1.2 s 末的瞬时速度.【解析】Δs =2[1+(1.2+Δt )2]-2(1+1.22)=4.8Δt +2(Δt )2,li m Δt →0ΔsΔt =li m Δt →(4.8+2Δt )=4.8, 故物体在1.2 s 末的瞬时速度为4.8 m/s. 求物体在1.2 s 末的瞬时速度即求lim Δt →0ΔsΔt【方法归纳】(1)求运动物体瞬时速度的三个步骤①求时间改变量Δt 和位移改变量Δs =s (t 0+Δt )-s (t 0).②求平均速度v =ΔsΔt.③求瞬时速度,当Δt 无限趋近于0时,ΔsΔt 无限趋近于常数v ,即为瞬时速度.(2)求ΔyΔx(当Δx 无限趋近于0时)的极限的方法 ①在极限表达式中,可把Δx 作为一个数来参与运算.②求出ΔyΔx 的表达式后,Δx 无限趋近于0,可令Δx =0,求出结果即可.【跟踪训练2】一做直线运动的物体,其位移s 与时间t 的关系是s (t )=3t -t 2. (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度.【解析】(1)t =0时的速度为初速度.在0时刻取一时间段[0,0+Δt ],即[0,Δt ], 所以Δs =s (Δt )-s (0)=[3Δt -(Δt )2]-(3×0-02) =3Δt -(Δt )2,Δs Δt =3Δt -(Δt )2Δt=3-Δt , li m Δt →0=ΔsΔt =li m Δt →(3-Δt )=3.所以物体的初速度为3.(2)取一时间段[2,2+Δt ],所以Δs =s (2+Δt )-s (2) =[3(2+Δt )-(2+Δt )2]-(3×2-22) =-Δt -(Δt )2,Δs Δt =-Δt -(Δt )2Δt=-1-Δt , li m Δt →0ΔsΔt =li m Δt →(-1-Δt )=-1, 所以当t =2时,物体的瞬时速度为-1. 题型三 求在某点处的切线方程【例3】求抛物线y =2x 2+4x 在点(3,30)处的切线方程. 【解析】Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴k =lim Δx →0ΔyΔx =lim Δx →(2Δx +16)=16.∴在点(3,30)处的切线方程为:y -30=16(x -3)即:16x -y -18=0. 【方法归纳】求在某点处的切线方程(1)作差:Δy =f (x 0+Δx )-f (x 0). (2)作商:Δy Δx =f (x 0+Δx )-f (x 0)Δx.(3)取极限:k =lim Δx →0Δy Δx. (4)由点斜式写出切线方程.【跟踪训练3】求抛物线y =x 2+3在点(2,7)处的切线方程. 【解析】Δy =[(2+Δx )2+3]-(22+3)=4Δx +(Δx )2 ∴ΔyΔx =4+Δx ∴k =lim Δx →(4+Δx )=4. ∴在点(2,7)处的切线方程为:y -7=4(x -2) 即:4x -y -1=0.一、单选题1.函数()2f x x =,()2g x x =在[0,2]上的平均变化率分别记为1m ,2m ,则下列结论正确的是( )A .12m m =B .12m m >C .21m m >D .1m ,2m 的大小无法确定【答案】A 【分析】根据平均变化率的定义计算比较即可. 【解析】12220220m ⨯-⨯==-,22220220m -==-,故12m m =.故选:A.2.“天问一号”于2021年2月到达火星附近,实施火星捕获.2021年5月择机实施降轨,在距离火星表面100 m 时,“天问一号”进入悬停阶段,完成精避障和缓速下降后,着陆巡视器在缓冲机构的保护下,抵达火星表面,巡视器在9 min 内将速度从约20000 km /h 降至0 km/h.若记与火星表面距离的平均变化率为v ,着陆过程中速度的平均变化率为a ,则( ) A .0.185m s v ≈/,210.288m s a ≈/ B .0.185m s v ≈-/,210.288m s a ≈/ C .0.185m s v ≈/,210.288m s a ≈-/ D .0.185m s v ≈-/,210.288m s a ≈-/ 【答案】D 【解析】巡视器与火星表面的距离逐渐减小,所以01000.185m/s 960v -=≈-⨯. 巡视器在着陆过程中的速度逐渐减小,所以22000010000606010.288m/s 960a ⨯-⨯=≈-⨯. 故选:D.3.一物体的运动方程是23s t =+,则t 在[]2,2.1内的平均速度为( ) A .0.41 B .4.1C .0.3D .3【答案】B 【分析】由平均速度的定义求解即可 【解析】2232132 4.12.12s v t ∆+⋅--===∆-,故选:B4.函数()221y f x x ==-在区间[]1,1x +∆上的平均变化率yx∆∆等于( ). A .4 B .42x +∆C .()242x +∆D .4x【答案】B 【分析】由给定条件求出函数增量y ∆,再根据平均变化率的意义列式化简即得. 【解析】因函数()221y f x x ==-,则()f x 在区间[]1,1x +∆上的函数增量y ∆有:()()()()()22112112142y f x f x x x ∆=+∆-+∆---=∆+∆=,于是有42yx x∆=+∆∆, 所以所求平均变化率yx∆∆等于42x +∆. 故选:B5.我们常用函数()y f x =的函数值的改变量与自变量的改变量的比值来表示平均变化率,当自变量x 由0x 改变到0x x +∆时,函数值的改变量y ∆=( ) A .()0f x x +∆B .()0f x x +∆C .()0f x x ⋅∆D .()()00f x x f x +∆-【答案】D 【分析】根据平均变化率的概念即可得出结果. 【解析】由题意知,当0x x =时,()0y f x =;当0x x x =+∆时,()0y f x x =+∆, 故()()00y f x x f x ∆=+∆-. 故选D.6.函数()y f x =,自变量x 由0x 改变到0x k x +∆(k 为常数)时,函数的改变量y ∆为( ). A .()0f x k x +∆ B .()0f x k x +∆ C .()0f x k x ⋅∆ D .()()00f x k x f x +∆-【答案】D 【分析】根据定义求解即可. 【解析】解:由变化率的关系,()()00y f x k x f x ∆=+∆-.故选:D . 7.设()f x 为可导函数,且当0x ∆→时,()()1112f f x x--∆→-∆,则曲线()y f x =在点()() 1,1f 处的切线斜率为( ) A .2 B .1- C .1 D .2-【答案】D 【分析】由导数的定义及导数的几何意义即可求解. 【解析】解:由导数的几何意义,点()() 1,1f 处的切线斜率为(1)f ', 因为0x ∆→时,()()1112f f x x--∆→-∆,所以()()()()11(1)liml 11222imx x f f x f f x xxf ∆→∆→--∆--∆='=-∆∆=,所以在点()() 1,1f 处的切线斜率为2-, 故选:D. 8.函数()12f x x=在2x =处的导数为( ) A .2 B .12C .14D .18-【答案】D 【分析】利用导数的定义即可求出结果. 【解析】()()()()000011222222111lim lim lim lim 2428x x x x f x f x f x x x x x ∆→∆→∆→∆→-∆+∆-+∆⨯⎛⎫===-⋅=- ⎪∆∆∆+∆⎝⎭,所以函数()f x 在2x =处的导数为18-.故选:D.二、多选题9.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:()311010V t H t ⎛⎫ ⎪⎝⎭=-(H 为常数),其图象如图所示,记此堆雪从融化开始到结束的平均融化速度为v (单位:3m /h ),1t ,2t ,3t ,4t 时刻的瞬时融化速度分别为1v ,2v ,3v ,4v (单位:3m /h ),那么下列各式正确的是( )A .1v v <B .2v v >C .30v v +>D .40v v +<【答案】AD 【分析】平均融化速度表示()V t 的图象与坐标轴交点连线的斜率,再由瞬时变化率的概念判断即可. 【解析】平均融化速度为()()10001000V V v -=-,反映的是()V t 的图象与坐标轴交点连线的斜率,如图,观察可知1t ,2t 处瞬时速度(即切线的斜率)小于平均速度,3t ,4t 处瞬时速度及v 都小于0.故选:AD10.已知函数()y f x =,下列说法正确的是( ) A .()()00y f x x f x ∆=+∆-叫作函数值的增量 B .()()00f x x f x y x x+∆-∆=∆∆叫作函数在[]00,x x x +∆上的平均变化率 C .()f x 在0x x =处的导数记为y ' D .()f x 在0x x =处的导数记为()0f x ' 【答案】ABD 【分析】由函数值的增量的意义判断A ;由平均变化率和瞬时变化率的意义判断BCD. 【解析】A 中,()()00y f x x f x ∆=+∆-叫作函数值的改变量,即函数值的增量,A 正确;B 中,()()00f x x f x y x x+∆-∆=∆∆称为函数()f x 在0x 到0x x +∆之间的平均变化率,B 正确; 由导数的定义知函数()f x 在0x x =处的导数记为()0f x ',故C 错误,D 正确. 故选:ABD11.某物体的运动路程s (单位:m )与时间t (单位:s )的关系可用函数()21s t t t =++表示,则( )A .物体在1s t =时的瞬时速度为0m/sB .物体在0s t =时的瞬时速度为1m/sC .瞬时速度为9m/s 的时刻是在4s t =时D .物体从0到1的平均速度为2m/s【答案】BC 【分析】由平均速度与瞬时速度的定义求解即可 【解析】对于A :()()()()()()2200011111111lim lim lim 33t t t t t s t s t t t∆→∆→∆→+∆++∆+-+++∆-==+∆=∆∆,即物体在1s t =时的瞬时速度为3m/s ,A 错误.对于B :()()()()()2000000011lim lim lim 11t t t s t s t t t t t ∆→∆→∆→+∆-+∆++∆+-==+∆=∆∆, 即物体在0s t =时的瞬时速度为1m/s ,B 正确. 对于C :设物体在0t 时刻的瞬时速度为9m/s ,又()()()000000limlim 21219t t s t t s t t t t t∆→∆→+∆-=++∆=+=∆,所以04t =,物体在4s t =时的瞬时速度为9m/s ,C 正确. 对于D :()()()103m /s 10s s v -==-,D 错误.故选:BC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.某厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时原油温度(单位:℃)为()()3218243f x x x x =-+≤≤,那么原油温度的瞬时变化率的最小值为______.【答案】0 【分析】根据题意求出温度的瞬时变化率,进而求出它的最小值. 【解析】由题意可知温度的瞬间变化率为()()()()()323220111limlim88233x x f x x f x f x x x x x x x x x xx ∆→∆→+∆-⎡⎤==+∆-+∆+-+-=-⎢⎥∆⎣⎦'∆()()21124x x =--≤≤,因此当2x =时,原油温度的瞬时变化率取到最小值为()20f '=.故答案为:0.13.下面说法正确的是______(填序号).①若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处没有切线; ②若曲线()y f x =在点()()00,x f x 处有切线,则()0f x '必存在;③若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处的切线斜率不存在; ④若曲线()y f x =在点()()00,x f x 处没有切线,则()0f x '有可能存在. 【答案】③ 【分析】根据导数的几何意义,结合题意,对每个选项逐项判定,适当举出反例,即可求解.对于①中,由()0f x '不存在时,曲线()y f x =在点()()00,x f x 处不一定没有切线,例如:函数()13f x x =,可得()2313f x x -'=,在0x =处的导数不存在,但曲线在该点处的切线方程为0y =,所以①不正确;对于②中,曲线()y f x =在点()()00,x f x 处有切线,则()0f x '不一定存在,例如:函数()13f x x =在0x =处的切线方程为0y =,但()0f '不存在,所以②不正确;对于③中,若()0f x '不存在,根据曲线在某点处的导数的几何意义,可得曲线()y f x =在点()()00,x f x 处的切线斜率不存在,所以③正确;对于④中,由()0f x '存在,则曲线()y f x =在点()()00,x f x 有切线为真命题,可得其逆否命题“曲线()y f x =在点()()00,x f x 处没有切线,则()0f x '不存在”为真命题,所以④错误. 故选:③14.物体做匀速运动,其运动方程是s vt =,则该物体在运动过程中的平均速度与任何时刻的瞬时速度的大小关系是______.【答案】相等【分析】由匀速运动易知平均速度和瞬时速度的定义求解即可.【解析】 因为平均速度为()()()0000s t t s t v t t vt s v t t t +∆-+∆-∆===∆∆∆, 瞬时速度为()()()00000000lim lim lim lim t t t t s t t s t v t t vt s v t v t t tt ∆→∆→∆→∆→+∆-+∆-∆∆====∆∆∆∆ 所以平均速度与任何时刻的瞬时速度任何时刻的瞬时速度相等.故答案为:相等四、解答题15.一做直线运动的物体,其位移s 与时间t 的关系是23s t t =-(位移:m ,时间:s ).(1)求此物体的初速度;(2)求此物体在2t =时的瞬时速度;(3)求0t =到2t =时的平均速度.(1)3m/s(2)1m/s -(3)1m/s【分析】(1)根据题意,可知初速度即0t =时的瞬时速度,结合瞬时变化率的计算,即可求解; (2)根据题意,结合瞬时变化率的计算,即可求解;(3)根据题意,结合平均变化率的计算公式,即可求解.(1)运动物体的初速度即0t =时的瞬时速度,即()()()()2000003lim lim lim 3t t t s t s t t v t t t ∆→∆→∆→∆-∆-∆===-∆∆∆ 3(m /s)=,即物体的初速度为3m/s .(2)根据题意,可知()()()()20022322324lim lim t t s t s t t v t t ∆→∆→+∆-+∆-+∆-⨯+==∆∆ ()()200lim lim 1t t t t t t∆→∆→-∆-∆==-∆-=∆1(m/s)-,即此物体在2t =时的瞬时速度为1m/s -. (3)()()206401(m/s)202s s v ---===-,即0t =到2t =时的平均速度为1m/s . 16.已知某物体运动的位移m x 是时间s t 的函数,而且0.3t =时,0.38x =;0.6t =时, 5.06x =. (1)求这个物体在时间段[0.3,0.6]内的平均速度;(2)估计出0.5=t 时物体的位移.【答案】(1)15.6(m/s)(2)3.5m【分析】根据平均速度的定义即可求出结果,将x 在[0.30.6],上的图象看成直线,根据点斜式方程写出直线方程,令0.5=t 计算即可.(1) 所求的平均速度为:()5.060.3815.6m /s 0.60.3-=- (2)将x 在[0.30.6],上的图象看成直线,又直线过点()0.30.38,,斜率为15.6,则 x 与t 的关系可近似表示为: 0.3815.6(0.3)x t -=-,令0.5=t ,得 3.5x =, 故可估计0.5=t 时物体的位移为3.5m.。

变化率问题 课件

变化率问题 课件

【解题探究】1.函数平均变化率计算式子中,Δx,Δy分别表 示什么? 2.求函数平均变化率的关键是什么? 探究提示: 1.Δx是自变量的改变量,即Δx=x2-x1.Δy是函数值的改变 量,即Δy=f(x2)-f(x1)=f(x1+Δx)-f(x1). 2.关键是求函数值的改变量与自变量的改变量之比, 即 y.
x0
2x
x0
2x
均为函数f(x)在x=a处的导数的表达式.
【类题试解】(2013·杭州高二检测)已知函数y=f(x)在区间
(a,b)内可导,且x0∈(a,b),则 lim f (x0 h) f (x0 h)
h0
h
的值为( )
A.f′(x0) C.-2f′(x0)
B.2f′(x0) D.0
【解析】选B.方法一:由题意,得
2
2.一个小球自由下落,它在下落3秒时的速度是多少?并说明 它的意义(重力加速度为9.8 m/s2).
【解题探究】1.运动物体的平均速度与瞬时速度有什么关系? 2.题2中“下落3秒时的速度”的含义是什么? 探究提示: 1.运动物体在某一时刻的瞬时速度是这一时刻平均速度的极 限. 2.其含义是求此小球在下落3秒时的瞬时速度.
变化率问题 导数的概念
一、函数y=f(x)从x1到x2的平均变化率
1.定义式: y = f (x2 ) f (x1) .
x
x2 x1
2.实质:函数值的改变量与自变量的改变量之比.
3.意义:刻画函数值在区间[x1,x2]上变化的快慢.
思考:(1)函数f(x)在区间[x1,x2]上的平均变化率的大小与曲 线y=f(x)在区间[x1,x2]上的“陡峭”程度有什么关系? 提示:平均变化率的绝对值越大,曲线y=f(x)在区间[x1,x2]上越 “陡峭”,否则相反. (2)平均变化率可以是零吗?举例说明. 提示:可以为零,如常数函数f(x)=a(a为常数).

变化率问题

变化率问题
变化率问题
1,导数的概念:导数就是瞬时变化率
函数 y f ( x ),如果自变量 x 在 x 0处有增量 x ,那么
函数 y相应地有增量
y
f (x0 x)
f ( x 0 ); 比值
y 就 x
叫做函数 y f ( x )在 x 0到 x 0 x 之间的平均变化率,即
y f (x0 x) f (x0) .
1.已知一个物体运动的位移s(米)与时间t(秒)满足:
s(t) 2t 2 5t, 求物体在第5秒
的瞬时速度。
2.求下列函数的导数 (1)y x3 x cosx (2) f (x) x ln 3x
sin x 3.求曲线y x2 1在点P(-2,5)处的切线方程.
导数的应用有: 1.求切线的斜率(已学过) 2.求函数f(x)的单调性:
x
x
如果当 x 0 时, y 为瞬时变化率 , 这个瞬时变化率 y 叫做
x
x
函数 y f ( x )在点 x 0处的导数
,
记为
f
或 ,
()
y
x x0
,
公式为:
y
xx0
f
'(x0)lxim 0 yxlxim 0 f
(x0
x)f x
(x0)
由定义求导数(三步法)
步骤:
( 1 ) 求 y 增 f ( x x 量 ) f ( x );
(2 )算比 y f(x 值 x ) f(x ); (3)求导y数 x lim y. x
x 0x
例1.求y=x2在点x=1处的导数
解: y ( 1 x )2 1 2 2 x ( x )2
y2x(x)2 2x x x
limy lim(2x)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2 x1
x

明 :
1.式子中的
x , y 值可正可负,但是 x
值不可以为0, y 值可为0.
2.计算步骤一般是先求函数值的增量再求比 值.
3.变式:
y f (x2) f (x1) f (x1 x) f (x1)
x x2 x1
x
练一练
1.甲用5年时间挣到10万元,乙用6个月时间挣到2万元, 如何比较和评价甲乙两人的经营成果?
(1)质点运动规律为s t 2 3,则在时间
• 练习: (3,3 t)中相应的而平均速度为 .
(2)物体按s(t) 3t 2 t 4的规律作直线运动, 求在4s附近的平均变化率.
(3)过曲线y f ( x) x3上两点P(1,1)和 Q(1 x,1 y),做曲线的割线,求出当 x 0.1时割线的斜率.
类似地,当空气容量从1增加到2时,气球的平均膨胀率 约为0.16(dm/L)
问题二 从上面的数值,可以看出,随着气球
体积逐渐变大,它的平均膨胀率逐渐变小, 解决了问题.
思考? 当空气容量从V1增加到 V2时,气球的平均膨胀
率是多少? r(V2 ) r(V1) V2 V1
气球的平均膨胀率,反映了气球半径增加 的快慢程度.
变化率问题
武威六中 王兴年
通过阅读引言我们知道: 1.随着对函数的深入研究产生了微积分,它是数学发展史
上的一个具有划时代意义的伟大创造,被誉为数学史 上的里程碑.
2.微积分的创立者是牛顿和莱布尼茨.他们都
是著名的科学家,我们应该认识一下.
牛顿(Isacc Newton,1642 - 1727) 是英国数学家、天文学家和物理学家 是世界上出类拔萃的科学家。
2.已知函数f(x)=2x,计算f(x)在区间 3,2上的平均
变化率
思考?
观察函数f(x)的图象
平均变化率
y x

f(x2 ) x2

f (x1) x1
表示什么?
y
Y=f(x)
f(x2)
直线AB的斜 率
f(x1)
O
B f(x2)-f(x1)=△y
A
x
x1 x2 x2-x1=△x
例题分析
问题一
v h(t2 ) h(t1) t2 t1
在现实生活中还有许多平均变化率的问 题如气球膨胀率,那么我们接着“夯实 地基”.
问题二 气球膨胀率
1. 我们大都吹过气球,同学回想在吹气球的过程 中,随着气球内空气容量的增加我们看到的现 象是?
2.看到的现象是: 随着气球内空气容量的增加,气球的
莱布尼茨(1646--1716)德国 数学家、哲学家, 和牛顿同为微积分的创始人.
3.本章我们将要学习的导数是微积分的核心概念之一. 打个比喻如果微积分是万丈高楼,那么平均变化
率就是们就开始“打造地基”
新课讲解
导数研究的问题
变化率问题
研究某个变量相对于另一个变量 变化的快慢程度.
问题一 高台跳水
这两幅图是锁定了运动员比赛的瞬间。
人们发现,在高台跳水运动中,运动员相对于水面的高 度h(单位:m)与起跳后的时间t(单位:s)存在函数v 关系
h(t)=-4.9t2+6.5t+10 提问:在物理学习中,我们常用什么描述物体的运动状态?
问 答:速度。


1.计算高台跳水运动员在下
函数的平均变化率的定义
一般地,函数 y f (x) 中,式子 f (x2 ) f (x1) x2 x1
称为函数 y f (x) 从x1到 x2 的平均变化率。其中
令 , x x2 x1 , y f (x2 ) f (x1) 则
f (x2 ) f (x1) y
小结
1.我们这节课讲了什么问 题
2.用了几个实例 3.得到一个什么数学定义
平均变化率问题
高台跳水
气球膨胀
4.求函数平均变化率的步 骤:
(1)求函数值的变化量 (2)求比值
y f (x2) f (x1)
y
x
函数平均 变化率定 义
y f (x2) f (x1)
x
x2 x1
(2)你认为用平均速度描述运动员的运动状态有什么问 题?
再 谢谢大家 见
例1: 已知函数f ( x) x2 x的图像上的一点
A(1, 2)及附近一点B(1 x, 2 y),则
y
.
x
例2 求y x2在x x0附近的平均变化率.
例4:经过曲线 f ( x) x2 1上A、B两点作
割线,求割线的斜率.
(1) xA 1,xB 2 ; (2) xA 1,xB 1.5 ; (3) xA 1,xB 1.1 .
作业
1.课本第10页第一题。
2.用今天讲的内容各小组自编1-2个 生活中的平均变化率问题(例如 平均每年增长的房价,平均每分 钟股指下跌的点数等)。
3.小组写一篇变化率在生活中的应用 短文。
4.探究
在问题一高台跳水中,计算运动员在0 t 65
这段时间里的平均速度,并思考下面的问题:
49
(1)运动员在这段时间里是静止的吗?
半径增加的越来越慢.
3.从数学的角度,如何描述这一现象呢?
问题二 气球膨胀率
我们知道,气球的体积v(单位:L)与半径 r(单位:dm)
之间的函数关系是
v(r) 4 r 3
3
如果将半径表示为体积的函数,那么 3 r(v) 3v 4
现象也就是:随着气球体积的增大,当气球体积 增加量相同时,相应半径的增加量越来越小.
也就是(半径的增加量 ) 和 ( 体积的增加量 ) 的比值越来越小.
这个比值就是气球的平均膨胀率
用数值来说话
分别计算空气容量从0到1,从1到2的半径增加量和气 球的平均膨胀率
当空气容量从0增加到1时,气球半径增加了
r(1) r(0) 0.62(dm)
气球的平均膨胀率为 r(1) r(0) 0.62(dm L) 1 0
(h(t)=-4.9t2+6.5t+10)
面两个时间段里的平均速度
0 t 0.5
1t 2
v

h(0.5) h(0) 0.5 0

4.05
m s
v h(2) 2
h(1) 1

8.2
m
s
平均速度反映物体在某时间段里速度的平均变化情况.
思考:运动员从t1到t2时间段里的平均速度的计算式?
相关文档
最新文档