向量历年高考题汇编
高考数学真题汇编---平面向量(有解析)
高考数学真题汇编---平面向量学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.(2017•新课标Ⅱ)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||2.(2017•新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.23.(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣14.(2017•浙江)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I35.(2016•新课标Ⅲ)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°6.(2016•新课标Ⅱ)已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C .6 D.87.(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(2016•山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.(2016•四川)在平面内,定点A,B,C,D满足==,•=•=•=﹣2,动点P,M满足=1,=,则||2的最大值是()A.B.C.D.10.(2016•四川)已知正三角形ABC的边长为2,平面ABC内的动点P,M 满足||=1,=,则||2的最大值是()A.B.C.D.二.填空题(共20小题)11.(2017•山东)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(2017•新课标Ⅲ)已知向量=(﹣2,3),=(3,m),且,则m=.13.(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.14.(2017•新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|=.15.(2017•山东)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.16.(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.17.(2017•北京)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.18.(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.19.(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.20.(2016•新课标Ⅱ)已知向量=(m,4),=(3,﹣2),且∥,则m=.21.(2016•上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.22.(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.23.(2016•山东)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为.24.(2016•新课标Ⅰ)设向量=(x,x+1),=(1,2),且⊥,则x=.25.(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.26.(2016•上海)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.27.(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.28.(2016•北京)已知向量=(1,),=(,1),则与夹角的大小为.29.(2016•上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.30.(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.三.解答题(共1小题)31.(2017•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,= =3,求A和a.﹣6,S△ABC高考数学真题汇编---平面向量参考答案与试题解析一.选择题(共10小题)1.【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.2.【分析】如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(cosθ+1,sinθ+2),根据=λ+μ,求出λ,μ,根据三角函数的性质即可求出最值.【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD==∴BC•CD=BD•r,∴r=,∴圆的方程为(x﹣1)2+(y﹣2)2=,设点P的坐标为(cosθ+1,sinθ+2),∵=λ+μ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A.3.【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B.4.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.5.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC 的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【分析】求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.【解答】解:∵向量=(1,m),=(3,﹣2),∴+=(4,m﹣2),又∵(+)⊥,∴12﹣2(m﹣2)=0,解得:m=8,故选:D.7.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【分析】若⊥(t+),则•(t+)=0,进而可得实数t的值.【解答】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.【分析】由==,可得D为△ABC的外心,又•=•=•,可得可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.运用向量的数量积定义可得△ABC的边长,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,求得B,C的坐标,再设P(cosθ,sinθ),(0≤θ<2π),由中点坐标公式可得M的坐标,运用两点的距离公式可得BM的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值.【解答】解:由==,可得D为△ABC的外心,又•=•=•,可得•(﹣)=0,•(﹣)=0,即•=•=0,即有⊥,⊥,可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.由•=﹣2,即有||•||cos120°=﹣2,解得||=2,△ABC的边长为4cos30°=2,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,可得B(3,﹣),C(3,),D(2,0),由=1,可设P(cosθ,sinθ),(0≤θ<2π),由=,可得M为PC的中点,即有M(,),则||2=(3﹣)2+(+)2=+==,当sin(θ﹣)=1,即θ=时,取得最大值,且为.故选:B.10.【分析】如图所示,建立直角坐标系.B(0,0),C.A.点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,可得M,代入||2=+3sin,即可得出.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.也可以以点A为坐标原点建立坐标系.解法二:取AC中点N,MN=,从而M轨迹为以N为圆心,为半径的圆,B,N,M三点共线时,BM为最大值.所以BM最大值为3+=.故选:B.二.填空题(共20小题)11.【分析】利用向量共线定理即可得出.【解答】解:∵,∴﹣6﹣2λ=0,解得λ=﹣3.故答案为:﹣3.12.【分析】利用平面向量数量积坐标运算法则和向量垂直的性质求解.【解答】解:∵向量=(﹣2,3),=(3,m),且,∴=﹣6+3m=0,解得m=2.故答案为:2.13.【分析】利用平面向量坐标运算法则先求出,再由向量+与垂直,利用向量垂直的条件能求出m的值.【解答】解:∵向量=(﹣1,2),=(m,1),∴=(﹣1+m,3),∵向量+与垂直,∴()•=(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.14.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.15.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.16.【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x﹣y+5=0以及直线上方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].17.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.18.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.19.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.20.【分析】直接利用向量共线的充要条件列出方程求解即可.【解答】解:向量=(m,4),=(3,﹣2),且∥,可得12=﹣2m,解得m=﹣6.故答案为:﹣6.21.【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,sinα+1),由此能求出•的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y=上一个动点,∴设P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴•的取值范围是[0,1+].故答案为:[0,1+].22.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.23.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.24.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.25.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.26.【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,﹣1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[﹣,1,],故答案为:[﹣1,].27.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:28.【分析】根据已知中向量的坐标,代入向量夹角公式,可得答案.【解答】解:∵向量=(1,),=(,1),∴与夹角θ满足:cosθ===,又∵θ∈[0,π],∴θ=,故答案为:.29.【分析】利用组合数公式求出从正八边形A1A2…A8的八个顶点中任取两个的事件总数,满足++=,且点P落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形A1A2…A8的八个顶点中任取两个,基本事件总数为.满足++=,且点P落在第一象限,对应的A i,A j,为:(A4,A7),(A5,A8),(A5,A6),(A6,A7),(A5,A7)共5种取法.∴点P落在第一象限的概率是,故答案为:.30.【分析】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】解:由绝对值不等式得≥|•|+|•|≥|•+•|=|(+)•|,于是对任意的单位向量,均有|(+)•|≤,∵|(+)|2=||2+||2+2•=5+2•,∴|(+)|=,因此|(+)•|的最大值≤,则•≤,下面证明:•可以取得,(1)若|•|+|•|=|•+•|,则显然满足条件.(2)若|•|+|•|=|•﹣•|,此时|﹣|2=||2+||2﹣2•=5﹣1=4,此时|﹣|=2于是|•|+|•|=|•﹣•|≤2,符合题意,综上•的最大值是,法2:由于任意单位向量,可设=,则|•|+|•|=||+||≥||+|=||=|+|,∵|•|+|•|≤,∴|+|≤,即(+)2≤6,即||2+||2+2•≤6,∵||=1,||=2,∴•≤,即•的最大值是.法三:设=,=,=,则=+,=﹣,|•|+|•|=||+||=||≤||,由题设当且仅当与同向时,等号成立,此时(+)2取得最大值6,第21页(共22页)由于|+|2+|﹣|)2=2(||2+||2)=10,于是(﹣)2取得最小值4,则•=,•的最大值是.故答案为:.三.解答题(共1小题)31.【分析】根据向量的数量积和三角形的面积公式可得tanA=﹣1,求出A和c的值,再根据余弦定理即可求出a.【解答】解:由=﹣6可得bccosA=﹣6,①,由三角形的面积公式可得S△ABC=bcsinA=3,②∴tanA=﹣1,∵0<A<180°,∴A=135°,∴c==2,由余弦定理可得a2=b2+c2﹣2bccosA=9+8+12=29∴a=第22页(共22页)。
全国卷历年高考平面向量真题归类分析
全国卷历年高考平面向量真题归类分析(2015年-2019年共14套)一、代数运算(3题)1.(2015全国2卷13)设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 解:因为向量λa+b 与a+2b 平行,所以λa+b=k(a+2b),则所以.答案:2.(2017全国1卷13)已知向量,的夹角为,, ,则.解解,所以3.(2018全国2卷4)已知向量,满足,,则A. 4B. 3C. 2D. 0 解:因为所以选B.4.(2019全国1卷7)已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A.π6B.π3 C. 2π3 D. 5π6解:因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【归类分析】这类题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.解决问题的关键是熟悉公式及运算法则,求夹角公式为:121222221122cos x x y y a b a bx y x y θ+⋅==++,注意向量夹角范围为[0,]π.求模长则利用公式22a a a a ⋅==转化为向量数量积运算,注意运算结果开平方才是模长.这类题基本解题思路如下: 12,k k λ=⎧⎨=⎩,12λ=12a b 602=a 1=b 2+=a b ()22222(2)22cos602+=+=+⋅⋅⋅+a b a b a a b b 221222222=+⨯⨯⨯+=444++=122+=a b 所有相关向量统一用同一个基底表示22a a a a ⋅==求模,模长记得开平方二、几何运算(3题) 1.(2018全国1卷6)在解中,为边上的中线,为的中点,则A.B.C.D.解:根据向量的运算法则,可得,所以,故选A.2.(2015全国1卷7)设D 为解ABC 所在平面内一点,BC →=3CD →,则 ( )A. B. C. D. 解:选A.由题知3.(2017全国2卷12)已知是边长为2的等边三角形,为平面内一点,则的最小值是( ).A. B. C. D. 解:方法一:如图所示,取的中点,联结,取的中点,由, 则()()()22PA PB PC PD PA PE ED PE EA ⋅+=⋅=+⋅+=,当且仅当,即点与点重合时,取得最小值为,故选B.(方法二见模块三第8题)AC AB AD 3431+-=AC AB AD 3431-=AC AB AD 3134+=AC AB AD 3134-=11()33AD AC CD AC BC AC AC AB =+=+=+-=1433AB AC -+ABC △P ABC ()PA PB PC ⋅+2-32-43-1-BC D AD AD E 2PB PC PD +=()222PE ED-=2221132422PE AD AD ⎛⎫--=- ⎪⎝⎭20PE =P E 32-【归类分析】这类题主要考查利用平面向量的线性运算,解题时尽量画出符合要求的图形.平面向量基本定理是解决向量问题的出发点,通过线性运算可将平面内相关向量用同一基底表示.题目如果没有选定基底,则如何选取基底是关键,一般是选已知模长及夹角的两个不共线向量为基底,且其它向量便于用该基底表示.三、坐标运算(7题)1.(2016全国2卷3)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m= ( ) A.-8 B.-6 C.6 D.8 解:a+b=(4,m-2),因为(a+b)⊥b,所以(a+b)·b=12-2(m-2)=0,解得m=8.选D.2.(2016全国3卷3)已知向量1BA 2=⎛ ⎝⎭,31BC ,2=⎛⎫ ⎪ ⎪⎝⎭,则∠ABC= ( )A.30°B.45°C.60°D.120°解:选A.因为BA BC ⋅=12×12=,BA =BC =1,所以cos ∠ABC=BA BC 3=2BA BC⋅,即∠ABC=30°3.(2019全国2卷3)已知AB =(2,3),AC =(3,t),||BC =1,则AB BC ⋅= A. -3B. -2C. 2D. 3解:由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .4.(2016全国1卷13)(2016·全国卷Ⅰ高考理科·T13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= .解:由已知得:a+b=(m+1,3),所以|a+b|2=|a|2+|b|2⇔(m+1)2+32=m 2+12+12+22,解得m=-2.答案:-25.(2018全国3卷13)已知向量,,.若,则________. 解:由题可得 ,即,故答案为6.(2019全国3卷13)已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 解:因为25c a b =-,0a b ⋅=,所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>=22133a c a c ⋅==⨯⋅.7.(2017全国3卷12)在矩形中,,,动点在以点为圆心且与相切的圆上.若,则的最大值为( ). A .3B .C.D .2解:由题意,作出图像,如图所示.设与切于点,联结.以点为坐标原点,为轴正半轴,为轴正半轴建立直角坐标系,则点坐标为 .因为,.所以.因为切于点. 所以⊥.所以是斜边上的高., 即的半径为.因为点在上.所以点的轨迹方程为.设点的坐标为,可以设出点坐标满足的参数方程,而,,. 因为, 所以,. 两式相加得2sin()3θϕ++≤ (其中), 当且仅当,时,取得最大值为3.故选A.8.(2017全国2卷12)已知是边长为2的等边三角形,为平面内一点,则的最小值是( ).A. B.C. D. 方法二:如图所示建立直角坐标系,则()3,0A ,()0,1-B ,()0,1C ,设()y x P ,, 则()y x PA --=3,,()y x PB ---=,1,()y x PC --=,1,ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+BD C E CE A AD x AB y C (2,1)||1CD =||2BC =BD =BD C E CE BD CE Rt BCD △BD 1222BCD BC CD S EC BD BD ⋅⋅⋅==△C P C P 224(2)(1)5x y -+-=P 00(,)x y P 0021x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0112x μθ==01y λθ==+(22255112sin 55λμθθθϕ⎛⎫⎛⎫+=++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭sin ϕcos ϕπ2π2k θϕ=+-k ∈Z λμ+ABC △P ABC ()PA PB PC ⋅+2-32-43-1-()()()23232232222,23,2222-⎪⎪⎭⎫ ⎝⎛-+=-+=----=+⋅y x y y x y x y x PC PB PA所以,当23,0==y x ,即⎪⎪⎭⎫ ⎝⎛23,0P 时,取得最小值为,故选B. 【归类分析】这类题主要考查利用平面向量的坐标运算,渗透了数学运算、直观想象素养.对于向量坐标运算,一定要弄清楚坐标运算的本质.由于选取了平面上两个互相垂直的单位向量作为基底(单位正交基底),这大大的降低了解题的难度.因此,遇到平面向量难题时要想到建立直角坐标系,用坐标法.32-相关点尽量在坐标轴上或成对称关系,向量坐标零越多越好 (1x AB =,写出所有相关向量的坐标。
(完整版)历年平面向量高考试题汇集.doc
高考数学选择题分类汇编1.【2011 课标文数广东卷】已知向量 a =(1,2),b =(1,0), c = (3,4).若 λ为实数,(a + λ b)∥ c ,则 λ=( ) 1 1A. 4 B .2 C .1 D . 22.【2011·课标理数广东卷】 若向量 a ,b ,c 满足 a ∥ b 且 a ⊥c ,则 c ·(a + 2b)= ( ) A . 4 B .3 C .2 D . 03【. 2011 大纲理数四川卷】如图 1-1,正六边形 → → →)ABCDEF 中,BA + CD +EF = ( A . 0 →→ → B. BEC. ADD. CF4.【2011 大纲文数全国卷】设向量 a ,b 满足 |a|= |b|=1,a ·b =- 1,则 |a + 2b|= ()2 A. 2 B.3 C. 5 D. 7 .5.【2011 课标文数湖北卷】若向量 a =(1,2), b = (1,- 1),则 2a +b 与 a - b 的夹 角等于 ( ) 3ππ π π A .- 4B. 6C.4D. 46.【2011 课标理数辽宁卷】 若 a ,b ,c 均为单位向量, 且 a ·b = 0,(a - c) ·(b - c)≤0,则|a +b - c|的最大值为 ( ) A. 2- 1 B .1 C. 2 D . 2【解析】 |a +b -c|= a + b - c 2= a 2+ b 2+c 2+2a ·b -2a ·c - 2b ·c ,由于 a ·b =0,所以上式=3-2c ·a +b ,又由于 (a -c) ·(b -c)≤0,得 (a + b) ·c ≥c 2= 1,所以|a + b - c|= 3-2c ·a +b ≤1,故选 B.7.【2011 课标文数辽宁卷】已知向量 a =(2,1),b =(-1,k),a ·(2a -b)=0,则 k =()A .- 12B .- 6C .6D .121 8.【2011 大纲理数 1 全国卷】设向量 a ,b ,c 满足 |a|=|b|= 1, a ·b =- 2,〈 a - c ,b -c 〉= 60°,则 |c|的 最大 值 等 于 ( ) A . 2 B. 3 C. 2 D .19.【2011 课标理数北京卷】已知向量 a =( 3, 1),b =(0,- 1),c =(k , 3).若a - 2b 与 c 共线,则 k =________.10 .【 2011·课标文数湖南卷】设向量 a ,b 满足 |a|=2 5,b = (2,1),且 a 与 b 的方向相反,则 a 的坐标为 ________.【解析】 因为 a +λb =(1,2) +λ(1,0) = (1 +λ,2) ,又因为 (a + λb) ∥c ,(11+λ) ×4-2×3=0,解得 λ=2.【解析】 因为 a ∥b 且 a ⊥ c ,所以 b ⊥ c ,所以 c ·(a + 2b) =c ·a +2b ·c =0.→ → → → → → → → →【解析】 BA +CD + EF =BA + AF -BC =BF - BC =CF ,所以选 D.【解析】 | a +2b | 2 =(a + 2b) 2=| a | 2+4a ·b +4| b | 2 =3,则 | a +2b | = 3,故选 B【解析】 因为 2a +b =( 2, 4) +( 1,- 1) =( 3,3) ,a -b =( 0, 3) ,所以| 2a +b | = 3 2 , | a -b | = 3. 设2a + b 与 a - b 的夹角为 θ, 则 cos θ=( ) () (3,3 ) () 2 0,π π 2a +b · a -b =· 0,3= 2 ,又 θ∈ [] ,所以 θ=4.|| ||32×32a + ba -b【解析】 a ·(2a -b)= 2a 2- a ·b = 0,即 10-(k -2)= 0,所以 k = 12,故选 D.【解析】设向量 a ,b ,c 的起点为 O ,终点分别为 A ,B ,C ,由已知条件 得,∠ AOB = 120°,∠ACB = 60°,则点 C 在△ AOB 的外接圆上,当 OC 经过圆心 时, |c|最大,在△ AOB 中,求得 AB = 3,由正弦定理得△ AOB 外接圆的直径是3=2,|c |的最大值是 2,故选 A. sin120 °【解析】 因为 a -2b = (3,3),由 a -2b 与 c 共线,有 k = 3,可得 k =1.3 3【解析】 因为 a 与 b 的方向相反,根据共线向量定义有: a =λb( λ<0),所以 a =(2 λ,λ).a 2 2或 λ=2(舍去 ),故 a =(- 4,- 2). 由 | |=25,得 2λ +λ=2 5? λ=- 2 11.【2011·课标理数天津卷】已知直角梯形 ABCD 中, AD ∥ BC ,∠ ADC =90°,= , = , 是腰 上的动点,则 → → .AD BC DC+3PB 的最小值为2 1 P |PA | ________12.【2011·课标理数浙江卷】 若平面向量 α,β满足 | α|=1,| β|≤ 1,且以向量 α,1β为邻边的平行四边形的面积为 2,则 α与 β的夹角 θ的取值范围是 ________.13 .【2011·新课标理数安徽卷】 已知向量 a ,b 满足 (a +2b) ·(a - b)=- 6,且|a|=1,|b|=2,则 a 与 b 的夹角为 ________.14.【2011·课标文数福建卷】若向量 a = (1,1), b = (-1,2),则 a ·b 等于 ________.→ → →15.【2011·课标理数湖南卷】 在边长为 1 的正三角形 ABC 中,设BC =2BD ,CA = → → →3CE ,则 AD ·BE =________.16.【2011 课标理数江西卷】已知 |a|=|b|=2,(a +2b) ·(a - b)=- 2,则 a 与 b 的夹角为 ________.17.【2011·课标文数江西卷】已知两个单位向量e 1 , 2π的夹角为 ,若向量 b 1= 1e3 e-2e 2, 2=1+2,则b 3e 4e b ·b =________.18.【2011 课标文数全国卷】 已知 a 与 b 为两个不共线的单位向量, k 为实数,若向量 a +b 与向量 ka -b 垂直,则 k = ________. 19.【10 安徽文数】设向量 a (1,0) , b ( 1 , 1 ) , 则下列结论中正确的是2 2(A) a b(B) a ?b2 (C) a / / b(D) a b 与 b 垂直220. 【10 重庆文数】若向量 a (3, m) , b (2, 1) , agb 0 ,则实数 m 的值为 (A )3( B )3(C )2(D )622【解析】 建立如图 1-6 所示的坐标系,设 DC = h ,则 A(2,0) ,B(1,h).设 P(0,y), (0≤y ≤h) → →则 PA =(2 ,- y), PB = (1,h -y),∴ |→+ →|= 25+ 3h - 4y 2 ≥ 25=5. PA 3PB【解析】 由题意得: |α||β| θ=1,∵ |α|= ,|β|≤ ,∴ sinθ= 1≥ 1sin 2 1 1 2|β| 2.π 5π又∵ θ∈(0, π),∴θ∈ 6, 6 .【解析】 设 a 与 b 的夹角为 θ,依题意有 (a + 2b) ·(a -b)=a 2+a ·b - 2b 2=- 7+2cos θ=- 6,所以 1cos θ=2.因为 π0≤θ≤π,故 θ=3.【解析】 由已知a =(1,1),b = (-1,2),得a ·b =1×(-1)+1×2=1.【解析】 由题知, D 为 BC 中点, E 为 CE 三等分点,以 BC 所在的直线为 x 轴, 以 AD 所在的直线为 y 轴,建立平面直角坐标系,可得 A 0, 3 ,D(0,0),B -1,0 ,2 21 , 3 → ,- 3 → 5 3→ → 3 3 1 E,故 AD =,BE = , ,所以 AD ·BE =-× =- .3 6 2 6 6 2 64【解析】 设 a 与 b 的夹角为 θ,由 (a + 2b)(a - b)=- 2 得1π|a|2+a ·b -2|b|2= 4+ 2× 2× cos θ-2×4=- 2,解得 cos θ=2,∴θ=3.【解析】 |e 1 = 2 =且11- 2 · 1+ 2 = 21·2-1·2= ,所以 b 1·2=1-||e | 1e e2b(e 2e ) (3e 4e ) 3e 2e e122- 8=- 6.8e = 3- 2× 2【解析】 由题意,得 (a + b) ·(ka -b)=k |a |2- ·+ ·- |b |2=k + (k -·-1 a b ka b1)a b = (k -1)(1+ a ·b)=0,a 与 b 不共线,所以 a ·b ≠-1,所以 k - 1= 0,解得 k= 1.【解析】 a b = ( 1,1) , ( a b)gb 0 ,所以 a b 与 b 垂直 . 【解析】 D2221.【 10 重庆理数】已知向量 a ,b 满足 a ?b 0, a 1, b 2, ,则 2a bA. 0B. 2 2C. 4D. 8 解析: 2a b(2a b )2 424a b b 282 2a22.【10 湖南文数】若非零向量 a ,b 满足 |a | | b |,(2 a b) b 0 ,则 a 与 b 的夹角为 CA. 30B. 60C. 120D. 150uur uur23.【 10 全国卷理数】 V ABC 中,点 D 在 AB 上,CD 平方 b ,ACB .若 CB a ,CA,uuur2 2 1 ( )34( )43,则 CD (A )1a 1b 2ab (B ) abCabDab3 333 5555【解析】因为 CD 平分 ACB ,由角平分线定理得AD= CA 2,所以 D 为 AB的DBCB 1三 等 分点 , 且uuur2 uuur 2uuur uuur,所 以ADAB 3 (CB CA)uuur uuur uuur2 uuur 1 uuur 2 r 1 r3CD CA+ADCB CA a b ,选 B.3 3 3 3uuur r uuur r24. 【 10辽宁文数】平面上 O, A, B 三点不共线,设 OA a, OB b , 则 OAB 的面积等于( A ) r 2 r 2 r r(B ) r 2 r2r r a b (a b)2 a b (a b) 2( C )1 r2 r 2r r 2(D )1 r2 r 2r r 22a b(a b)a b(a b)2S1 r r r r 1 r r 2r r 1 r r OAB2 | a || b | sin a,b2 | a || b | 1 cosa,b 2 | a ||b | 1r r 2 ( a b) r 2 r 2| a | | b |1 r2 r 2r r 2 2 a b(a b)uuur uuur25.【 10 全国卷】△ ABC 中,点 D 在边 AB 上, CD 平分∠ ACB ,若 CB = a , CA =b ,a = 1 ,uuur2 b ( B ) 2 a + 1b(C ) 3 a + 4b ( D )b = 2, 则 CD =(A ) 1a +4a + 3b 33335 555BDBC1uuur uuur uuur r r∵ CD 为 角 平 分 线 , ∴ADAC 2 , ∵AB CB CA a b , ∴uuur 2 uuur 2r2ruuur uuur uuur r2r2r2r1rADABab CDCAADbabab3 33,∴333326. 【10 山东理数】定义平面向量之间的一种运算“re ”如下,对任意的 a=(m,n) ,r r rb ( p,q) ,令 a e b=mq-np ,下面说法错误的是()r r r r r r r r A. 若 a 与 b 共线,则 ae b=0B. a e b=b e aC.对任意的 r r r rr r 2 r r 2 r 2 r2 R ,有( a) e b= ( a e b) D. (a e b) +(ab) =|a| |b|r r r rr r pn-qm ,而 【解析】若 a 与 b 共线,则有 a e b=mq-np=0 ,故 A 正确;因为 b e a r r r r r r a e b=mq-np ,所以有 a e bbe a ,故选项 B 错误,故选 B 。
专题11 平面向量专项高考真题总汇(带答案及解析)
专题11平面向量1.【2021·浙江高考真题】已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b =,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件故选:B.2.【2021·全国高考真题】已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,()1,0A ,则()A .12OP OP = B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP uuur ,2AP uuu r 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α=====,同理2||2|sin |2AP β== ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC3.【2020年高考全国III 卷理数】6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b A .3135-B .1935-C .1735D .1935【答案】D【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b +== ,因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+ .故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.4.【2020年新高考全国Ⅰ卷】已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-【答案】A 【解析】如图,AB的模为2,根据正六边形的特征,可以得到AP 在AB方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB方向上的投影的乘积,所以AP AB⋅的取值范围是()2,6-,故选:A .【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.5.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B .【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.6.【2019年高考全国II 卷理数】已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=A .−3B .−2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=- ,1BC == ,得3t =,则(1,0)BC = ,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.7.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅ ,即22||||AB AC AC AB +>- ,因为AC AB BC -= ,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件,故选C .【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归数学思想.8.【2021·浙江高考真题】已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅= .记向量d 在,a b方向上的投影分别为x ,y ,d a - 在c方向上的投影为z ,则222x y z ++的最小值为___________.【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得22x y +=,再结合柯西不等式即可得解.【详解】由题意,设(1,0),(02),(,)a b c m n === ,,则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b方向上的投影分别为x ,y ,所以(),d x y = ,所以d a - 在c 方向上的投影()||d a c z c -+-⋅===,即22x y +=,所以(()()222222222211221210105x y z x y z x y ⎡⎤++=++++≥+=⎢⎥⎣⎦ ,当且仅当2122x y x y ⎧==⎪⎨⎪+=⎩ 即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【点睛】关键点点睛:解决本题的关键是由平面向量的知识转化出,,x y z 之间的等量关系,再结合柯西不等式变形即可求得最小值.9.【2021·全国高考真题(理)】已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥ ,则k =________.【答案】103-.【分析】利用向量的坐标运算法则求得向量c的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴=++⨯= ,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.10.【2021·全国高考真题】已知向量0a b c ++= ,1a =,2b c == ,a b b c c a ⋅+⋅+⋅=_______.【答案】92-【分析】由已知可得()20a b c++=,展开化简后可得结果.【详解】由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=- .故答案为:92-.11.【2021·全国高考真题(理)】已知向量()()1,3,3,4a b == ,若()a b b λ-⊥,则λ=__________.【答案】35【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.【详解】因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥ 可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.12.【2021·北京高考真题】(2,1)a = ,(2,1)b =-,(0,1)c = ,则()a b c +⋅=_______;a b ⋅=_______.【答案】03【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+= ,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.13.【2020年高考全国Ⅰ卷理数】设,a b 为单位向量,且||1+=a b ,则||-=a b ______________.【解析】因为,a b 为单位向量,所以||||1==a b所以||1+====a b ,解得:21⋅=-a b ,所以||-===a b ,故答案为:.【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.14.【2020年高考全国II 卷理数】已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】22【解析】由题意可得:11cos 452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.故答案为:22.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.15.【2020年高考天津】如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅的最小值为_________.【答案】(1).16;(2).132【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠= ,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=,以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴ ,,∵3,60AB ABC =∠=︒,∴A 的坐标为333,22A ⎛⎫⎪⎪⎝⎭,∵又∵16AD BC = ,则5,22D ⎛⎫⎪ ⎪⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤),5,22DM x ⎛⎫=-- ⎪⎝⎭,3,22DN x ⎛⎫=-- ⎪⎝⎭,()222533321134222222DM DN x x x x x ⎛⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪ ⎝⎭⎝⎭⎝⎭ ,所以,当2x =时,DM DN ⋅ 取得最小值132.故答案为:16;132.【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题.16.【2020年高考北京】已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD = _________;PB PD ⋅=_________.;1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=- ,()0,1PB =-,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.1-.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点P 的坐标是解答的关键,考查计算能力,属于基础题.17.【2020年高考浙江】已知平面单位向量1e ,2e满足122||-≤e e .设12=+a e e ,123=+b e e ,向量a ,b 的夹角为θ,则2cos θ的最小值是_______.【答案】2829【解析】12|2|e e -≤u r u r Q 124412e e ∴-⋅+≤u r u r,1234e e ∴⋅≥u r u r ,222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅u r u r u r u r r r u r u r u r u r u r u rr r 12424228(1(1)3332953534e e =-≥-=+⋅+⨯u r u r .故答案为:2829.【点睛】本题考查利用模求向量数量积、利用向量数量积求向量夹角、利用函数单调性求最值,考查综合分析求解能力,属中档题.18.【2020年高考江苏】在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是▲.【答案】185【解析】∵,,A D P 三点共线,∴可设()0PA PD λλ=>,∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭ ,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+ ,若0m ≠且32m ≠,则,,B D C 三点共线,∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=,∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒,∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC x AD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185.当0m =时,32PA PC = ,,C D 重合,此时CD 的长度为0,当32m =时,32PA PB = ,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD λλ=> .19.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________.【答案】23【解析】因为2=-c a ,0⋅=a b ,所以22⋅=-⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.20.【2019年高考天津卷理数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅= ___________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5(,)22D .因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒,因为AE BE =,所以30BAE ∠=︒,所以直线BE 的斜率为33,其方程为3(3y x =-,直线AE 的斜率为33-,其方程为33y x =-.由(333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得x 1y =-,所以1)E -.所以35(,)1)122BD AE =-=- .【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.21.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅ ,则AB AC的值是___________.3【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD.()()()3632AO EC AD AC AE AB AC AC AE =-=+- ,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC = 即,AB = 故AB AC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.22.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++ 的最小值是___________;最大值是___________.【答案】0; 0所以当1256341,1λλλλλλ======-时,有最大值max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.。
高中向量题集(含答案)【强烈推荐】
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高中向量题集(含答案)【强烈推荐】地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容平面向量测试题一、选择题(本题有10个小题,每小题5分,共50分)1.“两个非零向量共线”是这“两个非零向量方向相同”的()A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分也不必要条件2.如果向量与共线 ,且方向相反,则的值为(). . . .3.已知向量、的夹角为,,,若,则的值为(). . . .4.已知a=(1,-2),b=(1,x),若a⊥b,则x等于()A. B. C. 2 D. -25.下列各组向量中,可以作为基底的是()ABC.6.已知向量a,b的夹角为,且|a|=2,|b|=5,则(2a-b)·a= ()A.3 B. 9 C . 12 D. 137.已知点O为三角形ABC所在平面内一点,若,则点O是三角形ABC的( )A.重心 B. 内心 C. 垂心 D. 外心8.设a=(2,-3),b=(x,2x),且3a·b=4,则x等于()A.-3 B. 3 C. D.9.已知∥,则x+2y的值为()A.0 B. 2 C. D. -210.已知向量a+3b,a-4b分别与7a-5b,7a-2b垂直,且|a|≠0,|b|≠0,则a与b的夹角为()A. B. C. D.二、填空题(共4个小题,每题5分,共20分)11.在三角形ABC中,点D是AB的中点,且满足,则12.设是两个不共线的向量,则向量b=与向量a=共线的充要条件是_______________13.圆心为O,半径为4的圆上两弦AB与CD垂直相交于点P,若以PO为方向的单位向量为b,且|PO|=2,则=_______________14.已知O为原点,有点A(d,0)、B(0,d),其中d>0,点P在线段AB上,且(0≤t≤1),则的最大值为______________三、解答题15.(12分)设a,b是不共线的两个向量,已知若A、B、C三点共线,求k的值.16.(12分)设向量a,b满足|a|=|b|=1及|3a-2b|=3,求|3a+b|的值17.(14分)已知|a|=,|b|=3,a与b夹角为,求使向量a+b 与a+b的夹角是锐角时,的取值范围20.已知向量、、、及实数、满足,,若,且.⑴求关于的函数关系式及其定义域;⑵若时,不等式恒成立,求实数的取值范围.附加题(可不做)1.已知点P分所成的比为-3,那么点分所成比为()A. B. C. D.2.点(2,-1)按向量a平移后得(-2,1),它把点(-2,1)平移到()A.(2,-1) B. (-2,1) C. (6,-3) D. (-6,3))高中数学高考总复习平面向量的数量积及向量的应用习题及详解一、选择题1.(文)(2010·东北师大附中)已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( ) A.-4 B.4C.-2 D.2[解析] a在b方向上的投影为eq \f(a·b,|b|) = eq \f(-12,3) =-4.(理)(2010·浙江绍兴调研)设a·b=4,若a在b方向上的投影为2,且b在a方向上的投影为1,则a与b的夹角等于( )A. eq \f(π,6)B. eq \f(π,3)C. eq \f(2π,3)D. eq \f(π,3) 或 eq \f(2π,3)[答案] B[解析] 由条件知, eq \f(a·b,|b|) =2, eq \f(a·b,|a|) =1,a·b=4,∴|a|=4,|b|=2,∴cos〈a,b〉= eq \f(a·b,|a|·|b|) = eq \f(4,4×2) = eq \f(1,2) ,∴〈a,b〉= eq \f(π,3) .2.(文)(2010·云南省统考)设e1,e2是相互垂直的单位向量,并且向量a=3e1+2e2,b=xe1+3e2,如果a⊥b,那么实数x等于( )A.- eq \f(9,2) B. eq \f(9,2)C.-2 D.2[解析] 由条件知|e1|=|e2|=1,e1·e2=0,∴a·b=3x+6=0,∴x=-2.(理)(2010·四川广元市质检)已知向量a=(2,1),b=(-1,2),且m=ta+b,n=a-kb(t、k∈R),则m⊥n的充要条件是( )A.t+k=1 B.t-k=1C.t·k=1 D.t-k=0[答案] D[解析] m=ta+b=(2t-1,t+2),n=a-kb=(2+k,1-2k),∵m⊥n,∴m·n=(2t-1)(2+k)+(t+2)(1-2k)=5t -5k=0,∴t-k=0.3.(文)(2010·湖南理)在Rt△ABC中,∠C=90°,AC=4,则 eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) 等于( )A.-16 B.-8C.8 D.16[答案] D[解析] 因为∠C=90°,所以 eq \o(AC,\s\up6(→)) · eq \o(CB,\s\up6(→)) =0,所以 eq\o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =( eq \o(AC,\s\up6(→)) + eq \o(CB,\s\up6(→)) )· eq\o(AC,\s\up6(→)) =| eq \o(AC,\s\up6(→)) |2+ eq \o(AC,\s\up6(→)) · eq \o(CB,\s\up6(→)) =AC2=16.(理)(2010·天津文)如图,在△ABC中,AD⊥AB, eq \o(BC,\s\up6(→)) = eq \r(3) eq \o(BD,\s\up6(→)) ,| eq \o(AD,\s\up6(→)) |=1,则 eq \o(AC,\s\up6(→)) · eq \o(AD,\s\up6(→)) =( ) A.2 eq \r(3) B. eq \f(\r(3),2)C. eq \f(\r(3),3)D. eq \r(3)[答案] D[解析] ∵ eq \o(AC,\s\up6(→)) = eq \o(AB,\s\up6(→)) + eq \o(BC,\s\up6(→)) = eq\o(AB,\s\up6(→)) + eq \r(3) eq \o(BD,\s\up6(→)) ,∴ eq \o(AC,\s\up6(→)) · eq \o(AD,\s\up6(→)) =( eq \o(AB,\s\up6(→)) + eq \r(3) eq\o(BD,\s\up6(→)) )· eq \o(AD,\s\up6(→)) = eq \o(AB,\s\up6(→)) · eq \o(AD,\s\up6(→)) + eq\r(3) eq \o(BD,\s\up6(→)) · eq \o(AD,\s\up6(→)) ,又∵AB⊥AD,∴ eq \o(AB,\s\up6(→)) · eq \o(AD,\s\up6(→)) =0,∴ eq \o(AC,\s\up6(→)) · e q \o(AD,\s\up6(→)) = eq \r(3) eq \o(BD,\s\up6(→)) · eq\o(AD,\s\up6(→)) = eq \r(3) | eq \o(BD,\s\up6(→)) |·| eq \o(AD,\s\up6(→)) |·cos∠ADB = eq \r(3) | eq \o(BD,\s\up6(→)) |·cos∠ADB= eq \r(3) ·| eq \o(AD,\s\up6(→)) |= eq \r(3) .4.(2010·湖南省湘潭市)设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则〈a,b〉=( )A.150° B.120°C.60° D.30°[答案] B[解析] ∵a+b=c,|a|=|b|=|c|≠0,∴|a+b|2=|c|2=|a|2,∴|b|2+2a·b=0,∴|b|2+2|a|·|b|·cos〈a,b〉=0,∴cos〈a,b〉=- eq \f(1,2) ,∵〈a,b〉∈[0°,180°],∴〈a,b〉=120°.5.(2010·四川双流县质检)已知点P在直线AB上,点O不在直线AB上,且存在实数t满足 eq \o(OP,\s\up6(→)) =2t eq \o(PA,\s\up6(→)) +t eq \o(OB,\s\up6(→)) ,则 eq \f(|\o(PA,\s\up6(→))|,|\o(PB,\s\up6(→))|) =( )A. eq \f(1,3)B. eq \f(1,2)C.2 D.3[答案] B[解析] ∵ eq \o(OP,\s\up6(→)) =2t( eq \o(OA,\s\up6(→)) - eq \o(OP,\s\up6(→)) )+t eq\o(OB,\s\up6(→)) ,∴ eq \o(OP,\s\up6(→)) = eq \f(2t,2t+1) eq \o(OA,\s\up6(→)) + eq \f(t,2t+1) eq\o(OB,\s\up6(→)) ,∵P在直线AB上,∴ eq \f(2t,2t+1) + eq \f(t,2t+1) =1,∴t=1,∴ eq \o(OP,\s\up6(→)) = eq \f(2,3) eq \o(OA,\s\up6(→)) + eq \f(1,3) eq \o(OB,\s\up6(→)) ,∴ eq \o(PA,\s\up6(→)) = eq \o(OA,\s\up6(→)) - eq \o(OP,\s\up6(→)) = eq \f(1,3) eq\o(OA,\s\up6(→)) - eq \f(1,3) eq \o(OB,\s\up6(→)) ,eq \o(PB,\s\up6(→)) = eq \o(OB,\s\up6(→)) - eq \o(OP,\s\up6(→)) = eq \f(2,3) eq\o(OB,\s\up6(→)) - eq \f(2,3) eq \o(OA,\s\up6(→)) =-2 eq \o(PA,\s\up6(→)) ,∴ eq \f(|\o(PA,\s\up6(→))|,|\o(PB,\s\up6(→))|) = eq \f(1,2) .6.(文)平面上的向量 eq \o(MA,\s\up6(→)) 、 eq \o(MB,\s\up6(→)) 满足| eq \o(MA,\s\up6(→)) |2+| eq \o(MB,\s\up6(→)) |2=4,且 eq \o(MA,\s\up6(→)) · eq \o(MB,\s\up6(→)) =0,若向量 eq \o(MC,\s\up6(→)) = eq \f(1,3) eq \o(MA,\s\up6(→)) + eq \f(2,3) eq \o(MB,\s\up6(→)) ,则| eq \o(MC,\s\up6(→)) |的最大值是( )A. eq \f(1,2) B.1C.2 D. eq \f(4,3)[答案] D[解析] ∵ eq \o(MA,\s\up6(→)) · eq \o(MB,\s\up6(→)) =0,∴ eq \o(MA,\s\up6(→)) ⊥ eq\o(MB,\s\up6(→)) ,又∵| eq \o(MA,\s\up6(→)) |2+| eq \o(MB,\s\up6(→)) |2=4,∴|AB|=2,且M在以AB为直径的圆上,如图建立平面直角坐标系,则点A(-1,0),点B(1,0),设点M(x,y),则x2+y2=1,eq \o(MA,\s\up6(→)) =(-1-x,-y), eq \o(MB,\s\up6(→)) =(1-x,-y),∵ eq \o(MC,\s\up6(→)) = eq \f(1,3) eq \o(MA,\s\up6(→)) + eq \f(2,3) eq \o(MB,\s\up6(→)) = eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)-x,-y)) ,∴| eq \o(MC,\s\up6(→)) |2= eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)-x)) 2+y2= eq \f(10,9) - eq\f(2,3) x,∵-1≤x≤1,∴x=-1时,| eq \o(MC,\s\up6(→)) |2取得最大值为 eq \f(16,9) ,∴| eq \o(MC,\s\up6(→)) |的最大值是 eq \f(4,3) .(理)(2010·山东日照)点M是边长为2的正方形ABCD内或边界上一动点,N是边BC的中点,则 eq\o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) 的最大值为( )A.8 B.6C.5 D.4[答案] B[解析] 建立直角坐标系如图,∵正方形ABCD边长为2,∴A(0,0),N(2,-1), eq \o(AN,\s\up6(→)) =(2,-1),设M坐标为(x,y), eq \o(AM,\s\up6(→)) =(x,y)由坐标系可知eq \b\lc\{\rc\ (\a\vs4\al\co1(0≤x≤2①,-2≤y≤0 ②))∵ eq \o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) =2x-y,设2x-y=z,易知,当x=2,y=-2时,z取最大值6,∴ eq \o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) 的最大值为6,故选B.7.如图,△ABC的外接圆的圆心为O,AB=2,AC=3,BC= eq \r(7) ,则 eq \o(AO,\s\up6(→)) · eq\o(BC,\s\up6(→)) 等于( )A. eq \f(3,2)B. eq \f(5,2)C.2 D.3[答案] B[解析] eq \o(AO,\s\up6(→)) · eq \o(BC,\s\up6(→)) = eq \o(AO,\s\up6(→)) ·( eq\o(AC,\s\up6(→)) - eq \o(AB,\s\up6(→)) )= eq \o(AO,\s\up6(→)) · eq \o(AC,\s\up6(→)) - eq\o(AO,\s\up6(→)) · eq \o(AB,\s\up6(→)) ,因为OA=OB.所以 eq \o(AO,\s\up6(→)) 在 eq \o(AB,\s\up6(→)) 上的投影为 eq \f(1,2) | eq \o(AB,\s\up6(→)) |,所以 eq \o(AO,\s\up6(→)) · eq \o(AB,\s\up6(→)) = eq \f(1,2) | eq \o(AB,\s\up6(→)) |·| eq \o(AB,\s\up6(→)) |=2,同理 eq \o(AO,\s\up6(→)) · eq\o(AC,\s\up6(→)) = eq \f(1,2) | eq \o(AC,\s\up6(→)) |·| eq \o(AC,\s\up6(→)) |= eq \f(9,2) ,故 eq \o(AO,\s\up6(→)) · eq \o(BC,\s\up6(→)) = eq \f(9,2) -2= eq \f(5,2) .8.(文)已知向量a、b满足|a|=2,|b|=3,a·(b-a)=-1,则向量a与向量b的夹角为( )A. eq \f(π,6)B. eq \f(π,4)C. eq \f(π,3)D. eq \f(π,2)[答案] C[解析] 根据向量夹角公式“cos〈a,b〉= eq \f(a·b,|a||b|) 求解”.由条件得a·b-a2=-1,即a·b=-3,设向量a,b的夹角为α,则cosα= eq \f(a·b,|a||b|) = eq\f(3,2×3) = eq \f(1,2) ,所以α= eq \f(π,3) .9.(理)(2010·黑龙江哈三中)在△ABC中, eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→)) ∈ eq\b\lc\[\rc\](\a\vs4\al\co1(\f(3,8),\f(3\r(3),8))) ,其面积S= eq \f(3,16) ,则 eq \o(AB,\s\up6(→)) 与 eq \o(BC,\s\up6(→)) 夹角的取值范围是( )A. eq \b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(π,4)))B. eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(π,3)))C. eq \b\lc\[\rc\](\a\vs4\al\co1(\f(π,4),\f(π,3)))D. eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(3π,4)))[答案] A[解析] 设〈 eq \o(AB,\s\up6(→)) , eq \o(BC,\s\up6(→)) 〉=α,∵ eq \o(AB,\s\up6(→)) · eq\o(BC,\s\up6(→)) =| eq \o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |cosα,S= eq \f(1,2) | eq\o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |·sin(π-α)= eq \f(1,2) | eq \o(AB,\s\up6(→)) |·| eq\o(BC,\s\up6(→)) |·sinα= eq \f(3,16) ,∴| eq \o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |= eq\f(3,8sinα) ,∴ eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→))= eq \f(3cosα,8sinα) = eq \f(3,8) cotα,由条件知 eq \f(3,8) ≤ eq \f(3,8) cotα≤ eq \f(3\r(3),8) ,∴1≤cotα≤ eq \r(3) ,∵ eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→)) >0,∴α为锐角,∴ eq \f(π,6) ≤α≤ eq \f(π,4) .10.(理)(2010·南昌市模考)如图,BC是单位圆A的一条直径,F是线段AB上的点,且 eq \o(BF,\s\up6(→)) =2 eq \o(FA,\s\up6(→)) ,若DE是圆A中绕圆心A运动的一条直径,则 eq \o(FD,\s\up6(→)) · eq \o(FE,\s\up6(→)) 的值是( )A.- eq \f(3,4) B.- eq \f(8,9)C.- eq \f(1,4) D.不确定[答案] B[解析] ∵ eq \o(BF,\s\up6(→)) =2 eq \o(FA,\s\up6(→)) ,∴ eq \o(FA,\s\up6(→)) = eq \f(1,3) eq \o(BA,\s\up6(→)) ,∴| eq \o(FA,\s\up6(→)) |= eq \f(1,3) | eq \o(BA,\s\up6(→)) |= eq \f(1,3) ,eq \o(FD,\s\up6(→)) · eq \o(FE,\s\up6(→)) =( eq \o(FA,\s\up6(→)) + eq \o(AD,\s\up6(→)) )·( eq \o(FA,\s\up6(→)) + eq \o(AE,\s\up6(→)) )=( eq \o(FA,\s\up6(→)) + eq \o(AD,\s\up6(→)) )·( eq \o(FA,\s\up6(→)) - eq \o(AD,\s\up6(→)) )=| eq \o(FA,\s\up6(→)) |2-| eq \o(AD,\s\up6(→)) |2= eq \f(1,9) -1=- eq \f(8,9) .二、填空题11.(2010·苏北四市)如图,在平面四边形ABCD中,若AC=3,BD=2,则( eq \o(AB,\s\up6(→)) + eq\o(DC,\s\up6(→)) )·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=______.[答案] 5[解析] 设AC与BD相交于点O,则( eq \o(AB,\s\up6(→)) + eq \o(DC,\s\up6(→)) )·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=[( eq \o(OB,\s\up6(→)) - eq \o(OA,\s\up6(→)) )+( eq \o(OC,\s\up6(→)) - eq\o(OD,\s\up6(→)) )]·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=[( eq \o(OB,\s\up6(→)) - eq \o(OD,\s\up6(→)) )+( eq \o(OC,\s\up6(→)) - eq\o(OA,\s\up6(→)) )]·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=( eq \o(DB,\s\up6(→)) + eq \o(AC,\s\up6(→)) )( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=| eq \o(AC,\s\up6(→)) |2-| eq \o(BD,\s\up6(→)) |2=5.12.(文)(2010·江苏洪泽中学月考)已知O、A、B是平面上不共线三点,设P为线段AB垂直平分线上任意一点,若| eq \o(OA,\s\up6(→)) |=7,| eq \o(OB,\s\up6(→)) |=5,则 eq \o(OP,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) -eq \o(OB,\s\up6(→)) )的值为________.[答案] 12[解析] eq \o(PA,\s\up6(→)) = eq \o(PO,\s\up6(→)) + eq \o(OA,\s\up6(→)) , eq \o(PB,\s\up6(→)) = eq \o(PO,\s\up6(→)) + eq \o(OB,\s\up6(→)) ,由条件知,| eq \o(OA,\s\up6(→)) |2=49,| eq \o(OB,\s\up6(→)) |2=25,| eq \o(PA,\s\up6(→)) |=| eq \o(PB,\s\up6(→)) |,∴| eq \o(PO,\s\up6(→)) + eq \o(OA,\s\up6(→)) |2=| eq \o(PO,\s\up6(→)) + eq\o(OB,\s\up6(→)) |2,即| eq \o(PO,\s\up6(→)) |2+| eq \o(OA,\s\up6(→)) |2+2 eq \o(PO,\s\up6(→)) · eq\o(OA,\s\up6(→)) =| eq \o(PO,\s\up6(→)) |2+| eq \o(OB,\s\up6(→)) |2+2 eq \o(PO,\s\up6(→)) · eq\o(OB,\s\up6(→)) ,∴ eq \o(PO,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) - eq \o(OB,\s\up6(→)) )=-12,∴ eq \o(OP,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) - eq \o(OB,\s\up6(→)) )=12.13.(理)(2010·广东茂名市)O是平面α上一点,A、B、C是平面α上不共线的三点,平面α内的动点P满足 eq\o(OP,\s\up6(→)) = eq \o(OA,\s\up6(→)) +λ( eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ),则λ= eq \f(1,2) 时, eq \o(PA,\s\up6(→)) ·( eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) )的值为______.[答案] 0[解析] 由已知得 eq \o(OP,\s\up6(→)) - eq \o(OA,\s\up6(→)) =λ( eq \o(AB,\s\up6(→)) + eq\o(AC,\s\up6(→)) ),即 eq \o(AP,\s\up6(→)) =λ( eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ),当λ= eq \f(1,2) 时,得 eq \o(AP,\s\up6(→)) = eq \f(1,2) ( eq \o(AB,\s\up6(→)) + eq\o(AC,\s\up6(→)) ),∴2 eq \o(AP,\s\up6(→)) = eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ,即 eq \o(AP,\s\up6(→)) - eq \o(AB,\s\up6(→)) = eq \o(AC,\s\up6(→)) - eq \o(AP,\s\up6(→)) ,∴ eq \o(BP,\s\up6(→)) = eq \o(PC,\s\up6(→)) ,∴ eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) =eq \o(PB,\s\up6(→)) + eq \o(BP,\s\up6(→)) =0,∴ eq \o(PA,\s\up6(→)) ·( eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) )= eq \o(PA,\s\up6(→)) ·0=0,故填0.三、解答题16.(文)(延边州质检)如图,在四边形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°且 eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =50.(1)求sin∠BAD的值;(2)设△ABD的面积为S△ABD,△BCD的面积为S△BCD,求 eq \f(S△ABD,S△BCD) 的值.[解析] (1)在Rt△ADC中,AD=8,CD=6,则AC=10,cos∠CAD= eq \f(4,5) ,sin∠CAD= eq \f(3,5) ,又∵ eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =50,AB=13,∴cos∠BAC= eq \f(\o(AB,\s\up6(→))·\o(AC,\s\up6(→)),|\o(AB,\s\up6(→))|·|\o(AC,\s\up6(→))|) = eq \f(5,13) ,∵0<∠BAC∠180°,∴sin∠BAC= eq \f(12,13) ,∴sin∠BAD=sin(∠BAC+∠CAD)= eq \f(63,65) .(2)S△BAD= eq \f(1,2) AB·ADsin∠BAD= eq \f(252,5) ,S△BAC= eq \f(1,2) AB·ACsin∠BAC=60,S△ACD=24,则S△BCD=S△ABC+S△ACD-S△BAD= eq \f(168,5) ,∴ eq \f(S△ABD,S△BCD) = eq \f(3,2) .(理)点D是三角形ABC内一点,并且满足AB2+CD2=AC2+BD2,求证:AD⊥BC.[分析] 要证明AD⊥BC,则只需要证明 eq \o(AD,\s\up6(→)) · eq \o(BC,\s\up6(→)) =0,可设 eq\o(AD,\s\up6(→)) =m, eq \o(AB,\s\up6(→)) =c, eq \o(AC,\s\up6(→)) =b,将 eq \o(BC,\s\up6(→)) 用m,b,c线性表示,然后通过向量的运算解决.证明:设 eq \o(AB,\s\up6(→)) =c, eq \o(AC,\s\up6(→)) =b, eq \o(AD,\s\up6(→)) =m,则 eq \o(BD,\s\up6(→)) = eq \o(AD,\s\up6(→)) - eq \o(AB,\s\up6(→)) =m-c, eq \o(CD,\s\up6(→)) = eq \o(AD,\s\up6(→)) - eq \o(AC,\s\up6(→)) =m-b.∵AB2+CD2=AC2+BD2,∴c2+(m-b)2=b2+(m-c)2,即c2+m2-2m·b+b2=b2+m2-2m·c+c2,∴m·(c-b)=0,即 eq \o(AD,\s\up6(→)) ·( eq \o(AB,\s\up6(→)) - eq \o(AC,\s\up6(→)) )=0,∴ eq \o(AD,\s\u p6(→)) · eq \o(CB,\s\up6(→)) =0,∴AD⊥BC.17.(文)(2010·江苏)在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足( eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) )· eq \o(OC,\s\up6(→)) =0,求t的值.[解析] (1)由题设知 eq \o(AB,\s\up6(→)) =(3,5), eq \o(AC,\s\up6(→)) =(-1,1),则 eq\o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) =(2,6), eq \o(AB,\s\up6(→)) - eq \o(AC,\s\up6(→)) =(4,4).所以| eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) |=2 eq \r(10) ,| eq \o(AB,\s\up6(→)) - eq\o(AC,\s\up6(→)) |=4 eq \r(2) .故所求的两条对角线长分别为4 eq \r(2) ,2 eq \r(10) .(2)由题设知 eq \o(OC,\s\up6(→)) =(-2,-1), eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) =(3+2t,5+t).由( eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) )· eq \o(OC,\s\up6(→)) =0得,(3+2t,5+t)·(-2,-1)=0,所以t=- eq \f(11,5) .(理)(安徽巢湖质检)已知A(- eq \r(3) ,0),B( eq \r(3) ,0),动点P满足| eq \o(PA,\s\up6(→)) |+| eq \o(PB,\s\up6(→)) |=4.(1)求动点P的轨迹C的方程;(2)过点(1,0)作直线l与曲线C交于M、N两点,求 eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围.[解析] (1)动点P的轨迹C的方程为 eq \f(x2,4) +y2=1;(2)解法一:①当直线l的斜率不存在时,M(1, eq \f(\r(3),2) ),N(1,- eq \f(\r(3),2) ), eq\o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) = eq \f(1,4) ;②当直线l的斜率存在时,设过(1,0)的直线l:y=k(x-1),代入曲线C的方程得(1+4k2)x2-8k2x+4(k2-1)=0.设M(x1,y1)、N(x2,y2),则x1+x2= eq \f(8k2,1+4k2) ,x1x2= eq \f(4k2-1,1+4k2) .eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =x1x2+y1y2=x1x2+k2(x1-1)(x2-1)=(1+k2)x1x2-k2(x1+x2)+k2= eq \f(k2-4,1+4k2) = eq \f(1,4) - eq \f(\f(17,4),1+4k2) < eq \f(1,4) .又当k=0时, eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 取最小值-4,∴-4≤ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) < eq \f(1,4) .根据①、②得 eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围为[-4, eq \f(1,4) ].解法二:当直线l为x轴时,M(-2,0),N(2,0), eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =-4. 当直线l不为x轴时,设过(1,0)的直线l:x=λy+1,代入曲线C的方程得(4+λ2)y2+2λy-3=0.设M(x1,y1)、N(x2,y2),则y1+y2= eq \f(-2λ,4+λ2) ,y1y2= eq \f(-3,4+λ2) .eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =x1x2+y1y2=(λ2+1)y1y2+λ(y1+y2)+1= eq \f(-4λ2+1,4+λ2) =-4+ eq \f(17,4+λ2) ∈(-4, eq \f(1,4) ].∴-4≤ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) ≤ eq \f(1,4) .∴ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围为[-4, eq \f(1,4) ].高中数学平面向量章末复习题(二)【提高篇】一、选择题1、下面给出的关系式中正确的个数是( C )① ②③④⑤(A) 0 (B) 1 (C) 2 (D) 32. 已知ABCD为矩形,E是DC的中点,且=,=,则=( B )(A) + (B)-(C)+(D)-3.已知ABCDEF是正六边形,且=,=,则=( D )(A)(B)(C)+(D)4. 设a,b为不共线向量,=a+2b,=-4 a-b,=-5 a-3 b,则下列关系式中正确的是(B )(A)=(B)=2 (C)=-(D)=-25. 设与是不共线的非零向量,且k+与+k共线,则k的值是( C )(A) 1 (B)-1 (C)(D)任意不为零的实数6. 在中,M是BC的中点,AM=1,点P在AM上且满足-,则等于 ( A )A. B. C. D.7.已知a、b均为单位向量,它们的夹角为60°,那么丨a+3b丨=( C )A.B.C. D.48.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于( D )。
向量高考题
平面向量(1)一、1.已知A (3,1),B (6,1),C (4,3),D 为线段BC 的中点,则向量与DA 的夹角为( )A .54arccos2-πB .54arccosC .)54arccos(-D .-)54arccos(-2.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ='A O e ,其中λ=(A )511 (B )511-(C )2 (D )-23.已知向量||).,5(),2,2(k +=-=若不超过5,则k 的取值范围是 .二、例1.已知向量(cos ,sin )m θθ→=和sin ,cos ),(,2),n θθθππ→=∈且||m n += 求cos()28θπ+的值.例2. (已知方向向量为v =(1,3)的直线l 过点(0,-23)和椭圆C :)0(12222>>=+b a by a x 的焦点,且椭圆C 的中心关于直线l 的对称点在椭圆C 的右准线上. (1) 求椭圆C 的方程;(2⋅∠≠ )是否存在过点E(-2,0)的直线m 交椭圆C 于点M 、N ,满足OM MON 0(O 为原点).若存在,求直线m 的方程;若不存在,请说明理由。
例3.已知常数a >0,向量c =(0,a ),i =(1,0).经过原点O 以c +λi 为方向向量的直线与经过定点A (0,a )以i -2λc 为方向向量的直线相交于点P ,其中λ∈R .试问:是否存在两个定点E 、F ,使得| PE | + | PF |为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.三、1. 已知向量,a b →→,且2,AB a b →→→=+56,72,BC a b CD a b →→→→→→=-+=-则一定共线的三点是 ()A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D2.已知向量,//),6,(),3,2(x 且==则x = .3.已知向量a =)sin ,(cos θθ,向量b=)1,3(-,则|2a -b|的最大值是 .四、 1、条件甲:“四边形ABCD 是平行四边形”是条件乙:“AB DC =”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 1.已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ=( )A .511 B .-511 C .2 D .-22.下列条件中,不能确定三点A 、B 、P 共线的是 ( )A .2020sin33cos 33MP MA MB =+B .2020sec 33tan 33MP MA MB =-C .2020csc 33cot 33MP MA MB =-D .2020sin 33cos 57MP MA MB =+3.在直角坐标系中,O 是原点,OQ =(-2+cos θ,-2+sin θ) (θ∈R),动点P 在直线x=3上运动,若从动点P 向Q 点的轨迹引切线,则所引切线长的最小值为 ( )A . 4B . 5C . 26D .265.点P 在平面上作匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位.设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为( )A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)6.若平面向量与向量)2,1(-=a 的夹角是︒180,且53||=b ,则= (A ) )6,3(- (B ))6,3(-(C ))3,6(-(D ))3,6(-7.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥ ,则x=(A )-3 (B )-1(C )1(D )38.已知点A(1, -2),若向量与={2,3}同向,=213,则点B 的坐标为 .9.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k= .10.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点,已知|AB |=2|OA |,且点B 的纵坐标大于零.(1)求向量AB 的坐标; (2)求圆x 2-6x +y 2+2y =0关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线y =ax 2-1上总有关于直线OB 对称的两个点?若不存在,说明理由;若存在,求a 的取值范围.11.已知△OFQ 的面积为S ,且⋅=1⑴若21<S<2,求向量与的夹角θ的取值范围;⑵设︱OF ︱=C(c ≥2),S=43C,若以O 为中心,F 为焦点的椭圆经过点Q,当︱︱取最小值时,求此时椭圆的方程.平面向量(2)一、课前练习:1、| a |=1,| b |=2,c= a+ b,c a ⊥且,则向量a b 与的夹角为( )A .30°B .60°C .120°D .150°2.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e|,则( )A .a ⊥eB .a ⊥(a -e )C .e ⊥(a -e )D .(a +e )⊥(a -e )3.已知平面上三点A 、B 、C 满足3,4,5,AB BC CA === 则AB BC BC CA CA AB ⋅+⋅+⋅的值等于 .二、例题选讲:例1. 已知向量].2,0[),2sin ,2(cos ),23sin ,23(cosπ∈-==x x x b x x a且 (1)求.||b a b a +⋅及(2)若||2)(b a b a x f +-⋅=λ的最小值为λ求,23-的值.例3.设函数f(x)= a ·b ,其中向量a =(2cos x ,1),b =(cos x , 3sin2x ),x ∈R.(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ;(Ⅱ)若函数y=2sin2x 的图象按向量c =(m ,n)(|m|<2π)平移后得到函数y=f(x)的图象,求实数m 、n 的值.三、课堂练习:1.已知向量5(1,2),(2,4),||(),2a b c a b c a c =--=+⋅=若则与的夹角为( )A .30°B .60°C .120°D .150°2.已知c b a ,,为非零的平面向量. 甲:则乙,:,c b c a b a =⋅=⋅(A )甲是乙的充分条件但不是必要条件 (B )甲是乙的必要条件但不是充分条件 (C )甲是乙的充要条件(D )甲既不是乙的充分条件也不是乙的必要条件四、课后练习:1.已知a 、b 是非零向量且满足(a -2b ) ⊥a ,(b -2a ) ⊥b ,则a 与b的夹角是(A )6π (B )3π(C )32π (D )65π 2.若向量 a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=- ,则向量a 的模为(A )2 (B )4 (C )6 (D )12 3设a 、b 、c 是任意的非零平面向量,且相互不共线,则 ①()()0a b c c a b ⋅-⋅= ②b a b a -<- ③()()b a c a c b ⋅-⋅不与c 垂直④()()22492323b a b a b a -=-⋅+ 中,是真命题的有(A ) ①②(B ) ②③(C ) ③④(D ) ②④4.已知a 、b 均为单位向量,它们的夹角为60°,那么|a+3b|=(A )7(B )10(C )13(D )45.若向量 a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=- ,则向量a 的模为( )A . 2B . 4C . 6D . 126.向量a 、b 满足(a -b )·(2a+b )=-4,且|a |=2,|b |=4,则a 与b 夹角的 余弦值等于7.已知向量a 和b 的夹角为120°,且2=a ,5=b ,则a b a ⋅-)2(=。
(完整版)全国卷高考题汇编—平面向量
2011年——2016年高考题专题汇编专题3 平面向量1、(16年全国1 文)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .2、(16年全国1 理)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = .3、(16年全国2 文)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________.4、(16年全国2 理)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m =(A )-8 (B )-6 (C )6 (D )85、(16年全国3 文)已知向量BA →=(12,2),BC →=(2,12),则∠ABC = (A )30° (B )45° (C )60° (D )120°6、(16年全国3 理)已知向量1(,)22BA = ,31(),22BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)12007、(15年新课标2 文)向量(1,1)=-a ,(1,2)=-b ,则(2)+⋅=a b aA .-1B .0C .1D .38、(15年新课标2理)设向量,不平行,向量与平行,则实数_________.9、(15年新课标1文)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) 10、(15年新课标1理)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C )4133AD AB AC =+ (D) 4133AD AB AC =-11、(14年新课标3 文)已知a b 、为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .212、(14年新课标3 理)若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )A .2BC .1 D13、(14年新课标2 文)设向量a ,b 满足a ·b=(A )1 (B ) 2 (C )3 (D) 514、(14年新课标2 理)设向量a,b 满足|a+b |=|a -b ,则a ⋅b = ( )A. 1B. 2C. 3D. 515、(14年新课标1文)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA. ADB.AD 21 C. BC 21 D. BC16、(14年新课标1理)已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .17、(13全国2 文 理)已知正方形ABCD 的边长为2, E 为CD 的中点,,则 =_______.18、(12全国2 文)已知向量a ,b 夹角为45° ,且|a |=1,|2a -b |=10,则|b |=19、(11全国2 文)若向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A B CD 20、(11全国2 理)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2BCD .1。
2024全国高考真题数学汇编:平面向量及其应用章节综合
2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。
历年高考数学向量分类汇编(K12教育文档)
历年高考数学向量分类汇编(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(历年高考数学向量分类汇编(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为历年高考数学向量分类汇编(word版可编辑修改)的全部内容。
2011-2017新课标向量分类汇编一、理科【2011新课标】(10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是( A )(A )14,P P (B )13,PP (C )23,P P (D)24,P P【2012新课标】(13)已知向量夹角为45︒ ,且;则【2013新课标1】13、已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =__2___.【2013新课标2】13.已知正方形ABCD 的边长为2,E 为CD的中点,则=__________.【2014新课标1】15.已知A,B ,C 为圆O 上的三点,若=(+),则与的夹角为 _________ .【2014新课标2】3。
设向量a,b 满足|a+b |10|a —b |=6,则a ⋅b = ( A )A. 1 B 。
2 C 。
3 D. 5【2015新课标1】(7)设D 为△ABC 所在平面内一点BC ®=3CD ®,则( A )(A)→→→+-=AC AB AD 3431 (B)→→→-=AC AB AD 3431 (C )→→→+=AC AB AD 3134 (D )→→→-=AC AB AD 3134【2015新课标2】(13)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=______12___.【2016新课标1】(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =2- 。
向量高考经典试题(附详细答案)
向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。
2、(文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。
3、(文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b =则mλ的取值围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确.6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,=CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。
2012-2021全国卷高考数学真题分类汇编合集:向量
2012-2021全国卷高考数学真题分类汇编:向量一、选择题1.(2020年高考数学课标Ⅲ卷理科)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( ) A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a b a a b b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 2.(2019年高考数学课标全国Ⅱ卷理科)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( ) A .3- B .2- C .2 D .3【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴211BC ==,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.3.(2019年高考数学课标全国Ⅰ卷理科)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a与b 的夹角为( ) A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b ba b b b -⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅,所以,3a b π=.4.(2019年高考数学课标全国Ⅰ卷理科)古希腊时期,人们认为最美人体的头顶至肚脐的长度(10.6182≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 .若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 ( ) A .165cmB .175cmC .185cmD .190cm【答案】B 解析:如图,0.618,0.618,0.618c aa b c d d b ==∴==, 26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=故(169.89,178.22)h ∈,故选B .5.(2018年高考数学课标Ⅱ卷(理))已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .头顶咽喉肚脐足底6.(2018年高考数学课标卷Ⅰ(理))在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 7.(2017年高考数学课标Ⅲ卷理科)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( ) A . B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点在中,有即所以圆的方程为 可设ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+32A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC∆BD==1122ACD S BC CD BD CE =⨯⨯=⨯⨯△1112225CE CE ⨯⨯=⇒=C ()()224125x y -+-=1,2P θθ⎛⎫++ ⎪ ⎪⎝⎭由可得 所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线而此时点到直线的距离为所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,AP AB AD λμ=+()1cos ,2,255θθλμ⎛⎫++= ⎪⎪⎝⎭11λθμθ⎧=+⎪⎪⎨⎪=⎪⎩2λμθθ+=+()2sin θϕ=++sin 5ϕ=cos 5ϕ=λμ+3C CE BD ⊥E 1AB =2AD =BD =1122ACD S CD CB BD CE =⨯⨯=⨯⨯△CE =P FH DB λμ+A BD C BD A FH 225555r +=+⨯=3AFAB ==λμ+3P λμ+且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,点在圆上,所以圆心到直线的距离,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出下图.AG x AB y AD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y ()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=(),P x y ()22425x y -+=d r ≤≤13z ≤≤z 3λμ+3设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴切于点. ∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(其中,) BD C E CE AAD x AB y C (2,1)||1CD =||2BC =BD ==BD C E CEBD CERt BCD△BD12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△C P C P 224(2)(1)5x y -+-=P 00(,)x yP 0021x y θθ⎧=+⎪⎪⎨⎪=⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD=(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=011cos 25x μθ==+01y λθ==+1152)2sin()3λμθθθϕθϕ+=++=++=++≤sin 5ϕ=cos 5ϕ=当且仅当,时,取得最大值3. 8.(2017年高考数学课标Ⅱ卷理科)已知是边长为2的等边三角形,为平面内一点,则的最小值是 ( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,,∴∴ ∴,∴ ∴最小值为解法二:均值法∵,∴由上图可知:;两边平方可得∵ ,∴∴ ,∴最小值为 解法三:配凑法 ∵∴ ∴最小值为π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP (0,OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),PO PA x y x y ⋅=--⋅-222234PO PA x y x y ⎛⋅=+-=+- ⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()2PA PC PB PO PA ⋅+=⋅OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA PO PA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PAPO PA AOPA PC PB PO PA +--+-⋅+=⋅==≥-32-9.(2016高考数学课标Ⅲ卷理科)已知向量1(,22BA =,31()22BC =,则ABC ∠= ( )A .30︒B .45︒C .60︒D .120︒【答案】A【解析】由题意,得112222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A .10.(2016高考数学课标Ⅱ卷理科)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .8【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m,故选D .11.(2015高考数学新课标1理科)设D 为ABC 所在平面内一点3BC CD =,则 ( )A .1433AD AB AC =-+B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A .12.(2014高考数学课标2理科)设向量a ,b 满足|a +b,|a -b,则a b = ( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 二、填空题⋅13.(2021年高考全国甲卷理科)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________. 【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 14.(2021年高考全国乙卷理科)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.15.(2020年高考数学课标Ⅰ卷理科)设,a b 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=16.(2020年高考数学课标Ⅱ卷理科)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】2解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:20k a a b k →→→⨯-⋅==,解得:k =. 17.(2019年高考数学课标Ⅲ卷理科)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23.【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 18.(2018年高考数学课标Ⅲ卷(理))已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= . 【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 19.(2017年高考数学新课标Ⅰ卷理科)已知向量,的夹角为,,,则__________. 【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为a b 60︒2a =1b =2a b +=222|2|||44||4421cos 60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +2法三:坐标法依题意,可设,,所以所以20.(2016高考数学课标Ⅰ卷理科)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = . 【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.21.(2015高考数学新课标2理科)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________.【答案】12 解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=. 22.(2014高考数学课标1理科)已知A ,B ,C 是圆O 上的三点,若,则与的夹角为______.【答案】解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.23.(2013高考数学新课标2理科)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅=________.【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 24.(2013高考数学新课标1理科)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若()2,0a =13,22b ⎛= ⎝⎭()((22,0a b +=+=(223a b +=+=1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 0900b c •=,则t =_____.【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2.。
专题10 平面向量丨十年高考数学真题分项汇编(解析版)(共40页)
十年(2014-2023)年高考真题分项汇编—平面向量目录题型一:平面向量的概念及线性运算.......................................................1题型二:平面向量的基本定理....................................................................3题型三:平面向量的坐标运算....................................................................9题型四:平面向量中的平行与垂直.........................................................13题型五:平面向量的数量积与夹角问题.................................................14题型六:平面向量的模长问题..................................................................32题型七:平面向量的综合应用 (37)题型一:平面向量的概念及线性运算一、选择题1.(2021年高考浙江卷·第3题)已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B解析:若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b = ,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件,故选B .2.(2020年新高考全国卷Ⅱ数学(海南)·第3题)在ABC 中,D 是AB 边上的中点,则CB=()A .2CD CA +B .2CD CA-C .2CD CA-D .2CD CA+【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA-=+=+=+-= 3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A .32m n -B .23m n-+C .32m n+D .23m n+【答案】B解析:因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+ .故选:B .4.(2019·上海·第13题)已知直线方程02=+-c y x 的一个方向向量d 可以是()A.)1,2(-B .)1,2(C .)2,1(-D .)2,1(【答案】D【解析】依题意:)1,2(-为直线的一个法向量,∴方向向量为)2,1(,选D .【点评】本题主要考查直线的方向量.5.·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为12(10.6182≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是()A .165cmB .175cmC .185cmD .190cm【答案】答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .二、填空题1.(2020北京高考·第13题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD =_________;PB PD =_________.【答案】(1).(2).1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=- ,()0,1PB =-,因此,PD ==,()021(1)1PB PD ⋅=⨯-+⨯-=-.故答案为:;1-.2.(2014高考数学北京理科·第10题)已知向量a 、b 满足|a |=1,b =(2,1),且0a b λ+=(R λ∈),则||λ=.【答案】5解析:∵0a b λ+= ,∴a b λ=-,b aλ∴==3.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+ 与2a b +平行,则实数λ=_________.【答案】12解析:因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则12,k k λ=⎧⎨=⎩,所以12λ=.题型二:平面向量的基本定理一、选择题1.(2018年高考数学课标卷Ⅰ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A .3144AB AC-B .1344AB AC-C .3144AB AC+D .1344AB AC+【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A .2.(2014高考数学福建理科·第8题)在下列向量组中,可以把向量)2,3(=a表示出来的是()A .)2,1(),0,0(21==e eB .)2,5(),2,1(21-=-=e e C .)10,6(),5,3(21==e e D .)3,2(),3,2(21-=-=e e 【答案】B解析:根据12a e e λμ=+ ,选项A :()()()3,20,01,2λμ=+,则3μ=,22μ=,无解,故选项A 不能;选项B :()()()3,21,25,2λμ=-+-,则35λμ=-+,222λμ=-,解得,2λ=,1μ=,故选项B 能.选项C :()()()3,23,56,10λμ=+,则336λμ=+,2510λμ=+,无解,故选项C 不能.选项D :()()()3,22,32,3λμ=-+-,则322λμ=-,233λμ=-+,无解,故选项D 不能.故选:B .3.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则()A .1433AD AB AC =-+B .1433AD AB AC=- C .4133AD AB AC =+ D .4133AD AB AC=-【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-= =1433AB AC -+,故选A .4.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上,若AP AB AD λμ=+,则λμ+的最大值为()A .3B .CD .2【答案】A【解析】法一:以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如下图则()0,0A ,()1,0B ,()0,2D ,()1,2C ,连结BD ,过点C 作CE BD ⊥于点E在Rt BDC ∆中,有BD ==1122ACD S BC CD BD CE =⨯⨯=⨯⨯△即112512225CE CE ⨯⨯=⇒=所以圆C 的方程为()()224125x y -+-=可设1cos ,2sin 55P θθ⎛⎫++ ⎪ ⎪⎝⎭由AP AB AD λμ=+ 可得()1cos ,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以1cos 51sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩,所以2cos sin 55λμθθ+=++()2sin θϕ=++其中sin 5ϕ=,cos 5ϕ=所以λμ+的最大值为3,故选A .法二:通过点C 作CE BD ⊥于E 点,由1AB =,2AD =,可求得BD ==又由1122ACD S CD CB BD CE =⨯⨯=⨯⨯△,可求得255CE =由等和线定理可知,当点P 的切线(即FH )与DB 平行时,λμ+取得最大值又点A 到BD 的距离与点C 到直线BD 的距离相等,均为255而此时点A 到直线FH 的距离为25252565225555r +=+⨯=所以6553255AFAB ==,所以λμ+的最大值为3,故选A .另一种表达:如图,由“等和线”相关知识知,当P 点在如图所示位置时,λμ+最大,且此时若AG x AB y AD =+,则有x y λμ+=+,由三角形全等可得2AD DF FG ===,知3,0x y ==,所以选A.法三:如图,建立平面直角坐标系设()()()()0,1,0,0,2,1,,A B D P x y根据等面积公式可得圆的半径是,即圆的方程是()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-= ,若满足AP AB ADλμ=+ 即21x y μλ=⎧⎨-=-⎩,,12x y μλ==-,所以12x y λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上,所以圆心到直线的距离d r ≤,≤,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A .法四:由题意,画出右图.设BD 与C 切于点E ,连接CE .以A 为原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系则C 点坐标为(2,1).∵||1CD =,||2BC =.∴22125BD =+=.BD 切C 于点E .∴CE⊥BD.∴CE是Rt BCD△中斜边BD上的高.12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△即C 255.∵P 在C 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=.设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩而00(,)AP x y = ,(0,1)AB = ,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=∴0151cos 25x μθ==+,02155y λθ==+.两式相加得:2225151552552()())552sin()3λμθθθϕθϕ+=+++=+++=++≤(其中5sin 5ϕ=,25cos 5ϕ=)当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.二、填空题1.(2023年天津卷·第14题)在ABC 中,60A ∠= ,1BC =,点D 为AB 的中点,点E 为CD 的中点,若设,AB a AC b == ,则AE 可用,a b表示为_________;若13BF BC = ,则AE AF ⋅ 的最大值为_________.【答案】①.1142a b + ②.1324解析:空1:因为E 为CD 的中点,则0ED EC += ,可得AE ED ADAE EC AC⎧+=⎪⎨+=⎪⎩,两式相加,可得到2AE AD AC =+,即122AE a b =+ ,则1142AE a b =+ ;空2:因为13BF BC = ,则20FB FC += ,可得AF FC ACAF FB AB ⎧+=⎪⎨+=⎪⎩ ,得到()22AF FC AF FB AC AB +++=+,即32AF a b =+,即2133AF a b =+ .于是()2211211252423312a b a F b a AE A a b b ⎛⎫⎛⎫+⋅+=+⋅+ ⎪ ⎪⎝⋅=⎭⎝⎭.记,AB x AC y ==,则()()222222111525225cos 602221212122A x xy a a b b xy y x y E AF ⎛⎫+⋅+=++=++ ⎪⋅⎝⎭= ,在ABC 中,根据余弦定理:222222cos 601BC x y xy x y xy =+-=+-= ,于是1519222122122AE xy x xy AF y ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭=⎝⎭⋅ ,由221+-=x y xy 和基本不等式,2212x y xy xy xy xy +-=≥-=,故1xy ≤,当且仅当1x y ==取得等号,则1x y ==时,AE AF ⋅有最大值1324.故答案为:1142a b + ;1324.2.(2015高考数学北京理科·第13题)在ABC △中,点M ,N 满足2AM MC = ,BN NC =.若MN x AB y AC =+,则x =;y =.【答案】11,26-解析:特殊化,不妨设,4,3AC AB AB AC ⊥==,利用坐标法,以A 为原点,AB 为x 轴,AC 为y轴,建立直角坐标系,3(0,0),(0,2),(0,3),(4,0),(2,2A M CB N ,1(2,),(4,0),2MN AB =-=(0,3)AC = ,则1(2,)(4,0)(0,3)2x y -=+,11142,3,,226x y x y ==-∴==-.3.(2017年高考数学江苏文理科·第12题)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为2,OA与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+ (,)m n ∈R ,则m n +=______.【答案】3解析:由tan 7α=可得72sin 10α=,2cos 10α=,根据向量的分解,易得cos 45cos 2sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩,即2222102720210n m n +=⎪⎪⎪-=⎪⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=.题型三:平面向量的坐标运算一、选择题1.(2023年北京卷·第3题)已知向量a b,满足(2,3),(2,1)a b a b +=-=-,则22||||a b -=()αA CBO(第12题)A .2-B .1-C .0D .1【答案】B解析:向量,a b 满足(2,3),(2,1)a b a b +=-=-,所以22||||()()2(2)311a b a b a b -=+⋅-=⨯-+⨯=-.故选:B2.(2023年新课标全国Ⅰ卷·第3题)已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A .1λμ+=B .1λμ+=-C .1λμ=D .1λμ=-【答案】D解析:因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+ 可得,()()0a b a b λμ+⋅+=,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .3.(2014高考数学重庆理科·第4题)已知向量)1,2(),4,1(),3,(===c b k a ,且(23)a b c -⊥,则实数k =()A .92-B .0C .3D .152【答案】C解析:(23)a b c -⊥ (23)0a b c ⇒-= 230a c b c ⇒-= 2(23)360 3.k k ⇒+-⨯=⇒=C .13r R ≤<<D .13r R<<<【答案】A解析:因为||||1a b == ,且0a b ⋅= ,设(1,0)a = ,(0,1)b =,则由)OQ a b =+得Q 曲线C:设(,)P x y ,则(1,0)cos (0,1)sin (cos ,sin )OP θθθθ=+=,02θπ≤<,则cos ,(02)sin x y θθπθ=⎧≤<⎨=⎩,表示以(0,0)为圆心,1为半径的圆;区域Ω:设(,)P x y ,则由||r PQ R ≤≤,则有:2222(2)(2)r x y R ≤-+-≤,表示以(2,2)为圆心,分别以r 和R 为半径的同心圆的圆环形区域(如图),若使得C Ω 是两段分离的曲线,则由图像可知:13r R <<<,故选A .5.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,)22BA = ,31(,)22BC = ,则ABC ∠=()A .30︒B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC ⨯+⋅∠===⨯⋅ ,所以30ABC ∠=︒,故选A.6.(2016高考数学课标Ⅱ卷理科·第3题)已知向量(1,)(3,2)a m b =- ,=,且()a b b ⊥+,则m =()A .8-B .6-C .6D .8【答案】D【解析】由()a b b ⊥ +可得:()0a b b +=,所以20a b b += ,又(1,)(3,2)a mb =- ,=所以2232+(3(2))0m -+-=,所以8m =,故选D .二、填空题1.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b == ,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥ 可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.2.(2020江苏高考·第13题)在ABC ∆中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得9AP =,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185【解析】,,A D P 三点共线,∴可设()0PA PD λλ=> ,32PA mPB m PC ⎛⎫∴=+- ⎪⎝⎭,32PD mPB m PC λ⎛⎫∴=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+ ,若0m ≠且32m ≠,则,,B D C 三点共线,321m m λλ⎛⎫- ⎪⎝⎭∴+=,即32λ=,9AP = ,3AD ∴=,4AB = ,3AC =,90BAC ∠=︒,5BC ∴=,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,()cos cos 0θπθ+-= ,()()2570665x x x --∴+=-,解得185x =,CD ∴的长度为185.当0m =时,32PA PC =,,C D 重合,此时CD 的长度为0,当32m =时,32PA PB = ,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.3.设向量a 与b 的夹角为θ,(33)a = ,,2(11)b a -=-,,则cos θ=.【答案】31010解:设向量a 与b 的夹角为,θ且(3,3),2(1,1),a b a =-=- ∴(1,2)b =,则cos θ=||||a b a b ⋅==⋅31010。
高一向量经典试题及答案
高一向量经典试题及答案一、选择题1. 若向量\( \overrightarrow{a} \)与向量\( \overrightarrow{b} \)共线,则下列说法正确的是()。
A. \( \overrightarrow{a} \)与\( \overrightarrow{b} \)方向相同或相反B. \( \overrightarrow{a} \)与\( \overrightarrow{b} \)方向相反C. \( \overrightarrow{a} \)与\( \overrightarrow{b} \)方向相同D. \( \overrightarrow{a} \)与\( \overrightarrow{b} \)方向不相关答案:A2. 若向量\( \overrightarrow{a} = (1, 2) \),向量\( \overrightarrow{b} = (3, -4) \),则向量\( \overrightarrow{a} \)与向量\( \overrightarrow{b} \)的点积为()。
A. 2B. -2C. 10D. -10答案:D二、填空题3. 若向量\( \overrightarrow{a} = (x, y) \),向量\( \overrightarrow{b} = (2, 3) \),且\( \overrightarrow{a} \)与\( \overrightarrow{b} \)垂直,则\( x \)的值为______。
答案:-34. 若向量\( \overrightarrow{a} \)与向量\( \overrightarrow{b} \)的模分别为3和4,且\( \overrightarrow{a} \)与\( \overrightarrow{b} \)的夹角为\( \frac{\pi}{3} \),则向量\( \overrightarrow{a} \)与向量\( \overrightarrow{b} \)的叉积的模为______。
高考数学复习-向量练习试题、参考答案
高考数学复习-向量练习试题第Ⅰ卷(选择题,共40分)一、选择题 (本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案代号填在下面的答题框内.)1.在边长为1的等边△ABC 中,若BC =a ,CA =b ,AB =c ,则a ·b +b ·c +c ·a 等于 A.23 B .-23 C.3 D.0 2.已知AP =(x +5,y ),BP =(x -5,y ),且|AP |+|BP |=6,则|2x -3y -12|的最大值为 A.12+62 B.12-62 C.6 D.123.下列五个命题:(1)所有的单位向量相等;(2)长度不等且方向相反的两个向量不一定是共线向量;(3)若a 、b 满足|a |>|b |且a 、b 同向,则a >b ;(4)由于零向量的方向不确定,故0与任何向量不平行;(5)对于任何向量a 、b ,必有| a +b |≤| a |+|b |.其中正确命题的序号为A.(1),(2),(3)B.(5)C.(3),(5) A.(1),(5)4.已知向量a 与b 的夹角为3π2,如果向量2 a +k b 与3 a -2b 共线,则实数的k 的值为 A.34 B.-34 C. 32 D.-32 5.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是 A.平行四边形 B.矩形 C.等腰梯形 D.菱形6.在△ABC 中G 为边BC 中线AH 上一点,若AH =2,则AG ·(BG +CG )的A.最大值为-2B.最大值为2C.最小值为-2D.最小值为27.已知P 1(2,-1),P 2(0,5),且点P 在21P P 的延长线上,|P P 1|=2|2PP|,则点P 的坐标为A.(-2,11)B.(34,3)C.(32,3) D.(2,-7)8.已知△ABC三顶点A,B,C的坐标分别为(a1,a2),(b1,b2),(c1,c2),在边BC、CA、AB上分别取D、E、F使之满足:|BD|∶|BC|=|CE|∶|EA|=|AF|∶|FB|=m∶n,则A.△DEF与△ABC的重心重合B.△DEF与△ABC的外心重合C.△DEF与△ABC的内心重合D.△DEF与△ABC的垂心重合第Ⅱ卷(非选择题,共60分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填在下面的横线上.)9.已知点M是△ABC的重心,则MA+MB+MC= .10.已知点A(1,-2),若向量AB与a ={2,3}同向,|AB|=213,则点B的坐标为.11.已知△ABC中,a=x,b=2,B=45°,若该三角形有两个解,则x的取值范围是.12.已知a =(cosα,sinα),b=(cosβ,sinβ)(0<α<β<π),且|λa+μb|=|μa-λb|(λμ≠0),则β-α= .三、解答题(本大题4小题,共48分.解答应写出必要的文字说明、证明过程或演算步骤.)13. (本小题满分12分)设e1,e2是两个垂直的单位向量,且a= -(2 e1 + e2),b= e1-λe2.(1)若a∥b,求λ的值;(2)若a⊥b,求λ的值.14.(本小题满分12分)如图,在△OAB中,点C是以A为中心的点B的对称点,点D是将OB分成2∶1的一个内分点,DC和OA交于点E,设OA=a,OB=b.(1)用a和b表示向量OC、DC;(2)若OE=λOA,求实数λ的值.15.(本小题满分12分)(1)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,求a 与b 的夹角θ; (2) OA =(2,5),OB =(3,1),OC =(6,3),在OC 上是否存在点M ,使MA ⊥MB ,若存在,求出点M 的坐标,若不存在,请说明理由.16.(本小题满分14分)已知点H (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP ·PM =0,PM = -23MQ . (Ⅰ)当点P 在y 轴上移动时,求点M 的轨迹C ;(Ⅱ)过点T (-1,0)作直线l 与轨迹C 交于A 、B 两点,若在x 轴上存在一点E (x 0,0),使得△ABE 是等边三角形,求x 0的值.参考答案1.B 依题意,得a ·b +b ·c +c ·a =3|a |2·cos120°= -23,选B. 2.A 显然有P (x ,y),A (-5,0),B (5,0).由|AP |+|BP |=6知,动点P 的轨迹为以A (-5,0),B (5,0)为焦点,长轴长为6的椭圆,其方程为92x +42y =1,令x= 3cos θ,y=2sin θ,则|2x -3y -12|=|62cos(θ+4π)-12|,当cos(θ+4π)=-1时|2x -3y -12|取最大值为12+62.3.B 单位向量可能方向不同,所以不一定相等,(1)不正确;只要方向相同或相反的向 量都是共线向量,(2)不正确;向量是不能比较大小的,(3)不正确;按人教版课本规定零向量与任意向量是平行向量,(4)不正确;(5)中为向量模的不等式,正确,故选B.4.B 2a +k b 与3a -2b 共线,存在实数t ,使2a +k b = t(3a -2b ),∵a 与b 的夹角为3π2,则a 与b 不共线.∴2=3t ,k = -2t ,解得k = -34,选B. 点评:本题考查向量的夹角的概念、夹角的求法、向量共线的条件.利用方程思想是求参数的主要方法.5.C ∵DC =21AB ,∴DC ∥AB 且|DC |≠|AB |,即四边形ABCD 为梯形,又|AD |=|BC |,∴四边形ABCD 为等腰梯形.6.C AG ·(BG +CG )=AG ·(BH +HG +CH +HG )=2AG ·HG = -2|AG |·|HG |≥-2(2||||HG AG )2= -2,故选C. 7.A 由定比分点公式可求得P (-2,11),选A.8.A 由题意有BD =n m DC ,即点D 分有向线段BC 所成的比为λ=nm ,设点D 的坐标为(x ,y),则由定比分点坐标公式有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=+=++=+=.1122221111m n nb mc n m c n m b y n m nb mc n m c n m b x ∴D (n m nb mc ++11,nm nb mc ++22). 同理可求E (n m nc ma ++11,n m nc ma ++21),F (n m na mb ++11,n m na mb ++22). 设△DEF 的重心坐标为(x ′,y ′),则由重心坐标公式有:x '=31(n m nb mc ++11+n m nc ma ++11+n m na mb ++11)=31 (a 1+b 1+c 1), 同理可求y ′=31(a 2+b 2+c 2),这也是△ABC 的重心坐标. 故△DEF 的重心与△ABC 的重心重合.点评:由重心坐标公式,只要求出△DE F 的各个顶点坐标即可.三角形的五心中,有四个心在高考中经常出现,需要特别加以关注.一是重心,即各边的中线交点,其重心坐标公式为:x =3321x x x ++,y =3321y y y ++,(其中(x 1,y 1),(x 2,y 2),(x 3,y 3)是三角形的三个顶点的坐标)重心分对应的中线所成的比为1∶2的关系.二是外心,即外接圆圆心,也就是中垂线的交点,外心到三个顶点的距离相等.三是内心,即内切圆圆心,也就是角平分线的交点,内心到三边的距离相等.四是垂心,即三角形的三条高的交点.9.解:设D 为AB 的中点,则MA +MB =2MD ,又M 为△ABC 的重心,则MC = -2MD ,所以MA +MB +MC =0.10.解:设B (x ,y ),则AB =(x -1,y +2),AB 与同a 同向,∴3(x -1)=2(y +2),又|AB |=22)2()1(++-y x =213,解得x =5,y =4或x = -3,y = -8,而当x = -3,y = -8时,AB 与a 反向,故B 为(5,4). 11.(2,22) 如图,当A ′C =2时, 三角形有且只有一解,此时BC =22,∴x <22.又∵三角形有两解,∴x >2,综合得x ∈(2,22).12.解:∵|λ a +μ b |=|(λcos α+μcos β,λsin α+μsin β)|=)cos(222βαλμμλ-++, 同理|μa -λb |=)cos(222βαλμμλ-++,由|λa +μb |=|μa -λb |得cos(β-α)=0. ∵0<α<β<π,∴β-α=2π. 13.解:(1)∵a ∥b ,∴a =m b ,即-2e 1- e 2=m e 1 -m λe 2∴⎩⎨⎧-=-=-λm m 12 解得:m= -2,λ= -21. (2)∵a ⊥b ,∴a ·b =0,(-2e 1- e 2)·(e 1-λe 2)=0即 -2 e 12+2λe 1·e 2- e 2·e 1+λe 22=0,-2 +λ=0,∴λ=2.点评:本题考查两个向量垂直、平行的充要条件、向量的数量积的意义.14.解:(1)依题意,A 为BC 中点,则2OA =OB +OC .OC =2OA -OB =2a -b ∴DC =OC -OD =OC -32OB =2 a -b -32b =2 a -35b . (2)若OE =λOA ,则CE =OE -OC =λ a -(2a -b )=(λ-2)a +b .∵CE 与DC 共线,∴存在实数k ,使CE =k DC .∴(λ-2)a +b =k(2a -35b ) ∴解得λ=54. 15.(1)∵ (2a -3b )·(2a +b )=61,∴4a 2-4a ·b -3b 2=61.又|a |=4,|b |=3,∴4×16-4a ·b -3×9=61,∴a ·b = -6,∴cos θ=||||b a b a •• = -21,∴θ=120°.(2)设存在点M ,且OM =λOC =(6λ,3λ)(0<λ≤1),∴MA =(2-6λ,5-3λ),MB =(3-6λ,1-3λ).∴45λ2-48λ+11=0,解得:λ=31或λ=1511,∴OM =(2,1)或OM =(522,1511)满足题意.∴存在M (2,1)或M (522,1511)满足题意. 16.解(Ⅰ)设点M 的坐标为(x ,y ),则PM = -23MQ ,得P (0,-2y ),Q (3x ,0),由HP ·PM =0,得(3,-2y )·(x ,23y )=0,所以y 2=4x ,由点Q 在x 轴的正半轴上,得x >0,所以,动点M 的轨迹C 是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点.(Ⅱ)设直线l :y =k (x +1),其中k ≠0代入y 2=4x ,得k 2x 2+2(k 2-2)x+k 2=0,(1)设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程(1)的两个实数根,由韦达定理得x 1+x 2= -1,)2(22122=-x x k k , 所以,线段AB 的中点N 坐标为(222kk -,k 2), 线段AB 的垂直平分线方程为y -k 2= -k 1(x -222k k -), 令y =0,x 0=22k +1,所以,点E 的坐标为(22k+1,0). 因为△ABE 为正三角形,所以,点E (22k +1,0)到直线AB 的距离等于23|AB |,而|AB |=221221)()(y y x x -+-=2214k k -·21k +,|NE |=||122k k +,∴24132k k - =||122k k +,解得k =±23,所以,x 0=311.。
历年高考试题汇编向量(2003-2013)
】
【15】 (2012·广东文,3)若向量 AB (1, 2) , BC (3, 4) ,则 AC 【 A. (4, 6) B. (4, 6) C. (, )
】
D. (, )
AB AD AO , 【16】 (2013· 四川文理, 12)在平行四边形 ABCD 中, 对角线 AC 与 BD 交于点 O ,
】
1 A. 1,
1,- 1 B. -
7 C. 3,
D. 3, 7
【6】 (2008·四川文,3)设平面向量 a (3,5) , b (2,1) ,则 a 2b 【 A. (7,3) B. (7, 7) C. (1, 7) D. (1,3)
】
【7】 (2009·广东文,3)已知平面向量 a = ( x,1) , b = ( x, x 2 ) ,则向量 a b 【 A.平行于 x 轴 C.平行于 y 轴 B.平行于第一、三象限的角平分线 D.平行于第二、四象限的角平分线
】
【8】 (2009·湖南文,4)如图 D , E , F 分别是 ABC 的边 AB , BC , CA 的中点,则【 A. AD BE CF 0 C. AD CE CF 0 B. BD CF DF 0 D. BD BE FC 0
】
A D B F C
平面向量
一、向量的基本概念(概念、表示、相等、共线)
批注 [A1]:
二、向量的线性运算(加法、减法、数乘)
【1】 (2007·海南宁夏理 2,文 4)已知平面向量 a A. (2, 1) B. (2,1)
(1,1) , b (1,1) ,则向量 a b 【】
D. (1, 2)
】
向量高考经典试题(附详细答案)
向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =- ,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向解.已知向量(5,6)a =- ,(6,5)b =,30300a b ⋅=-+= ,则a 与b 垂直,选A 。
2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。
3、(广东文4理10)若向量,a b满足||||1a b == ,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯= ,4、(天津理10) 设两个向量22(2,cos )a λλα=+- 和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b = 则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+- ,(,sin ),2mb m α=+2,a b = 可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是(A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2AB AC CD =⋅(D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅ ,通过等积变换判断为正确.6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,=CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+- =1233CA CB + ,4 λ=32,选A 。
2024年高考真题分类汇编九 空间向量与立体几何
则 0,
可得⃗
1,0 , 1,
0,
1,
1,0 , 1,0,0 , 0,2,0 , 0,0,2 ,
2 , ⃗
1,
1,
2 , ⃗
1,0,
2 , ⃗
0,2,
2 ,
6 / 14
, , ,则
则 0,0,0 , 0,0,2 3 , 0,3 3, 0 , 3,3 3, 0 , 2,0,0 , 0,
,
2 3, 0 ,
因为是的中点,所以 4,2 3, 0 ,
所以⃗
3,3 3,
2 3 , ⃗
0,3 3,
2 3 , ⃗
4,2 3,
2 3 , ⃗
2,0,
1 1 0
分别取1
2
1,则1
⃗⋅⃗
|⃗|⋅|⃗|
则 cos⃗, ⃗
3、1
1、2
2 22
22 0
,
0,即⃗
1,3,1 、⃗
0,0,2 ,平面1 的法向量为⃗
1,3,1 ,
1 3
1 9 1⋅ 1 1
1,2
0
1,1,0 ,
2 22
,
11
故平面1 与平面1 1 的夹角余弦值为2 22;
设平面的法向量为⃗
令
1,则取
2,可得⃗
0,
2,则
则 cos⟨⃗, ⃗⟩
2,1 ,
1
5
2 0 ,
2 2 0
2,1,1 ,
1,可得⃗
⃗⋅⃗
|⃗|⋅|⃗|
0,
⃗
, , ,则 ⃗ ⋅
⃗ ⋅ ⃗
历届高考中的向量试题汇编大全
A
D
B
图1
C
5、 (2006 湖北文)已知非零向量 a、b,若 a+2b 与 a-2b 互相垂直,则
a b
( )
A.
1 4
B. 4
C.
1 2
D. 2
6. (2006 湖北理)已知向量 a ( 3,1) ,b 是不平行于 x 轴的单位向量,且 a b
3 ,则 b
1 3 133 , 1 ) , ) C. ( , ) D. (0 2 2 4 4 7. (2006 湖南文)已知向量 a (2, t ),b (1,2), 若 t t1 时, a ∥ b ; t t 2 时, a b ,则 A. t1 4,t 2 1 B. t1 4,t 2 1 C. t1 4,t 2 1 D. t1 4,t 2 1
o
)
A. b1 b2 b3 0 C. b1 b2 b3 0
B. b1 b2 b3 0 D. b1 b2 b3 0
Hale Waihona Puke 14. (2006全国Ⅱ卷文)已知向量 a =(4,2) ,向量 b =( x ,3) ,且 a // b ,则 x = (A)9 (B)6 (C)5 (D)3
15. (2006 山东文)设向量 a=(1,-3),b=(-2,4),若表示向量 4a、3b-2a,c 的有向线段首尾相接 能构成三角形,则向量 c 为( ) (A)(1,-1) (B)(-1, 1) (C) (-4,6) (D) (4,-6) 16. (2006 山东理)设向量 a=(1, -2),b=(-2,4),c=(-1,-2),若表示向量 4a,4b-2c,2(a-c),d 的有向线段首尾相接能构成四边形,则向量 d 为( ) (A)(2,6) (B)(-2,6) (C)(2,-6) (D)(-2,-6) → → → → 1 AB AC AB AC → → → 17. (2006 陕西文、 理) 已知非零向量AB与AC满足( + )· BC=0 且 · = , 则 → | |AC →| → | |AC →| 2 |AB |AB △ABC 为( ) A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形 ) C B
(完整)平面向量高考题集锦
平面向量高考题集锦一,选择题1.如图,正六边形ABCDEF 中,BA CD EF ++=u u u r u u u r u u u r( )(A )0 (B )BE u u u r(C )AD u u u r(D )CF u u u r2.在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b =α,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积等于2的平行四边形的个数为m ,则m n = (A )215(B )15(C )415(D )133. 已知向量a=(1,2),b=(1,0),c=(3,4)。
若λ为实数,(()a b λ+∥c ),则λ=A .14B .12C .1D .24.已知平面直角坐标系xOy 上的区域D 由不等式⎪⎩⎪⎨⎧≤≤≤≤yx x x 2220 给定,若M (x ,y )为D上的动点,点A 的坐标为(2,1),则z=OM ·OA 的最大值为A .3B .4C .32D .425.ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r ,||2b =r ,则AD =u u u r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r6.若向量()()1,2,1,1a b ==-,则2a +b 与a b -的夹角等于A .4π-B .6π C .4π D .34π 7.已知向量)1,2(=a ,),1(k -=b ,0)2(=-⋅b a a ,则=kA .12-B .6-C .6D .128.向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A .2B .3C .5D .79.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u v u u u u v(λ∈R),1412A A A A μ=u u u u v u u u u v (μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C (c ,o ),D (d ,O ) (c ,d∈R)调和分割点A (0,0),B (1,0),则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上10.设x R ∈ ,向量(,1),(1,2),a x b ==-r r 且a b ⊥r r ,则||a b +=r r(A (B (C )(D )10 11.设a ,b 是两个非零向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11、 12、 A -8 (2012 年)
|a|=|b|
(2013 年)
B —8
C 8
1 1
设a = (1,0), b =(—,—),则下列结论中,正确的是(
3 3 「二 1
D 不存在
C a - b 与b 垂直
D a // 向量a = ( 1,1)与b =( 2,y )垂直,贝U y 的值为(
、选择题
T
耳
已知向量a = -3,2与向量b= 6,入共线,则入的值为( )
已知向量 a 1, x ,向量 b :〔一8, -1,且 a ,b_a-b ,则 x =()
向量历年高考题
(2009 年) 向量a 的坐标为1, x ,向量b 的坐标为 -8, -1,且a b 与a-b 互相垂直,
()A 、 x 二-8 B 、x = 8 C 、x= 8 D 、 x 不存在
1 4
1
4
(2010 年)
已知向量 a 的坐标为x,5 , 向量b 的坐标为 2,-2,且a b 与a 共线,则
)
A 、
x =5 B 、 X - -5 c
5
C 、 x =—
D 、 x 不存在 D 、 —4 C 、4 A 、 1 & 则 9、 ( 4
1、(2002年)已知向量
b 的直角坐标分别为 -1,3和-3,-1 ,则a 与b 的关系是()
方向相同
B 、方向相反
相等
D 、垂直
2、 (2003年)若向量
b 的长度分别为
4,其夹角为120 :则a+b 的值为(
3、
(2004年)已知向量a , b 的坐标分别为 1,x , 2,x-3 且 a _ b ,则 x 等于()
A 、-1或- 2
4、( 2005年)已知
a =3, 呷呷 T T
=4 , a b = 6,则:::a, b -=()
A 、30
B 、
45v
C 、60
D 、120v
5、( 2006年)设非零向量 a ,对于
,下面叙述正确的是(
A 、它表示数1或-1
B 、它表示方向不确定的单位向量
C 、它表示与a 方向相同的单位向量
D 、它表示与a 方向相反的单位向量
6、
(2007 年) 已知向量a 2,3 ,b -3,2,则a 与b () A 、垂直
B 、不垂直也不平行
C 、平行且同向
D 、平行且反向
7、 (2008 年)
10、( 2011 年)
A - 4
B - 2
C 8
D 10
13、 ( 2014 年)AB I
=I CD 是“ AB = C D ”的(
)
A 必要不充分条件
B 充分不必要条件
C 充分且必要条件
D 既不充分也不必要条件
14、 ( 2014年)下列各组向量互相垂直的是(
)
4 4
4
4
A a = (4,- 2), b =
(-2,
4) B a =
=(5 ,2) , b = (-2, — 5)
i
4
i
1
q
i
C a = (—3 ,4)
,b =(4,
3)
D
a =
=(2 , -3),
b = (-3, 2)
i
斗
i
斗
! 1 ・ 4 ! 1 4 4
15、
(2015年)设 a = (1,2), b = (-2, m ), 且a 丄b ,则 2 a +3 b 等于()
二、填空题
16、 ( 2004年)已知平面直角坐标系中,a =(3,-1 ), = (2,1),则—3a +5b 的坐标为
I
I
17、 (2005年)已知平面直角坐标系中,
a 的坐标为 2, -1 -
b 的坐标为 -1,-2,则
-I 4 4 4
2a+b = ______ - a b= _______
18、 (2006 年) 弓 T
若 a = (1,1), b = (- 1, 19、 (2007 年)
—1),贝U a +b 的坐标是
T T
已知AB 的坐标为 5,-3 , CD =2AB ,点C -1、3 ,则D 点坐标是
20、 (2007 年) (2008 年)
22、
(2008 年) 23、 (2009 年) 24、 25、 —f —f
,向量的夹角:::a, b •=
若 a (1, J 3 ),b (J 3,1 ),贝U 3a ,b= _ 2 已知点 A 2,1 ,B -3,-2 , AM AB ,则点M 的坐标为
3
已知向量 已知向量 (2012年)设向量a =
(2013年)已知向量 a 0, J2 ,b 1,1,则向量a 与b 的夹角::a,b -
a(3,1 )b (—2,1),贝U 2a —b =
(1,m ),向量 b = (2, m — 3)-若 a 丄 b ,贝U m= a = (1,2), b = (2,- 1),则12a b |的值为
A (- 5,7)
B (- 4,7)
C (- 1,7)
D (-4,5)
26、(2014 年)若I a 1=3, < a,bx —, a,b= 3,则| b |= ____
3
呻屮L * L T 厂TT
27、(2015 年)设a b = -<6 , I a |= J3 , | b |= 2/2,则c a, b x ________。