南京师范大学2010数学分析真题

合集下载

南京师范大学高等数学期末考试试卷(含答案)

南京师范大学高等数学期末考试试卷(含答案)

南京师范大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1.函数的定义域为.
A、正确
B、不正确
【答案】B
2.是微分方程.
A、正确
B、不正确
【答案】A
二、二选择题
3.设函数,则().
A、
B、
C、
D、
【答案】A
4.曲线在点处切线的方程为().
A、
B、
C、
D、
【答案】C
5.不定积分,其中为任意常数.
A、正确
B、不正确
【答案】B
6..
A、正确
B、不正确
【答案】A
7.极限().
A、
B、
C、
D、
【答案】C
8.微分方程满足的特解是().A、
B、
C、
D、
【答案】C
9.().
A、
B、
C、
D、
【答案】C
10.().
A、
B、
C、
D、
【答案】B
11.不定积分( ).
A、
B、
C、
D、
【答案】B
12.函数的图形如图示,则函数 ( ).
A、有四个极大值
B、有两个极大值
C、有一个极大值
D、没有极大值
【答案】C
13.微分方程的通解是().A、
B、
C、
D、
【答案】C
14.曲线在点处切线的方程为().A、
B、
C、
D、
【答案】A
一、一选择题
15.函数的导数.
A、正确
B、不正确
【答案】B。

南师大附校2010高三数学阶段测试代数部分

南师大附校2010高三数学阶段测试代数部分

南师大附校2010高三数学阶段测试(代数部分)班级 姓名 得分1.若函数()f x =A ,函数()lg g x x =,[1,10]x ∈的值域为B ,则A B I 为2. 设i 为虚数单位,则=⎪⎭⎫⎝⎛+20081i i 3.已知平面向量()1,2a =r ,()2,b m =-r,且a b ⊥r r ,则a b -r r =4. 已知xy y x R y x ,则,且14,=+∈+的最大值为 5. 已知),0(,21)4sin(παπα∈=+,则αcos = .6. 已知等差数列{n a }的前n 项和为n S ,若4518a a =-,则8S =7. 设22)1(,3005,y x x y x y x y x ++⎪⎩⎪⎨⎧≤≥+≥+-则满足约束条件的最大值为8. 已知数列{n a }的通项公式是22++=kn n a n ,若对于n *∈N ,都有n a >+1n a 成立,则实数k 的取值范围是9. 在四边形ABCD 中,AB u u u r =DC u u ur =(1,1),11BA BC BD BA BC +=u u u r u u u r u ur u u u r u u u r ,则四边形ABCD 的面积是__ __10. 观察:112166<+;1125.145.7<+; 11251953<-++;….对于任意正实数,a b≤成立的一个条件可以是 _.11. 已知周期函数)(x f 是定义在R 上的奇函数,且)(x f 的最小正周期为3,,2)1(<f m m f 则,)2(=的取值范围为 12. 已知函数()[)1lna ln xf x ,x+=+∞在上为减函数,则实数a 的取值范围是 13. 已知xOy 平面内一区域A ,命题甲:点(,){(,)|||||1}a b x y x y ∈+≤;命题乙:点A b a ∈),(.如果甲是乙的充分条件,那么区域A 的面积的最小值是14. 下列说法:①当2ln 1ln 10≥+≠>xx x x 时,有且;②∆ABC 中,A B >是sin sin A B > 成立的充要条件;③函数x y a =的图象可以由函数2xy a =(其中01a a >≠且)平移得到;④已知n S 是等差数列{}n a 的前n 项和,若75S S >,则93S S >.;⑤函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称。

南京师范近十二年数学分析考研题

南京师范近十二年数学分析考研题

设 f (x) 在[a,b] 上二阶可导,且满足 i) f ′′(x) + f ′(x) − kf (x) = 0 (k>0,为常数
ii) f (a) = f (b) = 0
则在[a,b] 上 f (x) ≡ 0
五.(10 分)
设 f (x) = (1 + 1 ) x+α , (α ≥ 1 ) ,证明 f (x) 在 (0,+∞) 内单调递减。
n→∞ [ 0 ,1]
1 + nx 2
n
e
(15 分)
十.设在可侧集 X 上, f n 依测度收敛于 f ,且 f n ≤ g ,a,e 于 X,试证: f (x) ≤ g(x) ,
a,e 于 X (15 分)
南京师范大学 2004 年数学分析考研试题
一、(每小题 7 分,共 28 分)计算或证明下列极限:
{ } { } (2)为使 f (an ) 在[0,1]上一致收敛,当且仅当 an 满足什么条件?
∫ ∫ { } 1
1
(3)为使 lim n→∞
0 fn (x)dx =
0
lim
n→∞
fn (x)dx ,当且仅当
an
满足什么条件?
∑ 六、(15
分)证明级数
∞ n=1
x
+ n(−1)n x2 + n2
处必不可微。
4. 设
fn,n
= 1,2....均是可测集 X 上几乎处处可测函数,若 lim mX [ n→∞
fn

f
> 0] = 0 则
必有 f n 依测度收敛于 f 。
5. 设 mX < ∞ ,且 f (x), g(x) 在 X 上均是有界可测函数,且 f (x) < g(x) ,则必有

2010年南京师范大学数据结构考研真题

2010年南京师范大学数据结构考研真题

1、给出年、月、日,计算该日是该年的第几天。

(本题15分)#include<stdio.h>Int get_days_of_month(int year,int month){if(month==1||month==3||month==5||month==7||month==8||month==10||month==12) return31;else if(month==2)if(year%400==0|| (year%4==0&& year%100!=0))return29;elsereturn28;elsereturn30;}Void main(){int i,year,month,day,sum=0,flag=1;while(flag){printf("please input the date(for example:2005,6,9):");scanf("%d,%d,%d",&year,&month,&day);if(year>0)if(month>=1&& month<=12)if(day>=1&& day<=get_days_of_month(year,month))flag = 0;}for(i=1;i<month;i++){sum +=get_days_of_month(year,i);}sum += day;printf("The date is %d day.\n",sum);}2、有几个学生,每个学生考m门课,要求编一函数,能检查n个学生有无不及格的课程,如果有某一学生有一门或一门以上课程不及格,就输出该学生的学号(学号从0开始)和其全部课程成绩。

(本题15分)#include<stdio.h>#define N 100void main(){Int a[N][N];int i,j,m,n,flag;printf("please input the number of students:");printf("please input the number of courses:");scanf("%d",&m);for(i=0;i<n;i++){printf("please input No.%d scores:",i);for(j=0;j<m;j++)scanf("%d",&a[i][j]);}printf("students who have failed their courses as follows:");for(i=0;i<n;i++){flag = 0;for(j=0;j<m;j++){if(a[i][j]<60){flag=1;break;}}if(flag){printf("No.%d ",i);for(j=0;j<m;j++)printf("%d ",a[i][j]);}printf("\n");}}3、用二分法求方程“(2*X^3)-(4*x^2)+(3*x)-6 = 0”在(-10,10)之间的根。

南京师范大学数学分析考研复习模拟题一及答案

南京师范大学数学分析考研复习模拟题一及答案
n
则存在惟一的 [ a n , bn ] , n 1, 2 , . [证(2) ]设 x n 为递减且有下界 M 的数列,欲证 x n 收敛.为此构造区间套 如下:令 [ a1 , b 1 ] [ M , x1 ] ;记 c 1
a 1 b1 2
,再令
[ c 1 , b1 ] , 若 c 1 是 x n 的下界 , [ a2 , b 2 ] [ a 1 , c 1 ] , 若 c 1 不是 x n 的下界 ;
x1 x 2 x n a
之下,这 n 个正数的和 x1 x 2 x n 的最小值为 n n a .并由此结果推出以下不等 式:
n
x1 x 2 x n
x1 x 2 x n . n
[证]用 Lagrange 乘数法,设
L x1 x 2 x n ( x1 x 2 x n a ) ,
下面证明 H E F 为开集. 为此任取 p H , [证 (2) ] 设 E 、F R 都为开集, 由 H E F ,则 p E 或 p F .根据开集定义, 0 ,使得 U ( p ; ) E ,或
2
U ( p ; ) F ,从而 U ( p ; ) H .这就证得 H E F 为 R 2 中的一个开集.
专业课复习资料(最新版)


模拟题一
一、 实数完备性问题. (15分) ( 1 ) 叙述单调有界定理与区间套定理; ( 2 ) 用区间套定理证明单调有界定理. [答(1) ]单调有界定理:单调有界数列必定存在极限. 区间套定理:若 [ a n , bn ] 为一区间套,即满足: ① [ a n 1 , bn 1 ] [ a n , bn ] , n 1, 2 , ; ② lim ( bn a n ) 0 ,

南京师范大学2007年数学分析

南京师范大学2007年数学分析

南京师范大学2007年数学分析一、(每小题10分,共30分)计算下列极限1、2ln ln lim x x dt x t x→+∞⋅⎰;2、2200limx y x yx y→→++;3、设()10,1x ∈,1(1)n n n x x x +=-,(1,2n = ),证明{}n nx 收敛并求极限. 二、(20分)1)设函数f 在点0x 的某领域0()U x 内有1n +阶的连续导函数.证明对任意的0()x U x ∈有()00000()()()()()()()!n nn fx f x f x f x x x x x R x n '=+-++-+ ,其中(1)10001()(())(1)()!n nn n R x fx x x x x n θθ++=+---,且01θ≤≤;2)求2ln(1)x +(1x ≤)的麦克劳林级数展开,并加以证明.三、(20分)设f 为()0,+∞内的连续函数,0lim ()x f x +→=+∞,lim ()0x f x →+∞=,试证:1)1()sin f x x在[),a +∞(0a >)内一致连续;2)1()sinf x x在()0,+∞内不一致连续.四、(15分)利用Stokes 公式计算(2)()()Ly z dx x z dy y z dz ++-+-⎰ ,其中L 为平面1x y z ++=与各坐标面的交线,取逆时针方向为正方向. 五、(10分)试研究方程ln an x =(0a >)实根的个数. 六、(10分)设函数(,)F u v 有连续的二阶偏导数,求证由方程000(,)0x x y y F z z z z --=--所确定的隐函数(,)z z x y =满足下列两个方程:000()()z z x x y y z z xy∂∂-+-=-∂∂;222222()z z z x y x y∂∂∂⋅=∂∂∂∂.七、(15分)证明数项级数111cos (1)2n nn n∞=+++∑ 收敛. 八、(15分)证明11()()nn f x x n ∞==+∑在()1,1-内连续.九、(15分)设f 是区间[)0,+∞上的连续函数,含参量非正常积分0()x f x dx α+∞⎰当,a bα=(a b <)时收敛,证明0()x f x dx α+∞⎰在[],a b 上关于α一致收敛.。

2010年全国高考数学试题及答案-江苏(word版)-推荐下载

2010年全国高考数学试题及答案-江苏(word版)-推荐下载

2
f
(1 x2 )
x (1,

22
tan C tan C sin C cos B sin A sin B cos A sin C sin( A B) 1 sin2 C
tan A tan B cos C
由正弦定理,得:上式= 1 c2 cos C ab
sin Asin B

c2
1 (a2 设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

南京大学2010年数学分析考研试题及解答

南京大学2010年数学分析考研试题及解答
′′
=
′′′
;
利用(1)的结果,得存在),(ba∈ξ,使得
)()(
12
1
)]()()[(
2
1
)()(3ξF
abbFaFabaFbF
′′′
??

+

?+=,
即)()(
12
1
)]()()[(
2
1
)(3ξf
abbfafabdxxfb
a′

??+?=∫.
fxf
Fxf
x
x++→→?

==,
从而知(
)Fx在[]0,π上连续,
利用黎曼引理,得()()01
lim0limsin0
22n
nnSfFxnxdxππ→∞→∞????
?=+=
????
????∫,
故有()
()01
limcoscos2cos0
22nfxxxnxdxfπ
π→∞??
++++=
??
??∫?.
七.证明设Ff
aa?
?=?
+++
11
2nnaa?≤?,
()2,3,n=?,
于是{
}na是压缩数列,从而{}na收敛,
设limn
naa→∞=,2
a≥,
则有1
aa=+,210aa??=,15
2
a
+
=.
方法二显然222
a=<,12aa<,
由归纳法,知112na+≤<,1nnaa+≤,
()1,2,3,n=?,

2010年江苏省高考数学试题真题解析(word版含理科附加题) 2

2010年江苏省高考数学试题真题解析(word版含理科附加题) 2

绝密★启用前2010年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位置上.......... 1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. 2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____.3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。

5、设函数f(x)=x(e x+ae -x)(x ∈R)是偶函数,则实数a =__▲6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______ 7、右图是一个算法的流程图,则输出S 的值是______▲_______8、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____9、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是______▲_____ 10、定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_______▲_____。

南京师范大学2010数学分析真题

南京师范大学2010数学分析真题
早期的微积分,由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展。柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)完善了作为理论基础的极限理论,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。
数学分析试卷,此乃得于淘宝主之手,花了16块买之。因不满其价,于是生共享之心。传,私想赚钱分,哈哈哈。分享之!
数学分析(Mathematical Analysis)是数学专业的必修课程之一,基本内容是微积分,但是与微积分有很大的差别。
微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。

2010年江苏高考数学试题及答案

2010年江苏高考数学试题及答案

2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。

一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位.......置上...1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. 2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。

5、设函数f(x)=x(e x +ae -x )(x ∈R)是偶函数,则实数a =_______▲_________6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。

本卷满分160分,考试时间为120分钟。

考试结束后,请将本卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。

作答必须用0.5毫米黑色墨水的签字笔。

请注意字体工整,笔迹清楚。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

南京师范大学数学分析2007-2018年考研真题及答案解析

南京师范大学数学分析2007-2018年考研真题及答案解析

目录Ⅰ历年考研真题试卷 (2)南京师范大学2007年攻读硕士学位研究生入学考试试题 (2)南京师范大学2008年攻读硕士学位研究生入学考试试题 (4)南京师范大学2009年攻读硕士学位研究生入学考试试题 (6)南京师范大学2010年攻读硕士学位研究生入学考试试题 (8)南京师范大学2011年攻读硕士学位研究生入学考试试题 (10)南京师范大学2012年攻读硕士学位研究生入学考试试题 (12)南京师范大学2013年攻读硕士学位研究生入学考试试题 (15)南京师范大学2014年攻读硕士学位研究生入学考试试题 (17)南京师范大学2015年攻读硕士学位研究生入学考试试题 (19)南京师范大学2016年攻读硕士学位研究生入学考试试题 (22)南京师范大学2017年攻读硕士学位研究生入学考试试题 (25)南京师范大学2018年攻读硕士学位研究生入学考试试题 (27)Ⅱ历年考研真题试卷答案解析 (29)南京师范大学2007年攻读硕士学位研究生入学考试试题答案解析 (29)南京师范大学2008年攻读硕士学位研究生入学考试试题答案解析 (37)南京师范大学2009年攻读硕士学位研究生入学考试试题答案解析 (45)南京师范大学2010年攻读硕士学位研究生入学考试试题答案解析 (52)南京师范大学2011年攻读硕士学位研究生入学考试试题答案解析 (59)南京师范大学2012年攻读硕士学位研究生入学考试试题答案解析 (68)南京师范大学2013年攻读硕士学位研究生入学考试试题答案解析 (76)南京师范大学2014年攻读硕士学位研究生入学考试试题答案解析 (85)南京师范大学2015年攻读硕士学位研究生入学考试试题答案解析 (93)Ⅰ历年考研真题试卷南京师范大学2007年攻读硕士学位研究生入学考试试题考试科目:602数学分析考生注意:所有答案必须写在专用答题纸上,写在本试题纸上无效。

一、(每小题10分,共30分)计算下列极限1、xt dtx xx ⎰∙+∞→2ln ln lim;2、yx y x y x ++→→2200lim ;3、设),,2,1(),1(),1,0(11 =-=∈+n x x x x n n n 证明{}n nx 收敛并求极限。

2010年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版)

2010年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版)

2010年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题参考公式:锥体的体积公式:13V Sh =锥体,其中S 是锥体的底面面积,h 是高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.设集合{1,1,3}A =-,{}4,22++=a a B ,{}3=⋂B A ,则实数a 的值为____▲____. 1.【答案】1.【命题意图】本题考查交集的定义,对求得的集合中的元素要进行检验.【解析】由题意得1,32==+a a .又由342=+a 不符合题意.经检验得1=a .2.设复数z 满足(23)64z i i -=+(i 为虚数单位),则z 的模为____▲____. 2.【答案】2.【命题意图】本题考查复数有关运算及复数模的计算. 【解析】由i i z 46)32(+=-得,2)32)(32()32)(46(3246i i i i i i i z =+-++=-+=即2,2=∴=z i z . 3.盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色不同的概率是_ ▲__.3.【答案】21. 【命题意图】本题考查古典概型知识. 【解析】31.62p == 4.某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标).所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有_ ▲__ 根棉花纤维的长度小于20mm. 4.【答案】30.【命题意图】本题考查概率统计中频率分布直方图的有关运用,注意纵坐标是频率/组距.【解析】由频率分布直方图得棉花纤维长度小于mm 20的根数为(0.01+0.01+0.04)301005=⨯⨯. 5.设函数()()xxf x x e ae -=+(x ∈R )是偶函数,则实数a 的值为____▲____. 5.【答案】1-.【命题意图】本题考查函数的奇偶性.【解析】设R x ae e x g xx∈+=-,)(,由题意分析)(x g 应为奇函数(奇函数⨯奇函数=偶函数), 又R x ∈ ,0)0(=∴g ,则,01=+a 所以1-=a .6.在平面直角坐标系xOy 中,已知双曲线221412x y -=上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为____▲____.6.【答案】4.【命题意图】本题考查求曲线上点的坐标、双曲线的焦点坐标、两点间距离公式的运用. 【解析】由题意得点15,3(±M ),双曲线的右焦点的坐标为(4,0),2MF 22)015()43(-±+-==4.或用第二定义:2MFe d==,2d =,4MF =. 7.右图是一个算法流程图,则输出的S 的值是____▲____.7.【答案】63.【命题意图】本题考查算法流程图,由流程图得出S 的关系式,比较得出S 的值.【解析】由流程图得12345122222S =+++++=1+2+48+16+32=6333≥,即.63=S8.函数2(0)y x x =>的图象在点2(,)k k a a 处的切线与x 轴的交点的横坐标为1k a +,其中k ∈N *.若116a =,则123a a a ++的值是____▲____.8.【答案】21.【命题意图】考查函数的切线方程、数列的通项.【解析】在点2(,)k k a a 处的切线方程为22(),k k k y a a x a -=-当0y =时,解得2ka x =,所以 1135,1641212kk a a a a a +=++=++=. 9.在平面直角坐标系xOy 中,已知圆224x y +=上有且只有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是____▲____. 9.【答案】(13,13)-.【命题意图】本题考查直线与圆的位置关系.【解析】如图,圆422=+y x 的半径为2,圆上有且仅有四个点到直线的距离为1,问题转化为原点(0,0)到直线05=+-c y x 的距离小于1,即1313,13,151222<<-∴<<+c c c .10.设定义在区间(0,)2π上的函数y=6cosx 的图象与y=5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y=sinx 的图像交于点P 2,则线段P 1P 2的长为____▲____. 10.【答案】.32y O 0512=+-c y x1 11【命题意图】本题考查三角函数问题,由图象相交,即三角函数值相等,建立关系式,求出,32sin =x 结合图象,数形结合分析P 1P 2的值.【解析】由题意得x x tan 5cos 6=,即x x xxx sin 5cos 6,cos sin 5cos 62==, 226(1sin )5sin ,6sin 5sin 60x x x x -=+-=得,32sin =x 结合图象分析得32sin 21==P P x .11.已知函数21,0,()1,0,x x f x x ⎧+≥=⎨<⎩则满足不等式2(1)(2)f x f x ->的x 的取值范围是____▲____.11.【答案】).12,1(--【命题意图】本题考查分段函数的单调性.【解析】2212,10,x x x ⎧->⎪⎨->⎪⎩解得121x -<<,所以x 的取值范围是).12,1(-- 12.设x,y 为实数,满足3≤2xy ≤8,4≤2x y≤9,则34x y 的最大值是____▲____.12.【答案】27.【命题意图】考查不等式的基本性质,等价转化思想.【解析】22()[16,81]x y ∈,2111[,]83xy ∈,322421()[2,27]x x y y xy=⋅∈,43y x 的最大值是27.13.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若6cos b a C a b +=,则tan tan tan tan C CA B+的值是 ▲ . 【答案】4.【解析】考查三角函数知识,三角形中的正、余弦定理的应用,等价转化思想. (方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性. 当A=B 或a=b 时满足题意,此时有1cos 3C =,21cos 1tan 21cos 2C C C -==+,2tan 22C =.等腰三角形中,1tan tan 2tan 2A B C ===,tan tan tan tan C CA B+=4. (方法二)226cos 6cos b a C ab C a b a b +=⇒=+,2222222236,22a b c c ab a b a b ab +-⋅=++=.2tan tan sin cos sin sin cos sin sin()1sin tan tan cos sin sin cos sin sin cos sin sin C C C B A B A C A B C A B C A B C A B C A B+++=⋅=⋅=⋅,由正弦定理,得上式22222214113cos ()662c c c c C ab a b =⋅===+⋅. 14.将边长为1m 的正三角形薄铁皮沿一条平行于某边的直线剪成两块,其中一块是梯形,记2(s =梯形的周长)梯形的面积,则s 的最小值是____▲____. 【答案323. 【解析】考查函数中的建模应用,等价转化思想. 设剪成的小正三角形的边长为x ,则222(3)(01)1133(1)(1)x s x x x x -==<<-⋅+⋅⋅-. (方法一)利用导数求函数最小值.22(3)()13x S x x -=-,2222(26)(1)(3)(2)()(1)3x x x x S x x -⋅---⋅-'=-222(31)(3)(1)3x x x ---=- 1()0,01,3S x x x '=<<=.当1(0,]3x ∈时,()0,S x '<递减;当1[,1)3x ∈时,()0,S x '>递增.故当13x =时,S 323. (方法二)利用函数的方法求最小值.令1113,(2,3),(,)32x t t t -=∈∈,则22218668331t S t t t t==-+--+-.故当131,83x t ==时,S 323. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平面直角坐标系xOy 中,已知点(1,2)A --,(2,3)B ,(2,1).C -- (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(OC t AB -)·OC =0,求t 的值.【解析】本小题主要考查平面向量的几何意义、线性运算、数量积,考查运算求解能力.满分14分.解:(1)由题设知(3,5)AB =,(1,1)AC =-,则 (2,6)A B A C +=,(4,4).AB AC -=所以||210AB AC +=||4 2.AB AC -= 故所求的两条对角线长分别为42,210.(2)由题设知 (2,1)OC =--,(32,5).AB tOC t t -=++由()0AB tOC OC -=,得(32,5)(2,1)0t t ++--=, 从而511t =-,所以11.5t =- 16.(本小题满分14分)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900. (1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.【解析】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.满分14分.解:(1)因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC. 由∠BCD=900,得BC ⊥DC.又PD DC D ⋂=,PD ⊂平面PCD ,DC ⊂平面PCD , 所以BC ⊥平面PCD.因为PC ⊂平面PCD ,所以PC ⊥BC. (2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF.则易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 由(1)知BC ⊥平面PCD ,所以平面PBC ⊥平面PCD.因为PD=DC ,PF=FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F. 易知DF=22.又点A 到平面PBC 的距离等于E 到平面PBC 的距离 的2倍,故点A 到平面PBC 2(方法二)连结AC.设点A 到平面PBC 的距离h. 因为AB ∥DC ,∠BCD=900,所以∠ABC=900. 从而由AB=2,BC=1,得ABC ∆的面积1ABC S ∆=.由PD ⊥平面ABCD 及PD=1,得三棱锥P ABC -的体积11.33ABC V S PD ∆== 因为PD ⊥平面ABCD ,DC ⊂平面ABCD ,所以PD ⊥DC.又PD=DC=1,所以22 2.PC PD DC =+=由PC ⊥BC ,BC=1,得PBC ∆的面积22PBC S ∆= 由1121333PBC V S h h ∆===,得2h =.因此,点A 到平面PBC 的距离为2. 17.(本小题满分14分)某兴趣小组要测量电视塔AE 的高度H(单位:m).如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β.(1)该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125m ,试问d 为多少时,αβ-最大?【解析】本小题主要考查解三角形、基本不等式、导数等基础知识,考查数学建模能力、抽象概括能力和解决实际问题的能力.满分14分. 解:(1)由tan H AB α=,tan h BD β=,tan HAD β= 及AB BD AD +=,得tan tan tan H h Hαββ+=, 解得tan 4 1.24124tan tan 1.24 1.20h H αβα⨯===--.因此,算出的电视塔的高度H 是124m. (2)由题设知d AB =,得tan .H dα= 由tan tan H hAB AD BD ββ=-=-,得tan H h d β-=,所以tan tan tan()()1tan tan 2()h H H h H H h d dαβαβαβ--==≤-+⋅-+,当且仅当()H H h d d-=,即()125121555d H H h -⨯=. 所以当555d =tan()αβ-最大. 因为02πβα<<<,则02παβ<-<,所以当555d =αβ-最大.故所求的d 是555m. 18.(本小题满分16分)在平面直角坐标系xOy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F.设过点T (m t ,)的直线TA 、TB 与此椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y . (1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解析】本小题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.满分16分.解:由题设得(3,0)A -,(3,0)B ,(2,0).F(1)设点(,)P x y ,则222(2)PF x y =-+,222(3).PB x y =-+ 由422=-PB PF ,得2222(2)(3)4x y x y -+---=,化简得92x =. 故所求点P 的轨迹为直线92x =. (2)由12x =,2211195x y +=及10y >,得153y =,则点5(2,)3M , 从而直线AM 的方程为113y x =+; 由213x =,2222195x y +=及20y <,得2109y =-,则点110(,)39N -, 从而直线BN 的方程为5562y x =-. 由11,355,62y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得7,10.3x y =⎧⎪⎨=⎪⎩所以点T 的坐标为10(7,)3. (3)由题设知,直线AT 的方程为(3)12m y x =+,直线BT 的方程为(3)6my x =-. 点11(,)M x y 满足112211(3),121,95m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩得 22111(3)(3)(3)9125x x x m -++=-,因为13x ≠-,则211339125x x m -+=-,解得212240380m x m -=+,从而124080m y m =+. 点22(,)N x y 满足2222222(3),61,953,m y x x y x ⎧=-⎪⎪⎪+=⎨⎪≠⎪⎪⎩解得22236020m x m -=+,222020m y m -=+. 若12x x =,则由222224033608020m m m m--=++及0m >,得210m = 此时直线MN 的方程为1x =,过点(1,0).D若12x x ≠,则210m ≠MD 的斜率2222401080240340180MDmm m k m m m +==---+, 直线ND 的斜率222220102036040120NDmm m k m mm -+==---+,得MD ND k k =,所以直线MN 过D 点. 因此,直线MN 必过x 轴上的点(1,0). 19.(本小题满分16分)设各项均为正数的数列{}n a 的前n 项和为n S .已知3122a a a +=,数列{}nS 是公差为d 的等差数列.(1)求数列{}n a 的通项公式(用d n ,表示);(2)设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立,求证:c 的最大值为29.【解析】本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力.满分16分. 解:(111(1)(1)n S S n d a n d =-=-,则当2n ≥时,221111()()232.n n n n n n n a S S S S S S a d d n ---=-==+由2132a a a =+,得221112(2)23a d a a d =+1.a d = 故当2n ≥时,222.n a nd d =-又21a d =,所以数列{}n a 的通项公式为2(21)n a n d =-.(21a d =1(1)n S a n d =-,得0d >,22n S n d =. 于是,对满足题设的k ,,m n ≠,有2222222()99()222m n k m n S S m n d d d k S ++=+>==.所以c 的最大值max 92c ≥.另一方面,任取实数92a >.设k 为偶数,令331,122m k n k =+=-,则k n m ,,符合条件,且22222222331()((1)(1))(94).222m n S S d m n d k k d k +=+=++-=+于是,只要22942k ak +<,即当29k a >-时,就有22122m n k S S d ak aS +<⋅=.所以满足条件的92c ≤,从而max 92c ≤.因此c 的最大值为92.20.(本小题满分16分)设)(x f 是定义在区间),1(+∞上的函数,其导函数为)('x f .如果存在实数a 和函数)(x h ,其中)(x h 对任意的),1(+∞∈x 都有)(x h >0,使得)1)(()('2+-=ax x x h x f ,则称函数)(x f 具有性质)(a P . (1)设函数2()ln (1)1b f x x x x +=+>+,其中b 为实数. (i)求证:函数)(x f 具有性质)(b P ;(ii)求函数)(x f 的单调区间.(2)已知函数)(x g 具有性质)2(P .给定1212,(1,),,x x x x ∈+∞<设m 为实数,21)1(x m mx -+=α,21)1(mx x m +-=β,且1,1>>βα,若|)()(βαg g -|<|)()(21x g x g -|,求m 的取值范围.【解析】本小题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.满分16分.解:(1)(i)由2()ln 1b f x x x +=++,得'()f x 221.(1)x bx x x -+=+ 因为1x >时,21()0(1)h x x x =>+,所以函数)(x f 具有性质)(b P .(ii)当2b ≤时,由1x >得222121(1)0x bx x x x -+≥-+=->, 所以)('x f 0>,从而函数)(x f 在区间),1(+∞上单调递增.当2b >时,解方程210x bx -+=得214b b x --=,224b b x +-=因为214b b x --=2214b b b =<<+-,2241b b x +-=>,所以当2(1,)x x ∈时,)('x f 0<;当2(,)x x ∈+∞时,)('x f 0>;当2x x =时,)('x f =0.从而函数)(x f 在区间2(1,)x 上单调递减,在区间2(,)x +∞上单调递增. 综上所述,当2b ≤时,函数)(x f 的单调增区间为),1(+∞;当2b >时,函数)(x f 的单调减区间为24b b +-,单调增区间为24()b b +-+∞.(2)(方法一)由题意,得22'()()(21)()(1)g x h x x x h x x =-+=-. 又)(x h 对任意的),1(+∞∈x 都有)(x h >0,所以对任意的),1(+∞∈x 都有()0g x '>,()g x 在(1,)+∞上递增.当1m =时,1x α=,2x β=,不合题意.1212,(21)()x x m x x αβαβ+=+-=--. 当1,12m m >≠时,αβ<,且112212(1)(1),(1)(1)x m x m x x m x m x αβ-=-+--=-+-, 221212()()(1)()0x x m x x αβ∴--=---<,12x x αβ∴<<<或12x x αβ<<<,若12x x αβ<<<,则12()()()()f f x f x f αβ<<<,12|()()||()()|g g g x g x αβ∴->-,不合题意.12x x αβ∴<<<,即112122(1),(1),x mx m x m x mx x <+-⎧⎨-+<⎩解得1m <,11.2m ∴<< 当12m =时,αβ=,120|()()||()()|g g g x g x αβ=-<-,符合题意. 当12m <时,αβ>,且212112(),()x m x x x m x x αβ-=--=--,同理有12x x βα<<<,112122(1),(1),x m x mx mx m x x <-+⎧⎨+-<⎩解得0m >,10.2m ∴<<综合以上讨论,得所求的m 的取值范围是(0,1).(方法二)由题设知,()g x 的导函数2'()()(21)g x h x x x =-+,其中函数()0h x >对于任意的),1(+∞∈x 都成立,所以,当1x >时,2'()()(1)0g x h x x =->,从而()g x 在区间),1(+∞上单调递增. ①当(0,1)m ∈时,有12111(1)(1)mx m x mx m x x α=+->+-=,222(1)mx m x x α<+-=,得12(,)x x α∈,同理可得12(,)x x β∈,所以由()g x 的单调性知()g α,()g β12((),())g x g x ∈,从而有|)()(βαg g -|<|)()(21x g x g -|,符合题设.②当0m ≤时,12222(1)(1)mx m x mx m x x α=+-≥+-=,12111(1)(1)m x mx m x mx x β=-+≤-+=,于是由1,1αβ>>及()g x 的单调性知12()()()()g g x g x g βα≤<≤,所以|)()(βαg g -|≥|)()(21x g x g -|,与题设不符.③当1m ≥时,同理可得12,x x αβ≤≥,进而得|)()(βαg g -|≥|)()(21x g x g -|,与题设不符.因此,综合①、②、③得所求的m 的取值范围为(0,1).数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题.......,并.在.相应的答题.....区域内作答......若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲(本小题满分10分)如图,AB 是圆O 的直径,D 为圆O 上一点,过D 作圆O 的切线交AB 的延长线于点C.若DA=DC ,求证:AB=2BC.【解析】本题主要考查三角形、圆的有关知识,考查推理论证能力.满分10分.证明:(方法一)连OD ,则OD ⊥DC.又OA=OD ,DA=DC ,所以∠DAO=∠ODA=∠DCO ,∠DOC=∠DAO+∠ODA=2∠DCO ,所以∠DCO=300,所以OC=2OD ,即OB=BC=OD=OA ,所以AB=2BC.(方法二)连结OD 、BD.因为AB 是圆O 的直径,所以∠ADB=900,AB=2OB.因为DC 是圆O 的切线,所以∠CDO=900.又因为DA=DC ,所以∠A=∠C ,于是△ADB ≌△CDO ,从而AB=CO.即2OB=OB+BC ,得OB=BC.故AB=2BC.B.选修4-2:矩阵与变换(本小题满分10分)在平面直角坐标系xOy 中,已知点(0,0),(2,0),(2,1)A B C --.设k 为非零实数,矩阵M =⎥⎦⎤⎢⎣⎡100k ,N =⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,求k 的值.【解析】本题主要考查图形在矩阵对应的变换下的变化特点,考查运算求解能力.满分10分.解:由题设得0010011010k k MN ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.由0001000k ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,0201002k -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,021012k k -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 可知1(0,0)A ,1(0,2)B -,1(,2)C k -.计算得△ABC 的面积是1,△A 1B 1C 1的面积是||k ,则由题设知||212k =⨯=.所以k 的值为2-或2.C.选修4-4:参数方程与极坐标(本小题满分10分)在极坐标系中,已知圆2cos ρθ=与直线3cos 4sin 0a ρθρθ++=相切,求实数a 的值.【解析】本题主要考查曲线的极坐标方程等基础知识,考查转化问题的能力.满分10分.解:将极坐标方程化为直角坐标方程,得圆的方程为22222,(1)1x y x x y +=-+=即,直线的方程为340x y a ++=.由题设知,圆心(1,0)到直线的距离为1221,34=+解得8a =-,或2a =.故a 的值为8-或2.D.选修4-5:不等式选讲(本小题满分10分)设a ,b 是非负实数,求证:3322()a b ab a b +≥+.【解析】本题主要考查证明不等式的基本方法,考查推理论证的能力.满分10分.证明:由a ,b 是非负实数,作差得 3322()()()a b ab a b a a a b b b b a ++=+55()[()()]a b a b =-.当a b ≥a b ≥,从而55()()a b ≥,得55()[()()]0a b a b -≥;当a b <a b <,从而55()()a b <,得55()[()()]0a b a b ->. 所以3322()a b ab a b +≥+.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立.(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率.【解析】本题主要考查概率的有关知识,考查运算求解的能力.满分10分.解:(1)由题设知,X 的可能取值为10,5,2,-3,且P (X=10)=0.8×0.9=0.72, P (X=5)=0.2×0.9=0.18,P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02.由此得X 的分布列为: X-3 2 5 10 P 0.02 0.08 0.18 0.72(2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件.由题设知4(4)10n n --≥,解得145n ≥, 又n N ∈,得3n =,或4n =. 所以3344440.80.20.80.8192P C C =+=. 故所求概率为0.8192.23.(本小题满分10分)已知△ABC 的三边长都是有理数.(1)求证:cos A 是有理数; (2)求证:对任意正整数n ,cos nA 是有理数.【解析】本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力.满分10分.证法一:(1)由AB 、BC 、AC 为有理数及余弦定理知222cos 2AB AC BC A AB BC+-=是有理数. (2)①当1n =时,由(1)知cos A 是有理数.当2n =时,∵2cos22cos 1A A =-,因为cos A 是有理数,∴cos 2A 也是有理数;②假设当(2)n k k ≤≥时,结论成立,即coskA 、cos(1)k A -均是有理数.当1n k =+时,cos(1)cos cos sin sin k A kA A kA A +=-,1cos(1)cos cos [cos()cos()]2k A kA A kA A kA A +=---+, 11cos(1)cos cos cos(1)cos(1)22k A kA A k A k A +=--++, 解得cos(1)2cos cos cos(1)k A kA A k A +=--. ∵cos A ,cos kA ,cos(1)k A -均是有理数,∴2cos cos cos(1)kA A k A --是有理数,∴cos(1)k A +是有理数.即当1n k =+时,结论成立.综上所述,对于任意正整数n ,cos nA 也是有理数.证法二:(1)由AB 、BC 、AC 为有理数及余弦定理知222cos 2AB AC BC A AB BC+-=是有理数. (2)用数学归纳法证明cos nA 和sin sin A nA 都是有理数.①当1n =时,由(1)知cos A 是有理数,从而有2sin sin 1cos A A A =-也是有理数.②假设当(1)n k k =≥时,cos kA 和sin sin A kA 都是有理数.当1n k =+时,由cos(1)cos cos sin sin k A kA A A kA +=-,sin sin(1)sin (sin cos cos sin )A k A A A kA A kA +=+(sin sin )cos (sin sin )cos A A kA A kA A =+,及①和归纳假设,知cos(1)k A +与sin sin(1)A k A +都是有理数.即当1n k =+时,结论成立.综合①、②可知,对任意正整数n ,cos nA 也是有理数.毋意,毋必,毋固,毋我。

2010年江苏省高考数学试题真题解析(word版含理科附加题) 2-推荐下载

2010年江苏省高考数学试题真题解析(word版含理科附加题) 2-推荐下载

10、定义在区间

0,
2

上的函数
y=6cosx
的图像与
PP1⊥x 轴于点 P1,直线 PP1 与 y=sinx 的图像交于点 P2,则线段 P1P2 的长为_______▲_____。
11、已知函数
f
(x)
12、设实数 x,y 满足 3≤ xy2 ≤8,4≤

x2 1,
1, x 0
8、函数 y=x2(x>0)的图像在点(ak,ak2)处的切线与 x 轴交点的横坐标为 ak+1,k 为正整数,a1=16, 则 a1+a3+a5=____▲__ ___ 9、在平面直角坐标系 xOy 中,已知圆 x2 y2 4 上有且仅有四个点到直线 12x-5y+c=0 的距离
为 1,则实数 c 的取值范围是______▲_____
S (梯形的周长)2 ,则 S 的最小值是____▲____。 梯形的面积
二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说 明、证明或演算步骤. 15、(本题满分 14 分) 在平面直角坐标系 xOy 中,点 A(-1,-2)、B(2,3)、C(-2,-1)。 (1)求以线段 AB、AC 为邻边的平行四边形两条对角线的长;
第 1 页 共 13 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2010年江苏高考数学试题(含答案详解

2010年江苏高考数学试题(含答案详解

2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。

本卷满分160分,考试时间为120分钟。

考试结束后,请将本卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。

作答必须用0.5毫米黑色墨水的签字笔。

请注意字体工整,笔迹清楚。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

6.请保持答题卡卡面清洁,不要折叠、破损。

参考公式:1锥体的体积公式:V 锥体=Sh,其中S是锥体的底面积,h是高。

3一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题.卡.相.应.的.位..置.上..1、设集合A={-1,1,3},B={a+2,a 2+4},A∩B={3},则实数a=______▲_____.[解析]考查集合的运算推理。

3B,a+2=3,a=1.2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲_____.[解析]考查复数运算、模的性质。

z(2-3i)=2(3+2i),2-3i与3+2i的模相等,z的模为2。

3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__.[解析]考查古典概型知识。

31p624、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
早期的微积分,由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展。柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)完善了作为理论基础的极限理论,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。
数学分析试卷,此乃得于淘宝主之手,花了16
数学分析(Mathematical Analysis)是数学专业的必修课程之一,基本内容是微积分,但是与微积分有很大的差别。
微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。
相关文档
最新文档