生物化学--蛋白质的分离纯化与鉴定
蛋白质分离纯化的注意事项
蛋白质分离纯化的注意事项蛋白质分离纯化是生物学和生物化学研究中常用的一个步骤,它用于将混合的蛋白质溶液中的目标蛋白质分离出来并去除杂质。
蛋白质分离纯化的注意事项有很多,下面将详细介绍。
1. 样品的制备:蛋白质的分离纯化前,首先需要对样品进行合适的制备。
采集样品时要避免污染、破坏或降解蛋白质。
样品的pH、温度和离心速度等因素对蛋白质的稳定性有重要影响,因此需要根据实验需要进行适当的处理。
2. 分离纯化方法的选择:根据不同的蛋白质性质和研究目的,选择合适的分离纯化方法。
常用的方法包括离心法、沉淀法、过滤法、电泳法、层析法等。
在选择方法时要考虑到分离纯化的效果、时间、成本、操作难度等因素。
3. 分离纯化条件的优化:在选择分离纯化方法后,需要对实验条件进行优化。
例如,选择合适的缓冲液和pH,优化温度和离心速度,调整柱层析的流速和梯度,以及优化电泳条件等。
优化条件可以提高蛋白质的分离纯化效果。
4. 对蛋白质的保存和稳定性需小心处理:蛋白质容易受到温度、pH、氧化和降解等因素的影响而失活。
因此,在整个分离纯化的过程中,要注意进行低温处理,避免酶的降解和氧化反应的发生。
此外,还可以使用蛋白质稳定剂,如甘油、蔗糖或明胶等,来延长蛋白质的保存时间。
5. 删除杂质的步骤:蛋白质分离纯化的一个重要目标是去除杂质。
去除杂质的方法包括胶体沉淀、盐析、有机溶剂沉淀、离心沉淀等。
选择适当的去除杂质的方法,能够提高分离纯化的纯度。
6. 纯化后的保存:在完成蛋白质的分离纯化后,必须妥善保存纯化蛋白质。
纯化蛋白质容易受到冻融循环、氧化和结构变化等因素的影响,因此需要在低温下保存,并加入适当的保护剂以避免降解。
7. 纯度和活性的鉴定:对于蛋白质分离纯化后的样品,需要进行纯度和活性的鉴定。
常用的鉴定方法包括SDS-PAGE凝胶电泳、Western blotting、质谱分析、酶活分析等。
这些鉴定方法能够确定纯化蛋白质的纯度和活性,从而确定分离纯化的效果是否达到预期目标。
生物化学课件-蛋白质及其分离纯化
• 构成蛋白质的基本氨基酸共20种。 构成蛋白质的基本氨基酸共20 20种 • 共同点:除脯氨酸外,均为α-氨 共同点:除脯氨酸外,均为α 基酸,即同一碳原子上有羧基、 基酸,即同一碳原子上有羧基、氨 基与氢。 基与氢。 • 不同点:侧链R基团不同。 不同点:侧链R基团不同。
3、氨基酸的分类
Ⅰ 蛋白质氨基酸
Hale Waihona Puke 补充: 补充:1.4.5 结构域:多肽链上由相邻的超 结构域:
二级结构单元联系而成的局部性区域 折叠成近乎球状的高级结构。 ,多肽链折叠成近乎球状的高级结构。
1.4 .6 蛋白质的三级结构
定义:建立在二级结构、超二级结构 建立在二级结构、 建立在二级结构 乃至结构域的基础上, 乃至结构域的基础上,一条多肽链 所有氨基酸残基的空间关系( 中所有氨基酸残基的空间关系(构 象)。
1)20种基本氨基酸 ) 种基本氨基酸 按侧链极性分类 按侧链结构分类 按人体能否合成分类 2)稀有氨基酸 )
Ⅱ 非蛋白质氨基酸
按侧链结构分类
脂肪族氨基酸(15种) 脂肪族氨基酸 种 芳香族氨基酸(3种 芳香族氨基酸 种) 杂环氨基酸(2种 杂环氨基酸 种)
芳香族氨基酸(3种 芳香族氨基酸 种)
Ⅱ β-折叠
定义: 两条或多 条几乎完 全伸展的 多肽链侧 向聚集在 一起, 一起,靠 链间氢键 联结的片 层结构
β-折叠的特征要点: 折叠的特征要点:
相邻肽链走向可平行也可反平行 平行也可反平行。 ① 相邻肽链走向可平行也可反平行。 肽链的N 端在同侧为平行式, 肽链的N-端在同侧为平行式,不在同侧 为反平行式。 为反平行式。从能量角度考虑反平行式 更为稳定 稳定性是靠链间氢键维持的, 链间氢键维持的 ② 稳定性是靠链间氢键维持的,氢键是 由相邻肽链主链上的N C=O之间形成 由相邻肽链主链上的N-H和C=O之间形成 的 氨基酸残基的R ③ 氨基酸残基的R侧链交替分布在片层 的上下两侧
蛋白质分离技术全ppt课件
蛋白质 的分离与纯化
一、 引言
二、 蛋白质(酶)分 离纯化的前处理三、蛋白质(酶来自分离 与纯化四、层析技术
五、电泳技术
六、离心技术
1
一、 引言
• 蛋白质(酶)存在于一切生物体中,是 非常重要的生物大分子。蛋白质是生物 功能的执行者,担负着生物催化、物质 运输、运动、防御、调控及记忆、识别 等多种生理功能。
化膜,暴露出疏水区域,同时又中和了电荷, 破坏了亲水溶胶,蛋白质分子即聚集而形成沉 淀。
26
Salting-in
Salting-out
溶 解 度
盐浓度
27
水化膜
++ + +
碱
+
+
++ +
酸
带正电荷蛋白质 (亲水胶体)
脱水
水化膜 碱
酸
等点电时的蛋白质 (亲水胶体)
脱水
带负电荷蛋白质 (亲水胶体)
脱水
• 盐析法应用最广的还是在蛋白质领域,已有八 十多年的历史,其突出的优点是:
• ①成本低,不需要特别昂贵的设备。 • ②操作简单、安全。 • ③对许多生物活性物质具有稳定作用。
25
⑴ 盐析的基本原理
• 蛋白质溶液为亲水溶胶体系,其稳定因素:水 化膜和电荷。
• 中性盐的亲水性大于蛋白质分子的亲水性。 • 加入大量中性盐后,夺走了水分子,破坏了水
• 3) 酶解法:利用各种水解酶,如溶菌酶、纤维素酶、蜗牛 酶和酯酶等,于37℃,pH8,处理15分钟,可以专一性地将 细胞壁分解。
• 4) 有机溶剂处理法:利用氯仿、甲苯、丙酮等脂溶性溶剂或 SDS(十二烷基硫酸钠)等表面活性剂处理细胞,可将细胞 膜溶解,从而使细胞破裂,此法也可以与研磨法联合使用。
【生物化学实验】血清γ球蛋白分离纯化与鉴定PPT课件
凝胶层析法
透析
本试验采用葡聚糖凝胶——Sephadex G 25层析方 法除去球蛋白粗提液中的盐硫酸铵,以便下一步用离 子交换层析方法进一步提纯球蛋白。
9
凝胶柱层析脱盐
10
目的与要求
1.学习了解凝胶 层析的原理
2.熟练了解凝胶 层析的用途
/min,使凝胶均匀沉降,不断补充,直至15cm。 4、上留1—2mm的水,关闭出口。 注意:★ 床面上要保持少许水,防止胶床露出液面。
★ 胶面不平,用玻棒轻轻搅动,让凝胶自然沉降, 使表面平整。
16
▲ 加样与洗脱
1、加样:用滴管将盐析后样品加入柱床面,打开出口使样品 溶液渗入凝胶。
2、洗脱:加入洗脱液,打开出口,保持流速10滴/min,收 集洗脱液,用钠氏试剂检测胺。
3、保存:检测洗脱液的蛋白质量,保存含量高的进一步纯化
▲ 凝胶的再生
不断加洗脱液,使铵全部流出,为下次实验做准备。
17
注意事项:
1 . 凝胶柱的制备质量决定分离效果的好坏 。 2. 加样分离时,滴速越慢,分离效果越好。
★ 以管号为横轴,蛋白 质含量为纵轴绘制洗脱 曲线,分析实验结果。
18
三、DEAE-纤维素离子交换层析
11
凝胶层析原理:
凝胶层析法是按混合物各组分分子量大小不同随流 动相经过层析柱的时间不同而被分离的技术。
凝胶是一类具有三维多孔网状结构的干燥颗粒,当吸收 一定量溶液后溶涨成柔软、富有弹性、不带电荷、不与溶 质相互作用的惰性物质,凝胶层析以其为固定相。层析时, 直径大于凝胶网孔的大分子物质不能进入凝胶内部,只能 沿着凝胶颗粒间的间隙随流动相向下移动,所以流程短、 流速快,首先流出层析柱;而小分子物质直径小于凝胶网 孔能自由出入,洗脱时间长,后流出层析柱,经过一定时 间层析,分子大小不同的物质彼此分开,达到分离的目的。
蛋白质分离纯化技术
蛋白质分离纯化技术
-
目录
CONTENTS
1
蛋白质鉴定
2
蛋白质分离纯化技术
蛋白质分离纯化技 术是生物化学研究 的重要手段,下面 是蛋白质分离纯化 的一些基本技术和
方法
样品准备
样品准备
1.1 细胞破碎
细胞破碎是蛋白质提取的第一步,常见的细胞破 碎方法有物理法、化学法和生物酶学法
蛋白质分离纯化
2.2 根据电荷分离纯化
2.2.1 电泳 电泳是在电场作用下,带电粒子在介质中移动的现象。根据带电粒子在电场中 的移动速度不同,可以将不同电荷的蛋白质分离开来 2.2.2 等电聚焦电泳
等电聚焦电泳是将pH梯度与电泳相结合的技术,可以分离等电点不同的蛋白质
2.2.3 离子交换色谱 离子交换色谱是一种利用离子交换剂将带电粒子 从溶液中分离出来的技术,根据离子交换剂的电 荷性质不同,可以选择性吸附不同电荷的蛋白质
蛋白质分离纯化
2.4 根据生物学活性分离纯化
2.4.1 免疫吸附纯化
免疫吸附纯化是一种利用抗原-抗体之间的特异性结合进行蛋白质纯化的技术。在 免疫吸附纯化中,将特异性抗体包被在固相载体上,再将待纯化的蛋白质溶液通 过该柱子,抗原-抗体复合物会吸附在柱子上,而其他杂质则会被洗脱下来。最后 通过改变柱子的条件,使抗原-抗体复合物解离下来,得到纯化的蛋白质
蛋白质分离纯化
蛋白质分离纯化
2.1 根据分子量分离纯化
2.1.1 透析 透析是一种将溶液中的小分子物质与大分子物质分离开来的方法,主要用于去 除蛋白质中的小分子杂质 2.1.2 凝胶过滤 凝胶过滤是一种根据蛋白质分子大小不同进行分离的技术,大分子不能进入凝 胶内部的通道,而小分子则可以进入 2.1.3 超滤 超滤是一种膜过滤技术,通过不同孔径的超滤膜 ,将分子量不同的蛋白质分离
生物化学实验-蛋白质分离纯化
蛋白质分离纯化
离子交换层析
蛋白质分离纯化
离子交换层析
蛋白质分离纯化
离子交换层析
蛋白质分离纯化
小
结
粗分级一般采用盐析、等电点沉淀、有机溶剂分级 等方法;
细分级一般采用层析法,包括凝胶层析、离子交换 层析、吸附层析、亲和层析等方法。必要时,还可 采用电泳法,包括等电聚焦等作为蛋白质的提纯步 骤。
型号:G200、 G150、 G100、 G75、 G50、 G25、 G15 分离大蛋白质、小蛋白质,除盐
琼脂糖凝胶(瑞典Sepharose、美国Bio-GelA)
孔径大,用于分离大分子物质
聚丙烯酰胺凝胶( Bio-GelP)
蛋白质分离纯化
凝胶层析
原理:
1、分子量大的物质不能进入凝胶粒子内部,随洗 脱液从凝胶粒子之间的空隙挤落下来,所以大分子 物质迁移速度快;
注意事项:1、时间相对长对分离有利; 2、也可用来测定蛋白质的等电点。
蛋白质分离纯化
等电聚焦( Isoelectric focusing)
蛋白质分离纯化
蛋白质分离纯化
等电聚焦( Isoelectric focusing)
蛋白质分离纯化
离子交换层析
可分为阳离子交换---与阴离子交换---。 1、树脂类:分离氨基酸,孔径小;
蛋白质分子量的测定
最小分子量测定法 如Mb含Fe为0.335%,则
M=55.8/0.335%=16700。这就是最小分子量。
其实,真实分子量是最小分子量的n倍,n指Fe 的数目,Mb的n=1,所以M=16700;而Hb用其他方法 测得分子量为68000,则说Hb含4个Fe原子。
【生物化学】第八章 蛋白质的分离纯化
㈤、凝胶过滤层析技术
⒈ 基原理
概念(排阻层析,分子筛层析): 当生物大分子通过装有凝胶颗粒 的层析柱时,根据它们分子大小 不同而进行分离的技术。 原理:凝胶颗粒内部具有多孔网 状结构,被分离的混合物流过层 析柱时,比凝胶孔径大的分子不 能进入凝胶孔内,在凝胶颗粒之 间的空隙向下移动,并最先被洗 脱出来; 比网孔小的分子能不同程度的自 由出入凝胶孔内外,在柱内经过 的路程较长移动速度较慢,最后 被洗脱出来。
⒊ 分配纸层析
纤维素吸附的水是固定相,展层用的有 机溶剂是流动相
层析时混合氨基酸在这两相中不断分配, 使他们分布在滤纸的不同位置上。
此项技术可用于氨基酸成分的定量定性 测定。
⒊ 分配纸层析
操作:点样→展层→显 色用茚三酮显色时,得到 一个滤纸层析谱。 定义:原点到氨基酸停 留点的距离与原点至溶剂 前沿之比称为Rf值。 只要把溶剂系统、温度、 滤纸型号等条件确定,则 每一种氨基酸的Rf值是一 个确定值。
⒊ 分析型超速离心机
XL-A分析型超速离 心机 主要技术指标: 检测波长范围 200nm800nm 转子最大转速 40000RPM
什么是酶的活性中心? 三维结构上比较接近的少数特异的氨基酸残基参与底物的 结合与催化作用,这一与酶活力直接相关的区域称酶的活 性部位。 在很多酶的活性中心均有His残基参与,原因是什么? 酶蛋白分子中组氨酸侧链咪唑基pK值为6.0-7.0,在生理条 件下,一半解离,一半不解离,因此既可以做质子供体,也 可以做质子受体,可以作为广义酸碱共同催化反应。 胰凝乳蛋白酶活性中心的催化三联体是指哪三种氨基酸?
⑵ 按两相所处的状态分类 流动相有两种状态:
*液体作为流动相 *气体作为流动相 固定相也有两种状态: *固体吸附剂作为固定相 *以吸附在固体上的液体作为固定相
trna结合蛋白质的分离,纯化和鉴定
trna结合蛋白质的分离,纯化和鉴定
TRNA结合蛋白质的分离、纯化和鉴定是一个复杂的过程,需要涉及许多技术和实验步骤。
以下是一般的实验流程:
1. 细胞培养和TRNA结合蛋白质提取:首先,需要选择一种可供TRNA结合蛋白表达的细胞。
表达TRNA结合蛋白的细胞可以通过病毒转染、质粒转染或基因编辑等方法获得。
然后,需要经过一系列的细胞培养、细胞裂解和蛋白质提取的步骤,获得含有TRNA结合蛋白的蛋白提取物。
2. 蛋白质组学分析:使用蛋白质组学技术如SDS-PAGE、2D-PAGE等,可以对提取物进行蛋白质分析,并定位TRNA结合蛋白的位置。
3. 亲和层析纯化:从蛋白提取物中纯化TRNA结合蛋白,可以使用亲和柱层析技术。
通常,这种方法是基于TRNA分子与TRNA结合蛋白具有特异性相互作用的原理,通过对纯化物进行一系列精简的层析、洗脱和再结晶等步骤,纯化出TRNA结合蛋白。
4. 电泳分离和氨基酸测定:用聚丙烯酰胺凝胶电泳法对纯化的TRNA结合蛋白进行分离。
分离出的蛋白质可以通过氨基酸测定,获得每个氨基酸残基的位置和序列。
5. 质谱分析:使用质谱技术,可以用于分析TRNA结合蛋白的完整的序列和特
定结构。
通过使用MALDI-TOF质谱、毒蕈碱胶板电泳或其他质谱技术,可以得到蛋白质的分子质量、残基序列等信息。
6. 功能分析:最后,通过功能实验,可以确定TRNA结合蛋白通过哪些方式与其靶标mRNA或其他蛋白分子相互作用,并参与哪些细胞生物学或生物化学过程中。
蛋白质的提取与分离纯化——生化实验设计讲解课件讲解学习
值得注意的是,在洗脱时,会有少许配基与蛋白 质一同被洗脱下来,因此常在其后加一凝胶层析 以除去小分子的配基。
凝胶层析法属最常用的蛋白质分离方法。系混合
物随流动相流经装有凝胶作为固定相的层析柱时, 混合物中各物质因分子大小不同而被分离的技术。 在洗柱过程中,分子量最大的物质不能进入凝胶 网孔而沿凝胶颗粒间的空隙最先流出柱外。分子 量最小的物质因能进入凝胶网孔而受阻滞,流速 缓慢,致使最后流出柱外。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
当分子量在15KD到200KD之间时,蛋白质的迁 移率和分子量的对数呈线性关系,符合下式: logMW=K-bX,
式中:MW为分子量,X为迁移率,k、b均为常 数若将已知分子量的标准蛋白质的迁移率对分子 量对数作图,可获得一条标准曲线,未知蛋白质 在相同条件下进行电泳,根据它的电泳迁移率即 可在标准曲线上求得分子量。
玻璃匀浆机
b、细胞器的分离
细胞器的分离一般采用差速离心法。细 胞经过破碎后,在适当介质中进行差速 离心。
三、蛋白质粗提取
从破碎材料或细胞器提出的蛋白质是不纯的, 需进一步纯化。纯化包括将蛋白质与非蛋白质 分开,将各种不同的蛋白质分开。选择提取条 件时,就要考虑尽量除去非蛋白质。一般总是 有其它物质伴随混入提取液中。但有些杂质 (如脂肪)以事先除去为宜。先除去便于以后 操作。常用有机溶剂提取除去。
二、a 细胞的破碎
⑴机械方法 主要通过机械切力的作用使组织细胞破 坏。常用器械有: ①玻璃匀浆器(用两个磨砂面相 互摩擦,将细胞磨碎) ②高速组织捣碎机(转速可 达10000rpm,具高速转动的锋利的刀片),宜用于 动物内脏组织的破碎 ⑵物理方法 主要通过各种物理因素的作用,使组织 细胞破碎的方法。 Ⅰ反复冻融法 Ⅱ冷热变替法 Ⅲ超 声波法 ⑶化学及生物化学方法
第7章蛋白质的分离纯化和表征
第7章蛋白质的分离纯化和表征第七章蛋白质的分离、纯化和表征第一节蛋白质的酸碱性质每个解离基团的pK 值与游离氨基酸的不完全相同。
等电点应通过等电点聚焦和其他方法来确定。
第二节蛋白质分子的大小和形状首先,根据化学成分确定最低相对分子质量假设只有一种微量组分,在测量其百分含量后,可以用比例公式计算出最低相对分子质量。
如果测量两种痕量组分的百分比含量,并且通过比例公式计算的最低相对分子质量不同,则可以计算两种最低相对分子质量的近似值的最小公倍数。
实施例:纯酶含有1.65%亮氨酸(MR 131)和2.48%异亮氨酸(MR 131), 以找到最低的相对分子质量。
解决方案:根据Leu 的百分比,最低Mr x1: x1 = (100'131)/1.65 = 7939.4。
最低X2先生:X2 = (100 ' 131)/2.48 = 528是3艮据lie的百分比含量计算的。
由于X1 和X2 数之间的巨大差异,建议该酶包含一个以上的Leu 和l i e 。
为了估计Leu 和lie 的数量,首先计算:X1/X2=7939.4/5282.3 〜1.5 .该酶含有的任何氨基酸的数量应为整数,表明该酶至少含有2个Leu 和3个Ile ,其最小相对分子质量为7939.4 ‘2=15878.8或5282.3 3=15846.9二、渗透压法测定相对分子质量三、沉降分析法测定相对分子质量基本原则:(a)离心力(Fc)当粒子(生物大分子或细胞器)在高速旋转下受到离心力时,离心力“ FC由以下公式定义:f = m a = m w 2ra-粒子旋转加速度,m-沉降粒子的有效质量,w粒子旋转角速度,r- 粒子旋转半径(cm)。
②相对离心力(RCF) 由于各种离心机转子的半径或离心管到转轴中心的距离不同,离心力也不同。
因此,文献中常用相对离心力”或数X g来表示离心力。
只要RCF 值不变,样品在不同的离心机上可以获得相同的结果。
蛋白质的分离纯化
蛋白质的分离纯化一,蛋白质(包括酶)的提取大部份蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质那么溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采纳不同溶剂提取分离和纯化蛋白质及酶。
(一)水溶液提取法稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。
提取的温度要视有效成份性质而定。
一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。
但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。
为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。
下面着重讨论提取液的pH值和盐浓度的选择。
1、pH值蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。
用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。
2、盐浓度稀浓度可促进蛋白质的溶,称为盐溶作用。
同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以摩尔。
升浓度为宜。
缓冲液常采用磷酸盐和碳酸盐等渗盐溶液。
(二)有机溶剂提取法一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的必然的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。
但必需在低温下操作。
丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶专门优越,一是因为丁醇亲脂性强,专门是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为%)可不能引发酶的变性失活。
另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。
生物化学与分子生物学实验三 血清γ-球蛋白的分离、纯化及鉴定(七年制)2015
载玻片各个样品滴加20%璜基水杨酸(检测蛋白 质)。
用“-”表示无现象,用“+”, “++”, “+++”等表
示颜色深浅
▲ 回收凝胶
注意事项:
1 . 凝胶柱的制备质量决定分离效果的好坏 。
2. 加样分离时,滴速越慢,分离效果越好。
加入0.0175mol/L磷酸缓冲液 (pH=6.3)1ml溶解
实验二、葡聚糖凝胶柱层析(P31)
原理:按混合物各组分分子量大小不同随流动 相经过层析柱的时间不同而被分离的技术。
9
葡聚糖凝胶柱层析脱盐
本试验采用葡聚糖凝胶——Sephadex G 25层析方法
除去球蛋白粗提液中的盐硫酸铵,以便下一步用离子
交换层析方法进一步提纯球蛋白。
操作步骤:
▲ Sephadex G-25的准备 ▲ 装柱(15~20cm)
1、层析柱保持垂直。 2、放蒸馏水,排出空气,关闭出口。 3、加入搅拌均匀的SephadexG-25悬液,静止2分钟,调节 流速10滴/min,使凝胶均匀沉降,不断补充,直至18cm。 4、上留1-2mm的液体,关闭出口。
注意:★ 柱床面上要保持少许液体,防止胶床露出液面。
★ 胶面不平,用玻棒轻轻搅动,让凝胶自然沉降,
使表面平整。
▲ 加样与洗脱
1、加样:用滴管将盐析后样品缓缓地加入柱床面,打开出口 使样品溶液渗入凝胶,并用少量洗脱液清洗。 2、洗脱:缓缓地加入洗脱液,打开出口,保持流速10滴 /min,收集洗脱液,每管收集15滴。注意柱床面不要干 燥。 3、检测:20%璜基水杨酸溶液检测洗脱液的蛋白质,并用
分离纯化蛋白质的方法及原理
分离纯化蛋白质的方法及原理分离纯化蛋白质是生物化学和分子生物学研究中的重要步骤。
蛋白质的分离与纯化可以使我们更好地理解蛋白质的结构和功能,并为进一步的研究提供可靠的蛋白质样本。
下面将介绍一些常见的蛋白质分离和纯化方法及其原理。
1.存活细胞提取法:这种方法是从细胞中提取蛋白质。
先将细胞破碎,然后通过离心等手段去除细胞碎片和细胞器,留下蛋白质溶液。
使用该方法分离的蛋白质包括细胞质蛋白、细胞膜蛋白等。
2.柱层析法:柱层析法是一种广泛应用的蛋白质分离方法。
它主要依据蛋白质的性质(如分子质量、电荷、亲水性等)在各种填料(如离子交换、凝胶透析、亲和层析等)上的差异进行选择性分离。
原理是根据蛋白质与填料之间的相互作用,通过溶液通过填料层析柱时,不同蛋白质以不同速率在填料间扩散,并在填料内发生各种相互作用,从而实现蛋白质的分离。
该方法可同时分离多个蛋白质,并制备高纯度的蛋白质。
3.电泳法:电泳法是根据蛋白质在电场中的迁移速率、电荷性质和分子大小等特征进行分离的方法。
常见的电泳方法包括SDS-、等电聚焦电泳、二维电泳等。
其中,SDS-是最常用的蛋白质分离方法之一,它通过SDS(十二烷基硫酸钠)使蛋白质变成带负电荷的复合物,继而在电场作用下,按照蛋白质的分子质量大小进行分离。
4.超滤法:超滤法是根据不同分子量的蛋白质在超滤膜上的渗透性差异进行分离。
超滤分离可以根据孔隙的大小将不同分子量的蛋白质阻滞,有效地去除较小分子量的杂质,得到目标蛋白质的高纯度。
5.亲和层析法:亲和层析法是通过目标蛋白质与配体之间的特异性结合进行分离的方法。
配体可以是特定的抗体、金属离子、凝胶颗粒等。
原理是通过将配体共价结合到固定相上,然后将蛋白质样品溶液通过,使目标蛋白质与配体发生特异性结合,其他非特异性结合的蛋白质被洗脱,最后目标蛋白质被洗出。
6.上下层析法:上下层析法是一种根据沉降速度差异进行分离的方法。
利用离心过程中不同蛋白质溶液中蛋白质的不同沉降速度将蛋白质分离。
蛋白质化学研究方法和思路
蛋白质化学研究方法和思路蛋白质化学研究是生物化学领域的一个重要分支,它涉及对蛋白质的结构、功能、相互作用和生物合成的深入研究。
以下是蛋白质化学研究的一些常见方法和思路。
1. 蛋白质分离和纯化:通过各种色谱技术(如凝胶过滤、离子交换、亲和色谱等)从混合物中分离目标蛋白质。
使用电泳技术(如SDS-PAGE)对蛋白质进行分子量分析。
2. 蛋白质结构分析:通过X射线晶体学获得蛋白质的三维结构。
利用核磁共振(NMR)光谱学分析蛋白质的二维结构。
通过冷冻电子显微镜(cryo-EM)技术观察蛋白质的近原子分辨率结构。
3. 蛋白质功能研究:通过体外酶活实验研究蛋白质的催化功能。
利用细胞生物学实验(如共转染、基因敲除等)研究蛋白质在细胞中的功能。
通过蛋白质相互作用分析(如免疫沉淀、酵母双杂交等)研究蛋白质与其他分子的相互作用。
4. 蛋白质修饰研究:分析蛋白质的磷酸化、乙酰化、泛素化等修饰形式。
研究修饰对蛋白质结构和功能的影响。
5. 蛋白质表达调控:研究蛋白质的转录后调控机制,如miRNA、转录因子等对蛋白质表达的影响。
分析蛋白质的降解途径和稳定性。
6. 蛋白质组学:利用高通量质谱技术对蛋白质进行鉴定和定量分析。
通过蛋白质组学数据挖掘,发现新的蛋白质功能和研究途径。
7. 计算生物学方法:利用生物信息学工具(如SwissProt、UniProt等)查询和分析蛋白质序列信息。
通过分子对接和分子动力学模拟研究蛋白质与配体的相互作用。
8. 系统生物学:研究蛋白质在生物网络中的角色和功能。
利用系统生物学方法分析蛋白质在复杂生物过程中的作用。
在进行蛋白质化学研究时,通常需要综合运用多种技术和方法,以获得全面的研究结果。
研究过程中,科学家们会根据研究目标和问题,选择合适的研究方法和实验设计,以揭示蛋白质在生命活动中的重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The Separation and Purification of Protein
一、蛋白质的酸碱性质
蛋白质分子除两端的氨基和羧基可解离外,
氨基酸残基侧链中某些基团,在一定的溶液pH条
件下都可解离成带负电荷或正电荷的基团。 * 蛋白质的等电点( isoelectric point, pI) 当蛋白质溶液处于某一pH时,蛋白质解离成
示
υ:偏微比容;蛋m2/s
二、 蛋白质分子大小与形状
( 四 2.沉降平衡法 ) 蛋 在8000-20000r/min的离心力场中,分子颗粒 发生沉降,造成浓度梯度。扩散力和离心力平 白 衡时,在离心管内从液面到液底形成一个由低 质 到高的恒定浓度梯度。 的 沉 M=[2RTln(c2/c1)]/[(1-υρ)ω2(x22-x12)] 降 c1和c2是离旋转中心x1和x2处的蛋白质浓度; 分 只要实验测得c1和c2及υ和ρ,即可算出蛋白质 析 的分子量。
( 四 ) 蛋 白 质 的 沉 降 分 析
蛋白质分子在溶液中受到强大的离心力作用时, 会发生沉降。 沉降的速度与蛋白质的分子大小、形状和密度; 溶液的密度和粘度有关。 研究沉降作用,采用每分钟60000-80000转的 高速离心机,相当于重力的500000-600000倍 利用高速离心机测定蛋白质的分子量有两种方 法,一种是沉降速度法,另一种是沉降平衡法 此法还可以鉴定蛋白质分子的均一性
二、 蛋白质分子大小与形状
在聚丙烯酰胺凝胶系统中加入十二烷基
电( 泳六 )
聚 丙 烯 酰 胺 凝 胶
硫酸钠和少量的巯基乙醇,则蛋白质分 子的电泳迁移率主要取决于它的分子量, 而与所带电荷和分子形状无关。 SDS是一种变性剂,能够使蛋白质的肽链 伸展。 SDS使多肽链带上相同的负电荷, 掩盖 了不同种类蛋白质间的电荷差别,结果 所有的SDS-蛋白质复合物电泳时都以同 样的电荷/蛋白质比向正极移动。
凝胶过滤层析的工作原理
分子筛层析, Molecular-sieve chromatography; 凝胶过滤: Gel filtration chromato-graphy; 或 Gel retar-dation chromatography.
根据公式计算分子量:
logM=K1-K2Ve K1、K2为常数 Ve:洗脱体积 测定方法:测得几种标准蛋白质的Ve ,并 以它们的分子量对数对作图得一条直线, 再测出待测样品的Ve,即可从图中查出它的 分子量 待测样品可以不纯 测定蛋白质分子量一般用葡聚糖凝胶,可 选用不同分离范围的凝胶。
二、 蛋白质分子大小与形状
利用凝胶过滤层析法可以把蛋白质混合
量( 五 ) 凝 胶 过 滤 法 测 定 分 子
物按分子大小分离开。 蛋白质分子通过凝胶柱的速度并不直接 取决于分子的质量,而是它的斯笃克半 径。 如果某种蛋白质与一理想的非水化球体 具有相同的过柱速度即相同的半径,称 斯笃克半径。 用凝胶过滤法测定分子量时,标准样品 和待测蛋白质必须具有相同的形状。
二、 蛋白质分子大小与形状
( 三 ) 蛋 白 质 的 扩 散
由于浓度差引起的溶质分子的净迁移称为扩散。 利用蛋白质的扩散,根据费克第二扩散定律
c x x e c 测定在两个不同部位的浓度,可以计算出D值
2 _ 2
1
2
2
4Dt
1
扩散系数一般不单独用来决定分子量,要和其 他手段结合
二、 蛋白质分子大小与形状
SDS
二、 蛋白质分子大小与形状
测定几种标准单体蛋白分子量的对数值,
电( 泳六 )
对其μR值作图,再根据待测样品的μR, 从标准曲线上查出它的分子量。
蛋白质的稀溶液: π:渗透压(大气压) R:气体常数 T:绝对温度 c 0 c:溶质浓度(g/L) 测定几个不同浓度的渗透压,用π/c对c作图 外推到蛋白质浓度为0,得到截距,代入公式 求得分子量。 要求在等电点附近测定,并增高无机盐浓度 装置简单,准确,但不能判别样品是否纯净
RT M= lim c
正、负离子的趋势相等,即成为兼性离子,净电
荷为零,此时溶液的pH称为蛋白质的等电点。
二、 蛋白质分子大小与形状
( 一 用化学分析法测出蛋白质中某一微量元 ) 素的含量,并假设蛋白质分子中只含有 根 一个被测的元素原子,则可以由此计算 据 化 出蛋白质的最低分子量。 学 组 真实分子量为最低分子量的n倍 成 测 有时蛋白质分子中某一氨基酸的含量特 定 别少,也可以按照这个原理测定最低分 最 低 子量 分 子 量
( 1.沉降速度法 四 把蛋白质样品溶液放在离心机内,蛋白质分子 ) 将沿旋转中心向外周方向移动,并产生沉降界 蛋 面,界面的移动速度代表蛋白质分子的沉降速 白 度。 质 的 在界面处由于浓度差造成折射率不同,可借助 适当的光学系统,观察到界面的移动。 沉 降 斯维得贝格方程 M=RTs/[(1-υρ)D] 分 s:沉降系数;s=[dx/dt]/ω2x;把10-13秒 析 作为一个单位,称为斯维得贝格单位,用S表
SDS
二、 蛋白质分子大小与形状
SDS与蛋白质结合,改变了蛋白质单体分
电( 泳六 )
聚 丙 烯 酰 胺 凝 胶
子的构象,SDS-蛋白质复合物在水溶液 中的形状是椭圆棒状,不同蛋白质的SDS 复合物的短轴长度约为1.8nm,长轴长度 随蛋白质的分子量成正比 蛋白质SDS-PAGE的迁移率与原有电荷、 分子形状等无关 logM=K1-K2μR μR:相对迁移率。为:样品迁移距离/前 沿迁移距离
二、 蛋白质分子大小与形状
( 二 ) 蛋 白 质 的 渗 透 压
当用一种半透膜将蛋白质
溶液与水隔开时,溶剂分 子将向蛋白质溶液中单向 扩散,使溶液内的体积增 加,液面升高。直到达到 一定的静水压力时维持平 衡。此时的静水压力就是 溶液在平衡浓度时的渗透 压。
( 二 ) 蛋 白 质 的 渗 透 压