初中数学几何专题——旋转
【中考数学专题】三大变换之旋转(旋转的性质)
【中考数学专题】三大变换之旋转(旋转的性质)
旋转是三大几何变换中考察最多、难度最大的,平移、对称从图像观察角度来说直接显然,对应的结论也很容易用到.而旋转变换得到的图形相对复杂些,有时候解题的突破口隐藏得更深,导致无从下手.本篇将从基本的性质开始,到一些常见的模型,最后说说关于构造旋转能给我们带来什么,全方位了解旋转在中考题中的考察.01基本性质
如下图,将△ABC绕点A旋转一定角度得到△ADE.
性质一:对应边相等
结论:AB=AD,AC=AE.
补充:当然还可以得到BC=DE,但这并没有什么用,因为BC与DE并没有特殊位置关系.
性质二:对应角相等
结论:∠B=∠D,∠C=∠E,∠BAC=∠DAE.
补充:如果不是特殊角,此性质并没有什么用,但由性质二可以推性质三.
性质三:旋转角都相等
结论:∠BAD=∠CAE=∠BFD.
补充:∠BAD=∠CAE易证,
∠BAD=∠BFD可用“8字”模型证明:
∵∠BAD+∠B=∠BFD+∠D,且∠B=∠D,
∴∠BAD=∠BFD.
且第三组夹角往往用得最多.
02真题速览
2019眉山中考-三角形的旋转
2019内江中考-旋转得等边
2019阜新中考-特殊角的旋转
2019包头中考-旋转角都相等
2018镇江中考-隐藏的特殊角
2019山西中考-解三角形2017吉林中考-矩形的旋转2019梧州中考-菱形的旋转2018陇南中考-正方形的旋转2019贺州中考-旋转的思考2019营口中考-动态的旋转来源:有一点数学,作者刘岳。
初中数学旋转的知识点
《初中数学旋转知识点全解析》在初中数学的学习中,旋转是一个重要的几何变换概念。
它不仅在数学知识体系中占据着关键地位,也为我们解决各种几何问题提供了有力的工具。
一、旋转的定义在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。
这个定点称为旋转中心,转动的角称为旋转角。
如果图形上的点 P 经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
例如,时钟的指针围绕时钟的中心旋转,风车的叶片绕着中心轴旋转等,都是生活中常见的旋转现象。
二、旋转的性质1. 对应点到旋转中心的距离相等。
即旋转前后,图形上任意一点到旋转中心的距离始终保持不变。
例如,在一个正三角形绕其中心旋转的过程中,三角形的三个顶点到旋转中心的距离始终相等。
2. 对应点与旋转中心所连线段的夹角等于旋转角。
旋转过程中,对应点与旋转中心连接形成的线段之间的夹角大小与旋转角相等。
比如,一个矩形绕其对角线的交点旋转一定角度,任意一对对应点与旋转中心所连线段的夹角都等于旋转角。
3. 旋转前后的图形全等。
经过旋转,图形的形状和大小都不会发生改变。
无论旋转角度是多少,旋转后的图形与旋转前的图形完全相同。
例如,一个圆绕其圆心旋转任意角度,得到的图形仍然是与原来一样的圆。
三、旋转的三要素1. 旋转中心旋转中心是图形旋转时所围绕的那个定点。
它决定了图形旋转的位置。
不同的旋转中心会导致图形的旋转结果不同。
2. 旋转方向旋转方向分为顺时针和逆时针两种。
明确旋转方向对于准确描述和进行旋转操作至关重要。
3. 旋转角度旋转角度是指图形绕旋转中心转动的角度大小。
旋转角度的不同会使图形的位置发生不同程度的变化。
四、旋转的应用1. 解决几何问题在证明三角形全等、相似等问题时,常常可以通过旋转图形,使分散的条件集中起来,从而找到解题的思路。
例如,对于两个有公共顶点的等腰三角形,可以通过旋转其中一个三角形,使它们的对应边重合,进而证明全等。
2. 设计图案利用旋转可以设计出各种美丽的图案。
初中数学《几何旋转》重难点模型汇编(四大题型)含解析
专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。
专题5 旋转(初中数学)
元调复习专题5—图形的旋转,平移和轴对称★核心知识梳理1、 图形的平移(经过平移所得的图形与原来的图形的对应线段_________,对应角_________,连接各组对应点的线段_________.2、轴对称图形,轴对称(1)轴对称与轴对称图形(2)轴对称的性质:连接任意一对对应点的线段被对称轴______________.3、图形的旋转(1)旋转定义:(2)旋转性质:(3)中心对称定义:(4)中心对称性质:★典型例题讲解一、几何变换与角度问题例1.如图,矩形ABCD ,∠DAC=650,点E 是CD 上一点,BE 交AC 于点F,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C’处,求∠AFC’的度数。
练习.1.如图,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠B 的度数是 .二、几何变换中线段计算与证明例2:如图,P 是等边三角形ABC 内一点,PA=2,PB=2√3,PC=4,求△ABC 的边长练习:1.如上图 在Rt △ABC 中,∠C=90°,AC=1,BC=,点O 为Rt △ABC 内一点,连接A0、BO 、CO ,且∠AOC=∠COB=BOA=120°,(1)求∠ABC 和∠A′BC 的度数;(2)求OA+OB+OC 的值.2.如图1,在△ABC 中,AB=AC=13,BC=10,把△ABC 绕点A 旋转到△ADE 的位置,DE 交BC 于点M ,连接AM .(1)求证:∠AMB=∠AME ;(2)如图2,AD 交BC 于H ,在边AE 上取一点G ,使DH=EG,连接GC ,求点A 到直线CG 的距离3.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014= .三、几何变换与点的坐标例3.在平面直角坐标系中,O为原点,点A(-2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF 绕点O顺时针旋转,得正方形OE’D’F’,记旋转角为α.(Ⅰ)如图①,当α=90°,求AE’,BF’ 的长;(Ⅱ)如图②,当α=135°,求证AE’ =BF’,且AE’ ⊥BF’;(Ⅲ)若直线AE’与直线BF’相交于点P,求点P的纵坐标的最大值(直接写出结果即可)练习:1.点A的坐标为(2,0),把点A绕着坐标原点旋转135º到点B,那么点B的坐标是_________ .2.如图,直线443y x=-+与x轴、y轴分别交于A、B两点,把AOB△绕点A顺时针旋转90°后得到AO B''△,则直线A B'的解析式是.3.(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.四、综合题例4. (2015•连云港)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD 面积之和的最大值,并简要说明理由.练习:(2015北京东城)已知:Rt△A′BC′和Rt△ABC重合,∠A′C′B=∠ACB=90°,∠BA′C′=∠BAC=30°,现将Rt△A′BC′绕点B按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C′C和线段AA′相交于点D,连接BD.(1)当α=60°时,A’B 过点C,如图1所示,判断BD和A′A之间的位置关系,不必证明;BA C (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.【典型练习基础篇】一、选择题:( ) 1.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是A .60ºB .90ºC .72ºD .120º()2.如图,△ABC 绕A 按逆时针方向旋转一定的角度后成为△AB′C′.则下列等式中:①BC=B′C′;②∠BAB′=∠CAC′;③∠ABC=∠AB′C′; ④△ABB′≌△ACC′.其中正确的结论有( )A .1个B .2个C .3个D .4个( )3.在“线段、等腰三角形、等边三角形、矩形、菱形、圆”这几个图形中,既是中心对称图形,又是轴对称图形的个数是 A .6个 B .5个 C .4个 D .3个( )4.在图形旋转中,下列说法错误的是A.图形上各对应点的旋转角度相同;B.对应点到旋转中心距离相等;C.由旋转得到的图形也一定可以由平移得到;D.旋转不改变图形的大小、形状( )5.在平面直角坐标系中,已知点C (0,3),D (1,7),将线段CD 绕点M (3,3)旋转180°后,得到线段AB ,则线段AB 所在直线的函数解析式是A .y=3x+15B .y=3x-15C .y=15x-3D .y=-15x+3( )6. 在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=5,BD=4.则下列结论错误的是A .AE ∥BC ;B .∠ADE=∠BDC ; C .△BDE 是等边三角形;D . △ADE 的周长是9二、填空题7.如图,将Rt △ABC 绕直角顶点C 点逆时针旋转得到△A'CB',若∠A'CB=160º,则此图形旋转角是 度.第7题 第8题 第9题8.如图,在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,△A′B′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为9.如图,P 是正三角形ABC 内的一点,且PA=6,PB=•8,•PC=10,若将△PAC 绕点A 逆时针旋转后,•得到△P •′AB ,•则点P •与点P •′之间的距离为_____,∠APB=_______°.10.若点(a +l ,3)与点(-2,b -2)关于x 轴对称,则点P(-a ,b)关于原点的对称点坐标是 .三、解答题第1题图 第2题图第5题图 第6题图11.(1)点(1,2)绕原点O 逆时针旋转90°得到的点的坐标是 ;(2)直线y=2x 绕原点O 逆时针旋转90°得到的直线解析式是 ;(3)求直线y=2x+3绕原点O 逆时针旋转90°得到的直线解析式.12.(2015•武汉)如图,已知点A (﹣4,2),B (﹣1,﹣2),平行四边形ABCD 的对角线交于坐标原点O .(1)请直接写出点C 、D 的坐标;(2)写出从线段AB 到线段CD 的变换过程;(3)直接写出平行四边形ABCD 的面积.13.如图,正方形ABCD 和平行四边形CPEF ,点P 在射线AB 上,点E 在边AD 上,作FG ⊥AD 于G 。
初中几何旋转知识点总结
初中几何旋转知识点总结一、基本概念1. 旋转的基本概念旋转是一种平移,比如将一张纸围绕桌子中心旋转,不移动位置但是角度改变。
可以定义一个点O为旋转中心,角度为θ,则旋转变换R(O,θ)将点P绕点O旋转θ度。
2. 旋转的表示方法通常用旋转中心和旋转的角度来表示一个旋转变换,如R(O,θ)表示以点O为旋转中心,按照角度θ进行旋转变换。
3. 旋转的方向根据旋转的角度正负可以表示旋转的方向,当角度为正时,表示顺时针旋转;当角度为负时,表示逆时针旋转。
二、旋转的性质1. 旋转中心的不变性对于任意一个固定的点P,在平面上做旋转变换后,点P相对于旋转中心O的距离不变,即OP'=OP。
2. 旋转中心的互易性两点围绕各自为中心的旋转之后,它们的连接线也围绕旋转后的两个点为中心进行旋转。
3. 旋转的对称性对于一个平面图形,绕着一个点做旋转变换之后,原来的平面图形与旋转后的图形具有对称性。
4. 旋转的组合性对于两个旋转变换R(O1,θ1)和R(O2,θ2),它们的组合旋转变换是R(O1,θ1) ◦R(O2,θ2)=R(O1O2,θ1+θ2),即先以O2为中心旋转θ2度,再以O1为中心旋转θ1度,等效于以点O1O2为中心旋转θ1+θ2度。
三、旋转的定理1. 旋转角度的性质(1)相等角度的旋转等效于一次旋转;(2)逆时针旋转θ度等效于顺时针旋转360-θ度;(3)旋转360度等效于不旋转。
2. 旋转的运动规律旋转的运动规律由旋转角度的规律和旋转方向的规律组成,它描述了一个点或者平面图形在旋转中的变化规律。
3. 旋转的应用(1)旋转的应用:如地球自转产生了昼夜交替、太阳绕地球公转产生了四季交替等;(2)旋转对称性:通过旋转对称性,可以简化问题的解决和推理过程。
四、常见问题解析1. 旋转的基本操作(1)绕平面上任一点旋转θ度的变换,可以用旋转矩阵R来表示,即对任意点(A, B),有(A', B') = R(A, B)。
初中旋转知识点归纳总结
初中旋转知识点归纳总结一、旋转概念1. 旋转的定义旋转是物体围绕某一固定轴线或固定点,按照一定规律旋转。
在数学中,旋转通常是指平面内或空间内一个点围绕一个中心点旋转。
2. 旋转的要素旋转有固定轴线或固定点、旋转方向以及旋转的角度等要素。
3. 旋转的表现形式旋转可以通过旋转图形、旋转坐标轴等形式来表现。
4. 旋转的应用旋转在日常生活中有着广泛的应用,比如舞蹈中的旋转动作、工程中的旋转零件等。
二、旋转的基本性质1. 旋转的不变性旋转操作不改变原图形的大小和形状,这是旋转的基本性质之一。
2. 旋转的对称性旋转是一种对称操作,旋转后的图形与原图形是对称的。
3. 旋转的交换律两次旋转操作是可以交换顺序的,即先旋转图形A再旋转图形B,与先旋转图形B再旋转图形A是等价的。
4. 旋转的倍数问题同一图像旋转180°、360°等倍数角度后,它们之间是等价的。
三、旋转的基本步骤1. 旋转的基本步骤a. 确定旋转中心和旋转方向。
b. 以旋转中心为原点,旋转方向为正方向,建立新的坐标系。
c. 利用坐标系的变换规则进行计算,得到旋转后的新坐标。
2. 旋转坐标点的计算公式a. 绕原点旋转:新的坐标(x', y') = (x*cosθ - y*sinθ, x*sinθ + y*cosθ)b. 绕其他点旋转:新的坐标(x', y') = (x0 + (x - x0)*cosθ - (y - y0)*sinθ, y0 + (x - x0)*sinθ + (y - y0)*cosθ)四、旋转的常见图形1. 点的旋转点围绕旋转中心旋转后,它的位置由原来的坐标经过旋转计算公式得到新的坐标。
2. 直线的旋转直线围绕旋转中心旋转后,它变成一条新的直线,其方程可以通过旋转坐标点的方法来得到。
3. 图形的旋转不规则图形围绕旋转中心旋转后,保持图形的大小和形状不变。
五、旋转的应用1. 图像处理中的旋转在图像处理中,旋转可以改变图像的朝向和方位,使得图像更加美观。
九年级旋转知识点归纳总结
九年级旋转知识点归纳总结旋转是数学中的一个重要概念,也是九年级数学课程中的一个重点知识点。
本文将对九年级旋转知识点进行归纳总结,包括旋转的基本定义、旋转图形的性质以及旋转的应用。
一、旋转的基本定义旋转是指将一个点或一幅图形绕着某一点旋转一定角度后,得到的新点或新图形。
在数学中,通常将绕着坐标平面上的原点旋转作为基本定义。
二、旋转图形的性质1. 旋转图形的对应点在一个图形经过旋转后,每一个点都与原来图形上的某一点存在对应关系。
这个对应关系可以通过旋转角度和旋转方向来确定。
2. 旋转图形的对称性绕着一个点旋转的图形在旋转前后保持对称。
如果旋转角度是360度的整数倍,那么旋转后的图形与旋转前的图形完全重合。
3. 旋转图形的角度关系在一个旋转图形中,旋转前后每两个相对的角度之和为360度。
这就是旋转图形中角度的平分原理。
三、旋转的应用旋转在几何图形的变换中有着广泛应用,并且在实际生活中也有一些实际的应用场景。
1. 图形的旋转变换通过旋转变换可以将图形按一定角度旋转,从而使得原本无规律的图形变得有规律,更美观。
例如,一个正方形可以通过旋转变换成一个六边形。
2. 游戏和艺术中的旋转在游戏和艺术领域中,旋转被广泛运用。
例如,电子游戏中的3D 模型,通过旋转操作可以让玩家从不同角度观察模型;绘画和雕塑中的旋转是非常常见的手段,可以展示更多的细节和视角。
3. 旋转的几何证明旋转在几何证明中也有非常重要的地位。
通过旋转变换可以使得一些几何命题的证明更加简洁、明了。
例如,可以通过旋转证明两条平行线之间的角度关系、相似三角形之间的角度关系等。
综上所述,旋转是九年级数学课程中的一个重要知识点。
掌握旋转的基本定义和性质,了解旋转的应用场景,将有助于深入理解几何变换的概念,提高数学解题和几何证明的能力。
希望本文对九年级学生们的数学学习有所启发和帮助。
初中数学九年级旋转知识点总结
旋转是数学中的一个重要概念,初中数学九年级的旋转知识点主要涉及到平面上的图形的旋转。
下面是对旋转知识点的详细总结。
一、旋转的基本概念旋转是指将一个平面上的图形绕着一个圆心旋转一定角度后得到的新图形。
旋转可以分为顺时针旋转和逆时针旋转两种。
二、旋转的基本要素1.旋转中心:旋转时固定不动的点,通常用O表示。
2.旋转角度:图形绕旋转中心旋转的角度,通常用θ表示。
3.旋转方向:图形绕旋转中心旋转的方向,可为顺时针或逆时针。
三、旋转的基本性质1.旋转前后的对应关系:旋转前后,图形上的各个点在对应的位置。
2.旋转角度的正负性:顺时针旋转时,旋转角度为负值;逆时针旋转时,旋转角度为正值。
3.旋转的复合性:对一个图形连续旋转两次,相当于对这个图形进行一次旋转,旋转角度为两次旋转角度的和。
四、旋转的具体操作1.给定旋转中心和旋转角度,旋转一个点:将给定点与旋转中心连接,然后以旋转角度为自由度,将连接线旋转相应角度,确定旋转点的新位置。
2.给定旋转中心和旋转角度,旋转一条线段:将给定线段上的两个端点分别旋转,得到旋转线段的两个端点,然后连接这两个点得到旋转线段。
3.给定旋转中心和旋转角度,旋转一个多边形:将多边形上的各个顶点依次旋转,得到旋转多边形的各个顶点,然后连接这些点得到旋转多边形。
五、旋转的性质与判定1.旋转过程中的不变性:旋转前后,图形的形状、大小和角度不变。
2.图形的旋转对称性:图形相对于旋转中心旋转一定角度后,与原图形完全重合。
3.旋转角度的关系:相交的两个线段,经过旋转后的线段之间的夹角等于它们旋转前的夹角。
4.旋转中心判定:判断一个点关于一个给定点旋转一定角度后的位置。
六、旋转的运用1.添加旋转对称部分:先将一个图形旋转一定角度,然后与旋转前的图形拼接,可以得到一个具有旋转对称性的图形。
2.图形的旋转判定:给定一个图形,根据旋转的要素和性质,判断该图形能否通过旋转得到另一个图形。
3.旋转变换的应用:在解决实际问题时,可以运用旋转变换来简化问题的处理过程,比如地球绕太阳的自转等。
初中数学几何专题——旋转
一.选择题(共5小题)1.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于()A.B.2 C.D.2.下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.矩形C.等腰梯形D.正五边形3.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.84.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()A.1: B.1:2 C.:2 D.1:5.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于()A.1﹣ B.1﹣ C.D.二.填空题(共5小题)6.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ= 时,四边形APQE的周长最小.7.如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B (8,0),D (0,4),若将△ABC沿AC所在直线翻折,点B落在点E处.则E点的坐标是.8.如图,将等边△ABC沿BC方向平移得到△A1B1C1.若BC=3,,则BB1= .9.已知一个直角三角板PMN,∠MPN=30°,MN=2,使它的一边PN与正方形ABCD 的一边AD重合(如图放置在正方形内)把三角板绕点P旋转,使点M落在直线BC上一点F处,则CF的长为.10.如图,在矩形ABCD中,AB=9,AD=3,E为对角线BD上一点,且DE=2BE,过E作FG⊥BD,分别交AB、CD于F、G.将四边形BCGF绕点B旋转180°,在此过程中,设直线GF分别与直线CD、BD交于点M、N,当△DMN是以∠MDN为底角的等腰三角形时,则DN的长是.三.解答题(共6小题)14.已知,直角三角形ABC中,∠C=90°,点D、E分别是边AC、AB的中点,BC=6.(1)如图1,动点P从点E出发,沿直线DE方向向右运动,则当EP= 时,四边形BCDP是矩形;(2)将点B绕点E逆时针旋转.①如图2,旋转到点F处,连接AF、BF、EF.设∠BEF=α°,求证:△ABF是直角三角形;②如图3,旋转到点G处,连接DG、EG.已知∠BEG=90°,求△DEG的面积.15.问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D 作DE∥AC交AC于E,则线段BD与CE有何数量关系?拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.问题解决:如果△ABC的边长等于2,AD=2,直接写出当△ADE旋转到DE与AC所在的直线垂直时BD的长.16.如图,正方形ABCD的面积为4,对角线交于点O,点O是正方形A1B1C1O的一个顶点,如果这两个正方形全等,正方形A1B1C1O绕点O旋转.(1)求两个正方形重叠部分的面积;(2)若正方形A1B1C1O旋转到B1在DB的延长线时,求A与C1的距离.。
初中数学专题一 旋转中的几何模型(手拉手模型、对角互补模型)(解析版)
专题一旋转中的几何模型模型一 “手拉手”模型模型特征:两个等边三角形或等腰直角三角形或正方形共顶点.模型说明:如图1,△ABE,△ACF都是等边三角形,可证△AEC≌△ABF.如图2,△ABD,△ACE都是等腰直角三角形,可证△ADC≌△ABE.如图3,四边形ABEF,四边形ACHD都是正方形,可证△ABD≌△AFC.图1 图2 图3等腰图形有旋转,辩清共点旋转边,关注三边旋转角,全等思考边角边。
1【问题提出】(1)如图①,△ABC,△ADE均为等边三角形,点D,E分别在边AB,AC上.将△ADE绕点A沿顺时针方向旋转,连结BD,CE.在图②中证明△ADB≅△AEC.[学以致用](2)在(1)的条件下,当点D,E,C在同一条直线上时,∠EDB的大小为度.[拓展延伸](3)在(1)的条件下,连结CD.若BC=6,AD=4直接写出△DBC的面积S的取值范围.【思路点拨】(1)根据“手拉手”模型,证明△ADB≅△AEC即可;(2)分“当点E在线段CD上”和“当点E在线段CD的延长线上”两种情况,再根据“手拉手”模型中的结论即可求得∠EDB的大小;(3)分别求出△DBC的面积最大值和最小值即可得到结论【详解】(1)∵ABC,ADE均为等边三角形,∴AD=AE,AB=AC,∴∠DAE-∠BAE=∠BAC-∠BAE,即∠BAD=∠CAE在△ADB和△AEC中,AD=AE∠BAD=∠CAE AB=AC∴ABD ≅ACE (SAS );(2)当D ,E ,C 在同一条直线上时,分两种情况:①当点E 在线段CD 上时,如图,∵△ADE 是等边三角形,∴∠ADE =∠AED =60°,∴∠AEC =180°-∠AED =120°,由(1)可知,△ADB ≅△AEC ,∴∠ADB =∠AEC =120°,∴∠EDB =∠ADB -∠ADE =120°-60°=60°②当点E 在线段CD 的延长线上时,如图,∵△ADE 是等边三角形,∴∠ADE =∠AED =60°∴∠ADC =180°-∠ADE =120°,由(1)可知,△ADB ≅△AEC∴∠ADB =∠AEC =60°,∴∠EDB =∠ADB +∠ADE =60°+60°=120°综上所述,∠EDB 的大小为60°或120°(3)过点A 作AF ⊥BC 于点F ,当点D 在线段AF 上时,点D 到BC 的距离最短,此时,点D 到BC 的距离为线段DF 的长,如图:∵ΔABC 是等边三角形,AF ⊥BC ,BC =6∴AB =BC =6,BF =12BC =3∴AF =AB 2-BF 2=62-32=33∴DF =33-4此时S .DBC =12BC ⋅DF =12×6×(33-4)=93-12;当D 在线段FA 的延长线上时,点D 到BC 的距离最大,此时点D 到BC 的距离为线段DF 的长,如图,∵ΔABC 是等边三角形,AF ⊥BC ,BC =6∴AB =BC =6,BF =12BC =3,∴AF =AB 2-BF 2=62-32=33∵AD =4∴DF =AF +AD =33+4此时,S .DBC =12BC ⋅DF =12×6×(33+4)=93+12;综上所述,△DBC 的面积S 取值是93-12≤5≤93+12【点评】 利用“手拉手”模型,构造对应边“拉手线”组成的两个三角形全等是解题关键2已知正方形ABCD 和等腰直角三角形BEF ,BE =EF ,∠BEF =90°,按图1放置,使点F 在BC 上,取DF 的中点G ,连接EG ,CG .(1)探索EG,CG的数量关系和位置关系并证明;(2)将图(1)中△BEF绕点B顺时针旋转45°,再连接DF,取DF中点G(见图2),(1)中的结论是否仍然成立?证明你的结论;(3)将图(1)中△BEF绕点B顺时针转动任意角度(旋转角在0°到90°之间),再连接DF,取DF中点G(见图3),(1)中的结论是否仍然成立?证明你的结论.【思路点拨】(1)首先证明B、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG= GF=CG,得到∠EGF=2∠EDG,∠CGF=2∠CDG,从而证得∠EGC=90°;(2)首先证明△FEG≌△DHG,然后证明△ECH为等腰直角三角形.可以证得:EG=CG且EG⊥CG;(3)首先证明:△BEC≌△FEH,即可证得:△ECH为等腰直角三角形,从而得到:EG=CG且EG⊥CG.【解题过程】解:(1)EG=CG且EG⊥CG.证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.∴∠EGF=2∠EDG,∠CGF=2∠CDG.∴∠EGF+∠CGF=2∠EDC=90°,即∠EGC=90°,∴EG⊥CG.(2)仍然成立,证明如下:如图②,延长EG交CD于点H.∵BE⊥EF,∴EF∥CD,∴∠1=∠2.又∵∠3=∠4,FG=DG,∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,∴△HFG≌△CDG,∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,∴HE=EC,∠BEC=∠FEH,∴∠BEF=∠HEC=90°,∴△ECH为等腰直角三角形.又∵CG=GH,∴EG=CG且EG⊥CG.针对训练11已知ΔABC是等边三角形,AD⊥BC于点D,点E是直线AD上的动点,将BE绕点B顺时针方向旋转60°得到BF,连接EF,CF,AF.(1)问题发现:如图1,当点E在线段AD上时,且∠AFC=35°,则∠FAC的度数是;(2)结论证明:如图2,当点E 在线段AD 的延长线上时,请判断∠AFC 和∠FAC 的数量关系,并证明你的结论;(3)拓展延伸:若点E 在直线AD 上运动,若存在一个位置,使得ΔACF 是等腰直角三角形,请直接写出此时∠EBC 的度数.【答案】(1)55°;(2)∠AFC +∠FAC =90°,见解析;(3)15°或75°【解析】(1)55°,理由:∵ΔABC 是等边三角形,∴AB =AC =BC ,∠ABC =∠BAC =∠ACB =60°,∵AB =AC ,AD ⊥BC ,∴∠BAD =30°,∵将BE 绕点B 顺时针方向旋转60°得到BF ,∴BE =BF ,∠EBF =60°,∴∠EBF =∠ABC ,在△ADC 和△BDA 中,AB =BC∠ABE =∠FBC BE =BF,∴ΔABE ≌ΔCBF SAS ,∴∠BAE =∠BCF =30°,∴∠ACF =90°,∴∠AFC +∠FAC =90°;∵∠AFC =35°,∴∠FAC =55°;(2)结论:∠AFC +∠FAC =90°,理由如下:∵ΔABC 是等边三角形,∴AB =AC =BC ,∠ABC =∠BAC =∠ACB =60°,∵AB =AC ,AD ⊥BC ,∴∠BAD =30°,∵将BE 绕点B 顺时针方向旋转60°得到BF ,∴BE =BF ,∠EBF =60°,∴∠EBF =∠ABC ,在△ADC 和△BDA 中,AB =BC∠ABE =∠FBC BE =BF,∴ΔABE ≌ΔCBF SAS ,∴∠BAE =∠BCF =30°,∴∠ACF =90°,∴∠AFC +∠FAC =90°;(3)∠EBC =15°或75°分两种情况:①点E 在点A 的下方时,如图:∵ΔACF 是等腰直角三角形,∴AC =CF ,由(2)得ΔABE ≌ΔCBF ,∴CF =AE ,∴AC =AE =AB ,∴∠ABE =180°-30°2=75°,∴∠EBC =∠ABE -∠ABC =75°-60°=15°;②点E 在和点A 的上方时,如图:同理可得∠EBC =∠ABE +∠ABC =75°.2已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(0°<α<90°),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,∠BEF 的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出∠BEF 的度数;(3)联结AF ,求证:DE =2AF .【答案】(1)30°;(2)不变;45°;(3)见解析【解析】(1)证明:在正方形ABCD 中, BC =CD .由旋转知,CE=CD,又∵BE =CE ,∴BE =CE =BC ,∴△BEC 是等边三角形,∴∠BCE=60°.又∵∠BCD=90°,∴α=∠DCE=30°.(2)∠BEF的度数不发生变化.在△CED中,CE=CD,∴∠CED=∠CDE=180°-α2=90°-α2,在△CEB中,CE=CB,∠BCE=90°-α,∴∠CEB=∠CBE=180°-∠BCE2=45°+α2,∴∠BEF=180°-∠CED-∠CEB=45°.(3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I易知四边形AGFH是平行四边形,又∵BF⊥DF,∴平行四边形AGFH是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD,∴△ABG≌△ADH.∴AG=AH,∴矩形AGFH是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC,∴△AHD≌△DIC∴AH=DI,∵DE=2DI,∴DE=2AH=2AF模型二 对角互补模型对角互补模型的特征:外观呈现四边形,且对角和为180°。
中考数学 专题22 几何三大变换问题之旋转(中心对称)问题(含解析)
专题22 几何三大变换问题之旋转(中心对称)问题轴对称、平移、旋转是平面几何的三大变换。
旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。
旋转由旋转中心、旋转的方向和角度决定。
经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上; 旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。
把一个图形绕着某一定点旋转一个角度360°/n(n 为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。
特别地,中心对称也是旋转对称的一种的特别形式。
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。
如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。
在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。
中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。
一. 直线(线段)的旋转问题1. 如图,直线l :y 3x 3=-+与y 轴交于点A ,将直线l 绕点A 顺时针旋转75º后,所得直线的解析式为【 】A .y 33=B .y x 3=+.y x 3=-+ D .y x 3=【答案】B 。
【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,由已知,可求直线y3x3=-+与x、y轴的交点分别为B(1,0),A(0,3),2.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y x1=+,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x55=-垂直的直线l6的函数表达式。
九年级数学知识点旋转
九年级数学知识点旋转旋转是几何学中的一个重要概念,也是九年级数学中的一项重要知识点。
通过旋转,我们可以改变几何图形的位置和形状,进而解决一些与几何相关的问题。
本文将介绍九年级数学中的旋转知识点,包括旋转的定义、旋转的性质、旋转的公式以及旋转在几何问题中的应用。
一、旋转的定义旋转是指围绕一个中心点,将一个图形按照一定的角度转动的操作。
在旋转中,中心点是固定不动的,只有图形发生位置和形状的改变。
旋转可以使得图形在平面上发生移动,使得我们可以观察到图形在不同位置和不同角度下的特征。
二、旋转的性质1. 旋转可以改变图形的位置和形状,但不改变图形的面积和周长。
这是因为旋转只是对图形进行了转动操作,而没有改变图形内部的构造和尺寸。
2. 旋转不改变图形的对称性。
如果一个图形具有对称性,那么它的旋转图形也将具有相同的对称性。
3. 旋转操作可以通过多次重复进行。
如果我们将一个图形按照一定的角度旋转一次之后,再按照同样的角度再次进行旋转,那么我们将得到一个新的图形,这个新的图形是原图形旋转后的结果。
三、旋转的公式在几何中,我们可以使用一些公式来描述旋转的操作。
关于旋转的公式有以下几种:1. 计算旋转中心:给定一个图形和它在旋转后的位置,我们可以通过求解方程组来计算旋转中心。
假设原图形中某点坐标为(x, y),它在旋转后的位置为(x', y'),则有如下方程组:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中,(x', y')为旋转后点的坐标,θ为旋转的角度。
2. 计算旋转后的坐标:将一个点绕旋转中心旋转一定的角度,可以使用如下公式计算旋转后的坐标:x' = (x - h) * cosθ - (y - k) * sinθ + hy' = (x - h) * sinθ + (y - k) * cosθ + k其中,(x, y)为原始点的坐标,(x', y')为旋转后点的坐标,(h, k)为旋转中心的坐标,θ为旋转的角度。
初三旋转知识点
初三旋转知识点在初三数学的学习中,旋转是一个重要的知识点。
它不仅在数学领域有着广泛的应用,也有助于培养我们的空间想象力和逻辑思维能力。
接下来,让我们一起深入了解旋转的相关知识。
一、旋转的定义在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。
这个定点称为旋转中心,转动的角称为旋转角。
如果图形上的点 P 经过旋转变为点 P',那么这两个点叫做这个旋转的对应点。
例如,钟表的指针在不停地转动,从数字 12 转到数字 3,就是一个旋转的过程,其中钟表的中心就是旋转中心,指针转动的角度就是旋转角。
二、旋转的性质1、对应点到旋转中心的距离相等。
比如,在一个旋转的三角形中,每个顶点到旋转中心的距离在旋转前后都保持不变。
2、对应点与旋转中心所连线段的夹角等于旋转角。
假设一个图形绕着点 O 旋转了 30 度,那么任意一对对应点与点 O所连线段的夹角都是 30 度。
3、旋转前、后的图形全等。
也就是说,经过旋转,图形的形状和大小都不会发生改变,只是位置发生了变化。
三、旋转中心和旋转角的确定旋转中心的确定:对应点连线的垂直平分线的交点就是旋转中心。
旋转角的确定:对应点与旋转中心所连线段的夹角即为旋转角。
四、旋转作图1、确定旋转中心、旋转方向和旋转角。
2、找出原图形的关键点。
3、将关键点与旋转中心连接,并按旋转方向和旋转角将它们旋转。
4、依次连接旋转后的关键点,得到旋转后的图形。
例如,要将一个三角形 ABC 绕点 O 逆时针旋转 60 度。
首先,确定点 O 为旋转中心,逆时针为旋转方向,60 度为旋转角。
然后找出三角形 ABC 的三个顶点 A、B、C 作为关键点。
将点 A、B、C 分别与点 O 连接,按照逆时针方向旋转 60 度得到点 A'、B'、C'。
最后连接 A'B'、B'C'、C'A',就得到了旋转后的三角形 A'B'C'。
中考数学旋转知识点总结
中考数学旋转知识点总结一、旋转的基本概念1. 旋转的定义旋转是几何变换的一种,它将图形绕某一定点进行旋转,使得原图形经过旋转后仍符合原图形的性质。
在平面几何中,这一定点通常被称为旋转中心,而旋转的角度则是旋转的重要参数。
2. 旋转的表示在数学中,旋转可以通过不同的表示方法来描述。
最常见的是使用坐标系中的点和向量表示旋转,也可以使用矩阵来进行描述。
3. 旋转的性质旋转具有许多重要的性质,比如旋转是等距变换,旋转后的图形与原图形的关系等。
这些性质对于理解旋转的本质和应用都具有重要的意义。
二、旋转的基本公式1. 二维平面的旋转公式在平面几何中,二维平面上的点可以通过旋转变换而成。
对于坐标系中的点(x, y),绕原点逆时针旋转θ度后的新坐标可以根据公式进行计算。
2. 三维空间的旋转公式在三维空间中,点的旋转也是常见的几何变换。
旋转的角度可以沿着不同轴进行,因此三维空间中的旋转公式相对复杂一些,但也是可以通过矩阵等方式进行描述的。
三、旋转的应用1. 图形的旋转在几何中,通过旋转可以使得图形的位置和方向发生变化。
通过学习旋转的原理和公式,可以对图形的旋转进行分析和计算,从而更好地理解和掌握图形的性质和特点。
2. 向量的旋转在向量几何中,旋转是常见的几何变换。
向量的旋转不仅可以通过公式进行计算,还可以通过向量的性质和几何特点进行分析,从而更深入地理解向量的旋转。
3. 坐标系的旋转在空间几何和三维几何中,经常需要对坐标系进行旋转变换。
通过学习旋转的原理和方法,可以更清晰地理解坐标系的旋转规律,从而更好地应用于实际问题的解决中。
四、旋转的相关定理1. 旋转对称性质在平面几何中,旋转对称是一种重要的对称方式。
通过学习旋转对称的定理和性质,可以更好地理解和应用旋转对称在几何图形中的作用。
2. 旋转角度的性质旋转角度的性质是旋转的重要定理和性质之一。
通过学习旋转角度的性质,可以更深入地理解和应用旋转的基本特点。
3. 旋转的复合变换旋转可以与其他几何变换进行复合,比如平移、翻转等。
初中几何旋转知识详解
3.掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法,找出各个关键点;(4)连接作出的各个关键点,并标上字母;(5)写出结论.
常见结论:
ቤተ መጻሕፍቲ ባይዱ(1)
(2)
(3) 平分
(4) 是等边三角形.
(5)∠AFM=60°且保持不变
例1、在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:
(1) △ABE≌△DBC
(2)AE=DC
(3)AE与DC的夹角为60。
(4)△AGB≌△DFB
(5)△EGB≌△CFB
(6)BH平分∠AHC
旋转知识点归纳
知识点1:旋转的定义及其有关概念
在平面内,将一个图形绕一个定点O沿某个方向转动一个角度,这样的图形运动称为旋转,定点O称为旋转中心,转动的角称为旋转角;如果图形上的点P经过旋转到点 ,那么这两个点叫做这个旋转的对应点.如图1,线段AB绕点O顺时针转动 得到 ,这就是旋转,点O就是旋转中心, 都是旋转角.
错解:等边△BDE是由等边△ABC绕旋转中心B按逆时针方向旋转∠ABE的度数形成的.剖析:错误的原因在于没有正确找出对应线段,从而把旋转的角度弄错了.
正解:△BDE是由等边△ABC绕旋转中心B按逆时针方向,旋转∠DBA的度数形式的.
解题方法:
初中几何旋转 知识点-概述说明以及解释
初中几何旋转知识点-概述说明以及解释1.引言1.1 概述在初中几何学习中,几何旋转是一个重要的知识点。
旋转是指围绕一个点旋转图形,将图形绕着旋转中心旋转一定的角度,但图形的大小和形状保持不变。
通过学习几何旋转,我们可以更好地理解平面几何中的基本概念和性质,同时也可以应用旋转的知识解决实际生活中的问题。
本文将详细介绍几何旋转的基本概念、性质以及应用实例,帮助读者更深入地理解和掌握这一知识点。
1.2 文章结构:本文主要包括引言、正文和结论三个部分。
- 引言部分将概述几何旋转的基本概念、重要性以及本文的研究目的和意义;- 正文部分将详细介绍几何旋转的定义、基本概念和性质,帮助读者全面了解几何旋转的相关知识;- 结论部分将总结几何旋转的重要知识点,并提供一些应用实例来帮助读者更好地理解和运用这些知识。
最后,展望几何旋转在未来的发展方向和可能的研究领域。
通过这三个部分的分析和探讨,读者将能够全面了解几何旋转的知识,并掌握其在实际生活和学术研究中的应用。
1.3 目的本文的目的主要是介绍和总结初中几何旋转的知识点,帮助读者全面了解几何旋转的基本概念和性质。
通过学习本文,读者将能够掌握几何旋转的相关概念,理解旋转的基本原理,并通过实例加深对几何旋转的理解。
此外,本文还旨在呼吁读者进一步关注几何旋转这一重要概念,在实际问题中灵活运用几何旋转的知识,提高解决问题的能力和几何思维。
通过深入学习和理解几何旋转,读者将能够更好地应用几何知识解决各类问题,拓展数学思维,提升数学素养。
愿本文能够为学习几何旋转的读者提供一定的帮助和指导,使其在数学学习中取得更好的成绩和收获。
2.正文2.1 什么是几何旋转几何旋转是指围绕一个定点按照特定的规则将图形沿着旋转轴旋转的一种操作。
在几何学中,旋转是一种常见的变换方式,它能够改变图形的位置和方向,但不改变其形状和大小。
在几何旋转中,旋转点即为旋转的中心点,旋转轴则是围绕旋转点进行旋转的线段。
七年级数学旋转的知识点
七年级数学旋转的知识点旋转是二维平面几何中的常见变换方式,它涉及到很多数学知识点,对于初学者来说可能会感到有些困难,接下来我们将系统地介绍七年级数学旋转的知识点。
一、概念旋转是将一个图形绕着定点旋转一定角度后得到的新图形。
如下图所示,将图形ABC绕着点O旋转180度,得到的新图形为A'B'C'。
(这里插入对应图片)二、旋转的性质旋转有很多有趣的性质,接下来我们重点介绍以下几个:1.旋转是一个可逆的变换,即一个图形绕着一个点旋转一定角度后,再绕着同一点旋转相反角度可以回到原来的位置。
2.旋转的图像和原图形具有相同的大小和形状。
3.不同的旋转角度和旋转中心可以得到不同的图像。
三、旋转的角度旋转的角度是计算旋转量的重要参数,下面我们对角度有以下几点介绍:1.角度可以用度数来表示,1个完整的旋转为360度。
2.对于小于360度的旋转角度,可以使用角度制和弧度制来表示。
3.在平面直角坐标系中,正的角度方向是顺时针方向,负的角度方向是逆时针方向。
四、旋转的公式旋转的公式是表示旋转变换的一种方式,在七年级数学中,通常我们只需要掌握简单的旋转公式即可。
1.围绕原点旋转时,旋转公式为:(这里插入公式图片)其中,(x,y)表示变换前的点坐标,(x',y')表示变换后的点坐标,θ表示旋转的角度。
2.围绕点P(x0,y0)旋转时,旋转公式为:(这里插入公式图片)其中,(x,y)表示变换前的点坐标,(x',y')表示变换后的点坐标,θ表示旋转的角度,P(x0,y0)表示旋转的中心点坐标。
五、旋转的应用旋转在学术研究和实际应用中都具有重要的价值,接下来我们简单举例说明一些常见的旋转应用。
1.旋转应用于计算机图形学和动画制作中,如电影特效中常出现的旋转、缩放和平移效果。
2.旋转应用于地球上某些景点的管理和规划中,如开发一个海滩公园时需要考虑观众与太阳之间的角度关系以及初日和末日的角度。
初中旋转知识点总结
初中旋转知识点总结一、基本概念1.1 旋转的概念在数学中,旋转是指绕着固定点进行的转动。
在平面几何中,通常以原点为中心进行旋转,记为O。
1.2 旋转的方向根据旋转的方向,我们可以将旋转分为顺时针旋转和逆时针旋转两种,通常用箭头表示,其中顺时针旋转为逆时针旋转为。
1.3 旋转的角度旋转的角度通常用度数表示,符号为°。
一个完整的旋转为360°,一般用角度的正负来表示旋转的方向,正表示逆时针旋转,负表示顺时针旋转。
二、旋转的性质2.1 旋转的性质(1)旋转不改变图形的大小;(2)旋转前后的图形是全等图形;(3)旋转前后的图形是共形的。
2.2 旋转对称对称轴:图形旋转前后完全重合的轴称为旋转对称轴。
例如正方形、正五边形等都是以中心为中心的旋转对称图形。
2.3 旋转的性质利用在日常生活中,我们常常利用旋转的性质进行问题求解,如寻找物体的镜像、对称等。
三、旋转的公式在旋转的过程中,有一些常见的旋转公式需要初中学生掌握,以便能够快速准确地计算出旋转后的图形。
3.1 旋转的坐标公式对于图形(x, y)绕原点O逆时针旋转θ度后的坐标为(x',y'),则有以下公式:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ3.2 旋转的中心公式对于图形(x, y)绕点(A, B)逆时针旋转θ度后的坐标为(x',y'),其中A的横坐标为a,B的纵坐标为b,则有以下公式:x' = (x-a)*cosθ - (y-b)*sinθ + ay' = (x-a)*sinθ + (y-b)*cosθ + b四、旋转的应用4.1 旋转的应用范围旋转的应用范围非常广泛,包括几何学、物理学、工程学等各个领域,如在几何学中,我们可以利用旋转的性质求解对称图形的问题,在工程学中,我们可以利用旋转的公式进行图形的设计等。
4.2 旋转的几何应用旋转在几何学中应用广泛,如计算旋转图形的坐标、利用旋转的性质寻找对称图形等。
初中数学旋转定理专题
初中数学旋转定理专题一、旋转定理的概念旋转定理是初中数学中的一个重要概念,主要用于解决平面图形在旋转过程中的性质变化问题。
在旋转定理中,我们通常关注图形的旋转中心、旋转角度和旋转结果。
二、旋转定理的基本原理1. 旋转中心:图形的旋转中心是指固定绕其进行旋转的点。
我们可以通过观察图形的对称性来确定旋转中心。
2. 旋转角度:旋转角度是指图形在旋转中心周围旋转的角度。
通常以逆时针方向为正向。
3. 旋转结果:通过旋转定理,我们可以确定图形在旋转过程中的性质变化。
例如,旋转后的图形是否还保持原来的面积、周长等性质。
三、旋转定理的应用旋转定理在初中数学中有广泛的应用,常见的应用情况包括:1. 图形的旋转对称性:通过旋转定理,我们可以判断一个图形是否具有旋转对称性,即是否在旋转某个角度后能够重合。
这对于判断图形的相似性、等价性等非常有帮助。
2. 图形的蛇形填充:通过旋转定理,我们可以生成一系列相似的图形,然后将其按一定规律排列,从而形成具有美观效果的蛇形填充图案。
3. 图形的旋转变换:通过旋转定理,我们可以将图形绕旋转中心进行旋转,从而得到旋转后的图形。
这对于几何图形的线条设计、图案组合等具有重要意义。
四、旋转定理的练题以下是几个旋转定理的练题,供同学们进行思考和解答:1. 以点A为旋转中心,将线段AB绕点A逆时针旋转60度,求旋转后线段的长度。
2. 图形A和图形B绕同一个旋转中心进行旋转,旋转角度分别为120度和240度,它们之间是否相等?3. 图形C在旋转180度后能否与原图重合?为什么?以上练题旨在帮助同学们提高对旋转定理的理解和应用能力,不同题目可能存在不同的解法,请同学们根据自己的思路进行解答。
五、总结旋转定理是初中数学中的重要概念,通过理解旋转中心、旋转角度和旋转结果,我们可以应用旋转定理解决图形的旋转问题。
同时,通过练题的解答,可以巩固对旋转定理的理解和运用能力。
希望本文介绍的初中数学旋转定理专题能够帮助同学们更好地理解和应用旋转定理,提高数学学习成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学几何专题——
旋转
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
初中数学几何专题——旋转
一.选择题(共5小题)
1.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于()
A. B.2 C.1.5 D.
2.下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.矩形C.等腰梯形 D.正五边形
3.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B 的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()
A.4 B.8 C.16 D.8
4.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()
A.1:B.1:2 C.:2 D.1:
5.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于()
A.1﹣B.1﹣C.D.
二.填空题(共5小题)
6.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ=时,四边形APQE的周长最小.
7.如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B (8,0),D (0,4),若将△ABC沿AC所在直线翻折,点B落在点E处.则E 点的坐标是.
8.如图,将等边△ABC沿BC方向平移得到△A1B1C1.若BC=3,
,则BB 1=.
9.已知一个直角三角板PMN,∠MPN=30°,MN=2,使它的一边PN与正方形ABCD的一边AD重合(如图放置在正方形内)把三角板绕点P旋转,使点M 落在直线BC上一点F处,则CF的长为.
10.如图,在矩形ABCD中,AB=9,AD=3,E为对角线BD上一点,且DE=2BE,过E作FG⊥BD,分别交AB、CD于F、G.将四边形BCGF绕点B 旋转180°,在此过程中,设直线GF分别与直线CD、BD交于点M、N,当△DMN是以∠MDN为底角的等腰三角形时,则DN的长是.
三.解答题(共6小题)
14.已知,直角三角形ABC中,∠C=90°,点D、E分别是边AC、AB的中点,BC=6.
(1)如图1,动点P从点E出发,沿直线DE方向向右运动,则当EP=
时,四边形BCDP是矩形;
(2)将点B绕点E逆时针旋转.
①如图2,旋转到点F处,连接AF、BF、EF.设∠BEF=α°,求证:△ABF是直角三角形;
②如图3,旋转到点G处,连接DG、EG.已知∠BEG=90°,求△DEG的面积.
15.问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D作DE∥AC交AC于E,则线段BD与CE有何数量关系?
拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.
问题解决:如果△ABC的边长等于2,AD=2,直接写出当△ADE旋转到DE 与AC所在的直线垂直时BD的长.
16.如图,正方形ABCD的面积为4,对角线交于点O,点O是正方形
A1B1C1O的一个顶点,如果这两个正方形全等,正方形A1B1C1O绕点O旋转.(1)求两个正方形重叠部分的面积;
(2)若正方形A1B1C1O旋转到B1在DB的延长线时,求A与C1的距离.。