指数函数的概念PPT课件

合集下载

《指数函数的概念》课件

《指数函数的概念》课件
2023
REPORTING
《指数函数的概念》 ppt课件
2023
目录
• 引言 • 指数函数的概念 • 指数函数的图像 • 指数函数的运算 • 指数函数与其他数学概念的联系 • 总结与回顾
2023
PART 01
引言
REPORTING
课程背景
数学的重要性
数学是现代科学的基础,而指数 函数在数学和实际生活中有着广 泛的应用。

人口增长模型
在生物学和人口统计学中,人口增 长通常使用指数函数来描述。通过 指数函数,可以预测未来人口数量 。
放射性物质衰变
在物理学中,放射性物质衰变通常 使用指数函数来描述。通过指数函 数,可以预测未来放射性物质的数 量。
2023
PART 03
指数函数的图像
REPORTING
指数函数的图像特点
2023
PART 04
指数函数的运算
REPORTING
指数函数的四则运算
01
02
03
04
指数加法
$a^m^n = a^{m+n}$
指数减法
$a^m / a^n = a^{m-n}$
指数乘法
$a^m * a^n = a^{m+n}$
指数除法
$frac{a^m}{a^n} = a^{mn}$
指数函数的复合运算
指数函数与一次函数的复合
$y = a^x * k$,其中k为常数
指数函数与二次函数的复合
$y = a^x * x^2$,其中a、x为变量
指数函数与对数函数的关系
对数函数的定义
如果 $y = a^x$,则 $x = log_a y$
对数函数的性质

高一数学指数函数ppt课件

高一数学指数函数ppt课件

与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。

指数函数的概念PPT课件.ppt

指数函数的概念PPT课件.ppt
4.截距:在 x 轴上没有,在y 轴上为1.
二.图象与性质
1.图象的画法:性质指导下的列表描点法. 2.草图:
观察指数函数 f (x) ax (a 1)
性质
(1) 无论a为何值,指数函数 f (x) a x 都有定义域为R
值域为 0, ,都过点(0,1).
(2) a 1 时, f (x) a x 在定义域内为增函数; 0 a 1 时, f (x) a x 在定义域内为减函数.
(3)关于是否是指数函数的判断
请看下面函数是否是指数函数:
(1) y x
(2) y 0.3x2
(3) y ( 3)3x
(5) y 1 x 1 44
(4) y 2 ( 3 )2x 4
归纳性质
函数 y 2 x
1.定义域: R
2.值 域: 0,
3.奇偶性:既不是奇函数也不是偶函数
例2.比较下列各组数的大小.
(1) ( 1 )0.8与( 1 )1.8
4
2
(2)
(
8
)

3 7
与(
7
5
)12
7
8
(3) 1.080.3与0.983.1
小结比较大小的方法:
1.构造函数的方法: 数的特征是同底不同指 (包括可转化为同底的)
2. 搭桥比较法: 用特殊的数1或 0.
课堂小结
1.指数函数的概念 2.指数函数的图象和性质 3.简单应用
一、指数函数的概念
1.定义:形如 f (x) a x (a 0, a 1)的函数称为指数函数.
2.几点说明:
(1)关于对 a 的规定:
若 a 0 对于 x 0, a x 都无意义

高中数学《指数函数》ppt课件

高中数学《指数函数》ppt课件

01
02
03
乘法法则
$a^m times a^n = a^{m+n}$,同底数幂相 乘,底数不变,指数相加 。
除法法则
$a^m div a^n = a^{mn}$,同底数幂相除,底 数不变,指数相减。
幂的乘方法则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
不同底数指数运算法则
常见指数函数类型及其特点
自然指数函数
幂指数函数
对数指数函数
复合指数函数
底数为e(约等于2.71828) 的指数函数,记为y=e^x。 其图像上升速度最快,常用 于描述自然增长或衰减现象

形如y=x^n(n为实数)的函 数,当n>0时图像上升,当 n<0时图像下降。特别地,当 n=1时,幂指数函数退化为线
高中数学《指数函数》ppt 课件
目录
• 指数函数基本概念与性质 • 指数函数运算规则与技巧 • 指数函数在生活中的应用举例 • 指数函数与对数函数关系探讨 • 指数方程和不等式求解技巧 • 总结回顾与拓展延伸
01 指数函数基本概 念与性质
指数函数定义及图像特点
指数函数定义
形如y=a^x(a>0且a≠1)的函 数称为指数函数。
在生物学领域,指数函 数和对数函数被用于描 述生物种群的增长和衰 减过程;
在物理学领域,指数函 数和对数函数被用于描 述放射性衰变等物理现 象。
05 指数方程和不等 式求解技巧
一元一次、二次指数方程求解方法
01
一元一次指数方程:形如 $a^x = b$ ($a > 0, a neq 1$)的方程。求解方法
利用对数性质将指数方程转化为代数 方程进行求解。

4.2.1指数函数的概念PPT课件(人教版)

4.2.1指数函数的概念PPT课件(人教版)
数学问题
这说明2001年…
实际问题
例 2(2)在问题 2 中,某生物死亡 10000 年后,它体内碳 14 的含量衰减为原来的百分之几?
这说明…
思考:连续两个半衰期是否就是一个“全衰期”?
例 2 (1)在问题 1 中,如果平均每位游客出游一次可给当地带 来 1000 元门票之外的收入,A 地景区的门票价格为 150 元,比 较这 15 年间 A,B 两地旅游收入变化情况.
1118 113
1244 126
B景区每年旅游人次约为上 一年的1.11倍
年增加量是相邻两年的游客人次 做减法得到的,能否通过对B地 景区每年的游客人次做其他运算 发现游客人次的变化规律呢?
增长率为常数的变化 方式,称为指数增长 .
时间/
A地景区

人次/ 万次
年增加量 /万次
2001 600
2002 609 9 2003 620 11 2004 631 11 2005 641 10 2006 650 9 2007 661 11 2008 671 10 2009 681 10 2010 691 10 2011 702 11
1.11x 倍.
设经过 x 年后的游客人次为2001年的 y 倍
探究1:比较两地景区游客人次的变 化情况,你发现怎样的变化规律?
增加量、增长率是 刻画事物变化规律 的两个重要的量.
A地
B地
问题 2 当生物死亡后,它机体内原有的碳 14 含量会按确 定的比率衰减(称为衰减率), 若年衰减率为 p ,你能表 示出死亡生物体内碳 14 含量与死亡年数之间的关系吗?
探究1:比较两地景区游客人次的变化情况, 你发现怎样的变化规律?
A地
B地
线性增长

《指数函数》PPT课件

《指数函数》PPT课件

商的乘方
商的乘方等于乘方的商。 如:$(a/b)^n = a^n div b^n$。
指数函数的极限与连续
极限性质
当底数大于1时,指数函数随着指 数的增大而趋于无穷大;当底数 在0到1之间时,指数函数随着指 数的增大而趋于0。
连续性
指数函数在其定义域内是连续的, 即对于任意两个相邻的点,函数值 之间的差可以无限小。

工程学
在工程学中,指数函数可用于 描述材料疲劳、信号处理等问
题。
计算机科学
在计算机科学中,指数函数可 用于算法分析、图像处理等领
域。
THANKS
感谢观看
02 指数函数的运算 性质
指数函数的四则运算
加法运算
同底数指数相加,指数 不变,底数相乘。如:
$a^m + a^m = 2a^m$。
减法运算
同底数指数相减,指数 不变,底数相除。如: $a^m - a^m = 0$。
乘法运算
同底数指数相乘,指数 相加,底数不变。如:
$a^m times a^n = a^{m+n}$。
级数展开的定义
将指数函数表示为无穷级数的形式,便于分析和 计算。
泰勒级数展开
通过泰勒公式将指数函数展开为幂级数,适用于 函数在某点的局部逼近。
麦克劳林级数展开
特殊形式的泰勒级数,用于在原点处展开指数函 数。
指数函数的傅里叶变换
傅里叶变换的概念
01
将时间域的函数转换为频域的函数,便于分析信号的频率特性
指数函数在生物学中的应用
细菌增长模型
指数函数可以描述细菌在适宜环 境下的增长情况,用于预测细菌
数量。
药物代谢动力学
指数函数可以模拟药物在体内的 代谢过程,用于计算药物浓度随

4.2.1指数函数的概念说课课件(人教版)

4.2.1指数函数的概念说课课件(人教版)
求 f (0) , f (1) , f (3) .
3 应用概念,解决问题
例2 (1)在问题2中,某生物死亡10000年后,它体内碳14含量
衰减为本来的百分之几?
解:(1)设生物死亡x年后,它体内的碳14含量为h(x)如果把
刚死亡的生物体内碳14的含量看成1个单位,那么
x


1

h( x )
设死亡生物体内碳14含量的年衰减率为p,如果把刚死亡的生物体内碳14的
含量看成1个单位,那么:
死亡1年后,生物体内碳14含量为
(1 p )1
死亡2年后,生物体内碳14含量为
1 p
死亡3年后,生物体内碳14含量为
1 p
……
2
3
死亡5730年后,生物体内碳14含量为 1 p
2年后,游客人次是2001年的
3年后,游客人次是2001年的
1
1.11
2
1.11
3
1.11

x



……
x年后,游客人次是2001年的
1.11
y 1.11 ,x [0, )
x
1 创设情境,引入新知
关系式y=1.11x是一个函数吗?
1 创设情境,引入新知
情境3:当生物死亡之后,它机体内的碳14含量会按确定的比率
带来1000元门票之外的收入,A地景区的门票价格为150元,比较这
15年间,A,B两地旅游收入的变化情况.
解:
(1)设经过 x 年之后,游客给 A, B 两地带来的旅游收入分别为 f ( x)和g ( x)
则 f ( x) 1150 (10 x 600)(游客人次的年增加量为 10

4.2.1指数函数的概念(优质课件)

4.2.1指数函数的概念(优质课件)

y
y ax
(0 a 1)
1
0
x
指数函数y=ax(a>0,且a≠1)的性质: 当x<0时, ay>>11.
y
当x>0时, 0<y<1.
0< a <1 y

象 y=1
(0,1)
(0,1)
y=1
o
x
o
x
当x<01时.定, 义域: 性0<y2<.1值. 域:
质 3.过点
,即x=
当x>0时, 时,y= y>1.
(2)有理数指数幂的性质 ①asat= as+t (a>0,s、t∈Q); ②(as)t= ast (a>0,s、t∈Q); ③(ab)t= atbt (a>0,b>0,t∈Q).
导入课题1:某种细胞分裂时,第一次由1个
分裂成2个,第2次由2个分裂成4个,如此下去, 如果第x次分裂得到y个细胞,那么细胞个数y与分 裂次数x的函数关系是什么?
21
22
23

2x
y 2x
导入课题2
假设我国2003年的国民生产总值为1个单位,此后每年 的平均增长率为8%,经过x年后的国民生产总值y与x 的函数关系式是:
y (1 8%)x
即 y 1.08x
数。
新的函数: 指数函数的定义:
形如函数 y ax (a 0且a 1)
定义域是R。
叫做指数函数,其中x是自变量,
要点梳理
忆一忆知识要点
③( n a)n= a .
④当 n 为奇数时, n an= a ;
当 n 为偶数时,n an=|a|=
a -a

指数函数的概念PPT课件

指数函数的概念PPT课件

指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写 为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为 欧拉数.
谢谢指Leabharlann 函数的概念PPT课 件演讲人
指数函数是重要的基本初等函数之一。指数函数与对数函数,指数函 数,定义,函数称,指数函数,函数的定义域为I。底数是变量,指数 是常数的函数,称为幂函数。指数函数的概念一般的,函数叫做指数 函数,其中,奇数x是自变量。相同数连乘的值,是一个运算结果。
在指数函数的定义表达式中,a^x前的系数必须是数1,自变量x必须 在指数的位置上,且不能是x的其他表达式,否则就不是指数函数。

高中数学必修一(人教版)《4.2.1 指数函数的概念》课件

高中数学必修一(人教版)《4.2.1 指数函数的概念》课件

[答案] B
[方法技巧] 判断一个函数是指数函数的方法
(1)需判断其解析式是否符合y=ax(a>0,且a≠1)这一结构特征. (2)看是否具备指数函数解析式所具有的所有特征.只要有一个特征不具备, 则该函数就不是指数函数.
【对点练清】
1.下列函数是指数函数的是
A.y=π2x C.y=2x-1
B.y=(-8)x D.y=x2
[方法技巧] 实际应用问题中指数函数模型的类型
(1)指数增长模型: 设原有量为N,每次的增长率为p,则经过x次增长,该量增长到y,则y=N(1 +p)x(x∈N). (2)指数减少模型: 设原有量为N,每次的减少率为p,则经过x次减少,该量减少到y,则y=N(1 -p)x(x∈N). (3)指数型函数: 把形如y=kax(k≠0,a>0,且a≠1)的函数称为指数型函数,这是非常有用 的函数模型.
[典例1] 给出下列函数:
①y=2·3x;②y=3x+1;③y=3x;
④y=x3;⑤y=(-2)x.
其中,指数函数的个数是
()
A.0
B.1
C.2
D.4
[解析] ①中,3x的系数是2,故①不是指数函数;②中,y=3x+1的指数是x +1,不是自变量x,故②不是指数函数;③中,3x的系数是1,幂的指数是自变量 x,且只有3x一项,故③是指数函数;④中,y=x3的底数为自变量,指数为常数, 故④不是指数函数.⑤中,底数-2<0,不是指数函数.
(2)若指数函数 f(x)的图象经过点(2,9),求 f(x)的解析式及 f(-1)的值.
[解析] (1)指数函数 y=f(x)=ax(a>0,且 a≠1)的图象经过点-2,14,可 得 a-2=14,解得 a=2,函数的解析式为 y=2x,f(4)f(2)=24·22=64.

4.2 指数函数-(新教材人教版必修第一册)(70张PPT)

4.2 指数函数-(新教材人教版必修第一册)(70张PPT)

类型三:指数函数的图象及应用
典例示范
【例 5】在如图所示的图象中,二次函数 y=ax2+bx+c 与函数
y=bax 的图象可能是(
)
A 解析:根据图中二次函数的图象可知 c=0, ∴二次函数 y=ax2+bx.∵ba>0, ∴二次函数的对称轴 x=-2ba<0,排除 B,D. 对于 A,C,都有 0<ba<1,∴-21<-2ba<0,C 不符合.故选 A.
定向训练
1.不等式 a2x-7>a4x-1(0<a<1)的解集为_(_-__3_,__+__∞_)__.
2.比较下列各组数的大小.
(1)1.52.5 和 1.53.2;
(2)0.6-1.2 和 0.6-1.5;
(3)1.70.2 和 0.92.1;
(4)a1.1 与 a0.3(a>0,且 a≠1).
类题通法
1.利用指数型函数的单调性解不等式,需将不等式两边都凑成 底数相同的指数式.
2.解不等式 af(x)>ag(x)(a>0,a≠1)的依据是指数型函数的单调 性,要养成判断底数取值范围的习惯.若底数不确定,就需进行分
类讨论,即 af(x)>ag(x)⇔ffxx> <ggxx, ,a0> <1a, <1.
数学(人教版)
必修第一册
第四章 指数函数与对数函数
4.2 指数函数
第一 阶段
课前自学质疑
必备知识 深化预习
1.指数函数的概念 一般地,函数_y_=__a_x_ (a>0,且 a≠1)叫做指数函数,其中__指__数__x_ 是自变量,定义域是 R.
2.指数函数 y=ax(a>0,且 a≠1)的图象和性质
【例 2】指数函数 f(x)=(2b-3)(1-a)x,若 f(2)=9,求 a,b 的 值.

数学人教A版必修第一册4.2.1指数函数的概念(17张PPT)

数学人教A版必修第一册4.2.1指数函数的概念(17张PPT)
越美国,经济总量成为世界第一,为伟大复兴路奠定良好物质基础?
环节三:问题情境
问题1:随着中国经济增长,人民生活
水平不断提高,旅游成了越来越多家庭
的重要生活方式.由于旅游人数不断增加,
A,B两地景区自2001年起采取了不同
的应对措施,A地提高了景区门票价格,
而B地则取消了景区门票.右表为A,B
两地景区2001至2015年的游客人次.
课件
下课!
同学们再见!
授 课 老 师 :
时 间 : 2 0 2 4 年 9 月 1 日
2023
课件
下课!
同学们再见!
授 课 老 师 :
时 间 : 2 0 2 4 年 9 月 1 日
“一带一路”国际合作高峰论坛
材料: 美国2022年经济总量为25.46万亿美元,位居世界首位,中国经济总量为17.99
万亿美元,排世界第二位,美国比中国多出了7.47万亿美元。2012年至2022年,十年
课后固学
来,美国经济年平均增长率为2.2%,中国经济年平均增长率为6.6%.
思考:假设中国和美国未来的经济都保持这个年平均增长率,请问中国需要多久能够超
650
9
475
48
2007
661
11
528
53
2008
671
10
588
60
2009
681
10
655
67
2010
691
10
729
74
2011
702
11
811
82
2012
711
9
903
92
2013
721
10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3) a ? 1 时,
?x? 0
? ?
y
?
1
0
?
a
?
1
时,
? ? ?
x y
? ?
0 1
简单应用
利用指数函数单调性比大小.
例1.比较下列各组数的大小
(1)1.3?2.7 与1.3? 2.5
(3)? 2? 3与1
(2)(
2
)
4 3
与(
2
)
3 2
2
2
说明:(1)构造函数并指明函数的单调区间及相应的单调性. (2)自变量的大小比较. (3)函数值的大小比较.
一、指数函数的概念
1.定义:形如 f (x) ? a x (a ? 0, a ? 1)的函数称为指数函数.
2.几点说明:
(1)关于对 a 的规定:
若 a ? 0 对于 x ? 0, a x 都无意义
若 a ? 1 则1 x 无论 x 取何值,它总是1,对它没有研究的必要.
(2)关于指数函数的定义域:定义域为 R
例2.比较下列各组数的大小.
(1) ( 1 )0.8 与( 1 )1.8
4
2
(2)
(
8
)
?
3 7
与(
7
5
)Hale Waihona Puke 278(3) 1.080.3与0.983.1
小结比较大小的方法:
1.构造函数的方法: 数的特征是同底不同指 (包括可转化为同底的)
2. 搭桥比较法: 用特殊的数1或 0.
课堂小结
1.指数函数的概念 2.指数函数的图象和性质 3.简单应用
4.截距:在 x 轴上没有,在y 轴上为1.
二.图象与性质
1.图象的画法:性质指导下的列表描点法. 2.草图:
观察指数函数 f (x) ? a x(a ? 1)
性质
(1) 无论a 为何值,指数函数 f ( x) ? a x 都有定义域为R
值域为 ?0,?? ?,都过点(0,1).
(2) a ? 1 时, f ( x) ? a x 在定义域内为增函数; 0 ? a ? 1 时, f (x) ? a x 在定义域内为减函数.
(3)关于是否是指数函数的判断
请看下面函数是否是指数函数:
(1) y ? ? x
(2) y ? 0.3x2
(3) y ? ( 3 ) ?3x
(5)
y?
1x 1 ?
44
(4) y ? 2 ?( 3 )2 x 4
归纳性质
函数 y ? 2 x
1.定义域: R
2.值 域: ?0,?? ?
3.奇偶性:既不是奇函数也不是偶函数
相关文档
最新文档