水力学资料

水力学资料
水力学资料

第一章 导 论

1、体积模量 K 值越大,液体越容易压缩。 ( )

2、液体的内摩擦力与液体的速度成正比。 ( )

3、水流在边壁处的流速为零,因此该处的流速梯度为零。 ( )

4、影响水的运动粘度的主要因素为 ( )

(1)水的温度; (2)水的容重;

(3)当地气压; (4)水的流速。

5、理想液体是 ( )

(1)没有切应力又不变形的液体; (2)没有切应力但可变形的一种假想液体;

(3)切应力与剪切变形率成直线关系的液体;

(4)有切应力而不变形的液体。 6、A 、B 为相邻两液层,A 层流速大于B 层流速。则A 层对B 层的切应力τ1_____________ B 层对A 层

的切应力τ2 。其中τ1 的方向与流向 __________,τ2 的方向与流向______________。

7、单位质量力的量纲为__________________;运动粘度的量纲为 _______________;动力粘度的量纲为

____________________。

8、物体在外力作用下产生 _______________,在除去外力后能恢复原状消除变形的性质,称为 _______。

9、已知二元明渠断面的流速分布为抛物线,如图示,则其切应力分布τ~y 为_______________________ 分

布,切应力最大值在 _________________处。

10、水力学中最基本的、贯穿始终的假定是 ________________________假定。

11、图为管道过水断面水流流速分布图,从其对应部位取出水体A ,则水体顶面切应力的方向与流

向 , 底面切应力的方向与流向 。

12、平板面积为 40×45cm 2,厚度为 1.0cm ,质量 m=5kg ,沿着涂有厚度δ=1.0mm 油的斜面向下作等速运

动, 其速度u =1.0m/s,带动油层的运动速度呈直线分布,则油的粘度μ=______________,ν

=__________________ (油的密度ρ=950 kg/m 3)。

第二章水静力学

1、相对压强必为正值。( )

2、图示为一盛水容器。当不计瓶重时, 作用于地面上的力等于水作用于瓶底的总压力。( )

3、静水总压力的压力中心就是受力面面积的形心。( )

4、二向曲面上的静水总压力的作用点就是静水总压力的水平分力与铅直分力的交点。( )

5、一个任意形状的倾斜平面与水面的夹角为α。则该平面上的静水总压力P=ρgy D A sinα。(y D为压力中心D 的

坐标,ρ为水的密度,A 为斜面面积) ()

6、图示为二块置于不同液体中的矩形平板,它们的宽度b,长度L及倾角α均相等,则二板上的静水总压力作

用点在水面以下的深度是相等的。( )

7、作用于两种不同液体接触面上的压力是质量力。

( )

8、静水压强仅是由质量力引起的。

( )

9、在一盛水容器的侧壁上开有两个小孔A、B,并安装一U 形水银压差计,如图所示。由于A、B两点静水压强不等,水银液面一定会显示出?h 的差值。( )

10、物体在水中受到的浮力等于作用于物体表面的静水总压力。

( )

11、选择下列正确的等压面:

( )

(1) A ? A (2) B ? B (3) C ? C (4) D ? D

12、压力中心是( )

(1) 淹没面积的中心;(2) 压力体的中心;(3) 总压力的作用点;(4) 受压面的形心。

13、平衡液体中的等压面必为( )

(1) 水平面;(2) 斜平面;(3) 旋转抛物面;(4) 与质量力相正交的面。

14、图示四个容器内的水深均为H,则容器底面静水压强最大的是( )

(1) a ; (2) b ; (3) c ; (4) d 。

15、欧拉液体平衡微分方程( )

(1) 只适用于静止液体;(2) 只适用于相对平衡液体;

(3) 不适用于理想液体;(4) 理想液体和实际液体均适用。

16、容器中盛有两种不同重度的静止液体,如图所示,作用在容器 A B 壁面上的静水压强分布图应为( )

(1) a (2) b (3) c (4) d

17、液体某点的绝对压强为58 kP a,则该点的相对压强为( )

(1) 159.3 kP a;(2) 43.3 kP a;(3) -58 kP a(4) -43.3 kP a。

18、图示的容器a 中盛有重度为ρ1的液体,容器b中盛有密度为ρ1和ρ2的两种液体,则两个容器中曲面AB 上压力体及压力应为( )

(1) 压力体相同,且压力相等;(2) 压力体相同,但压力不相等;

(3) 压力体不同,压力不相等;(4) 压力体不同,但压力相等。

19、有一倾斜放置的平面闸门,当上下游水位都上升 1 m 时〔虚线位置〕,闸门上的静水总压力。( )

(1) 变大;(2) 变小;(3) 不变;(4) 无法确定。

20、有一水泵装置,其吸水管中某点的真空压强等于3 m 水柱高,当地大气压为一个工程大气压,其相应的

绝对压强值等于( )

(1) 3 m 水柱高;(2) 7 m 水柱高;

(3) -3 m 水柱高;(4) 以上答案都不对。

21、液体中,测管水头(z + p/ρg) 的能量意义是______________________。

22、液体中,位置高度z 的能量意义是_______________;压强高度p/ρg 的能量意义是_______________。

23、真空压强的最小值是__________________;真空压强的最大值是___________________。

24、比重为0.81 的物体放入比重为0.9 的液体中,则出露部分体积与总体积之比为__________________。

25、容器A、B分别以加速度a和等角速度ω运动,如图所示。分别绘出液面下深度h处的等压面形状,并标明该等压面上任一质点的质量力F的方向。

26、绘出图中曲面上的的压力体图,并标出水压力铅直分力的方向。

27、绘出图示圆柱体上水平压强分布图和压力体图。并标出水压力铅直分力的方向。

28、三个圆球各充满液体后的测压管液面如图示,试绘出各球面的压力体图,并标出力的方向。

29、绘出图中AB曲面上水平压强分布图和压力体图,并标出水压力铅直分力的方向。

30、压力水箱上角装有一圆柱体压力表读数为19.60 kPa,箱中盛满水。试绘出作用于圆柱面ABC上的水平压强分布图和压力体。

第三章水动力学基础

1、渐变流与急变流均属非均匀流。( )

2、急变流不可能是恒定流。( )

3、总水头线沿流向可以上升,也可以下降。( )

4、水力坡度就是单位长度流程上的水头损失。( )

5、扩散管道中的水流一定是非恒定流。( )

6、恒定流一定是均匀流,非恒定流一定是非均匀流。( )

7、均匀流流场内的压强分布规律与静水压强分布规律相同。( )

8、测管水头线沿程可以上升、可以下降也可不变。( )

9、总流连续方程v1A1 = v2A2对恒定流和非恒定流均适用。( )

10、渐变流过水断面上动水压强随水深的变化呈线性关系。( )

11、水流总是从单位机械能大的断面流向单位机械能小的断面。( )

12、恒定流中总水头线总是沿流程下降的,测压管水头线沿流程则可以上升、下降或水平。( )

13、液流流线和迹线总是重合的。( )

14、用毕托管测得的点流速是时均流速。( )

15、测压管水头线可高于总水头线。( )

16、管轴高程沿流向增大的等直径管道中的有压管流,其管轴压强沿流向增大。( )

17、理想液体动中,任意点处各个方向的动水压强相等。( )

18、恒定总流的能量方程z1 + p1/g + v12

/2g = z2 +p2/g + v22/2g +h w1- 2 ,式中各项代表( )

(1) 单位体积液体所具有的能量;(2) 单位质量液体所具有的能量;

(3) 单位重量液体所具有的能量;(4) 以上答案都不对。

19、图示抽水机吸水管断面A─A动水压强随抽水机安装高度h的增大而( ) (1) 增大(2) 减小(3) 不变(4) 不定

20、在明渠恒定均匀流过水断面上1、2两点安装两根测压管,如图所示,则两测压管高度h1与h2的关系为( )

(1) h1>h2(2) h1<h2(3) h1 = h2(4) 无法确定

21、对管径沿程变化的管道( )

(1) 测压管水头线可以上升也可以下降(2) 测压管水头线总是与总水头线相平行

(3) 测压管水头线沿程永远不会上升 (4) 测压管 水头线不可能低于管轴线

22、图示水流通过渐缩管流出,若容器水位保持不变,则管内水流属 ( )

(1) 恒定均匀流 (2) 非恒定均匀流 (3) 恒定非均匀流 (4) 非恒定非均匀流

23、管轴线水平,管径逐渐增大的管道有压流,通过的流量不变,其总水头线沿流向应 ( )

(1) 逐渐升高 (2) 逐渐降低 (3) 与管轴线平行 (4) 无法确定

24、均匀流的总水头线与测压管水头线的关系是 ( )

(1) 互相平行的直线; (2) 互相平行的曲线; (3) 互不平行的直线; (4) 互不平行的曲线。

25、液体运动总是从 ( )

(1) 高处向低处流动; (2) 单位总机械能大处向单位机械能小处流动;

(2) 压力大处向压力小处流动; (3) 流速大处向流速小处流动。

26、如图断面突然缩小管道通过粘性恒定流,管路装有U 形管水银差计,判定压差计中水银液面为

( )

(1) A 高于B ; (2) A 低于B ; (3) A 、B 齐平; (4) 不能确定高低。

27、恒定总流动量方程写为_______________________,方程的物理意义为

____________________________________________________________________________________________

______。

28、恒定总流能量方程中,h w 的能量意义是___________________________________________________。

它的量纲是______________________________。

29、在有压管流的管壁上开一个小孔,如果没有液体从小孔流出,且向孔内吸气,这说明小孔内液体的相

对压强_________零。(填写大于、等于或小于) 如在小孔处装一测压管,则管中液面将________。(填写高

于、或低于)小孔的位置。

30、恒定总流能量方程中, v 2/2g 的能量意义为__-____________________________________________,

它的量纲是 _____________。

31、水平放置的管道,当管中水流为恒定均匀流时,断面平均流速沿程______________,动水压强沿程

______________。

32、图示分叉管道中,可以写出单位重量液体的能量方程的断面是_____________________________,不能

写出单位重量液体的能量方程的断面是___________________________________。

33、某过水断面面积A =2m 2,通过流量q v =1m 3/s ,动能修正系数α=1.1,则该过水断面的平均单位动能

___________________________________。

34、图示为一平底等直径隧洞,出口设置一控制闸门。当闸门关闭时,A 、B 两点压强p A 与p B 的关系为

_____;

当闸门全开时,A 、B 两位于均匀流段,其关系为___________________。

35、应用恒定总流能量方程时,所选的二个断面必须是_________断面,但二断面之间可以存在_______流。

36、有一等直径长直管道中产生均匀管流,其管长 100 m ,若水头损失为 0.8m ,则水力坡度为___________。

37、图示为一大容器接一铅直管道,容器内的水通过管道流入大气。已知 h 1=1m ,h 2=3m 。若不计水头损

失,

则管道出口流速为________________。

38、图示为1、2两根尺寸相同的水平放置的管道。管1中为理想液体,管2中为实际液体。当两管流量

q v1 = q v2 时,则两根测压管的液面高差 h 1 与 h 2 的比较是__________________。

39、图示为一等直径水平管道,水头为H 。若整个水头损失为h w ,α=1,则管道A 、B 、C 三个断面的流

速分别为 v A =_________________, v B =_________________, v C =_____________________。

目的是利用____________________________的特征,计算

______________________________________。

第四章 层流和紊流及水流阻力和水头损失

1、紊流光滑区的沿程水头损失系数 λ 仅与雷诺数有关,而与相对粗糙度无关。 ( )

2、圆管紊流的动能校正系数大于层流的动能校正系数。 ( )

3、紊流中存在各种大小不同的涡体。 ( )

4、紊流运动要素随时间不断地变化,所以紊流不能按恒定流来处理。 ( )

5、谢才公式既适用于有压流,也适用于无压流。 ( )

6、''y u x u ρτ-=只能代表 X 方向的紊流时均附加切应力。 ( )

7、临界雷诺数随管径增大而增大。 ( )

8、在紊流粗糙区中,对同一材料的管道,管径越小,则沿程水头损失系数越大。 ( )

9、圆管中运动液流的下临界雷诺数与液体的种类及管径有关。 ( )

10、管道突然扩大的局部水头损失系数 ζ 的公式是在没有任何假设的情况下导出的。 ( )

11、液体的粘性是引起液流水头损失的根源。 ( )

11、不论是均匀层流或均匀紊流,其过水断面上的切应力都是按线性规律分布的。 ( )

12、公式gRJ ρτ= 即适用于管流,也适用于明渠水流。 ( )

13、在逐渐收缩的管道中,雷诺数沿程减小。 ( )

14、管壁光滑的管子一定是水力光滑管。 ( )

15、在恒定紊流中时均流速不随时间变化。 ( )

16、恒定均匀流中,沿程水头损失 hf 总是与流速的平方成正比。 ( )

17、粘性底层的厚度沿流程增大。 ( )

18、阻力平方区的沿程水头损失系数λ 与断面平均流速 v 的平方成正比。 ( )

19、当管径和流量一定时,粘度越小,越容易从层流转变为紊流。 ( )

20、紊流的脉动流速必为正值。 ( )

21、绕流阻力可分为摩擦阻力和压强阻力。 ( )

22、有一管流,属于紊流粗糙区,其粘滞底层厚度随液体温度升高而减小。 ( )

23、当管流过水断面流速符合对数规律分布时,管中水流为层流。 ( )

24、沿程水头损失系数总是随流速的增大而增大。 ( )

25、边界层内的流动也有层流与紊流之分。 ( )

26、当雷诺数 Re 很大时,在紊流核心区中,切应力中的粘滞切应力可以忽略。 ( )

27、其它条件不变,层流内摩擦力随压力的增大而 ( )

⑴ 增大 ; ⑵ 减小 ; ⑶ 不变 ; ⑷ 不定 。

28、按普朗特动量传递理论, 紊流的断面流速分布规律符合 ( )

( 1 ) 对数分布 ; ( 2 ) 椭圆分布 ; ( 3 ) 抛物线分布 ; ( 4 ) 直线分布 。

29、其它条件不变,层流切应力随液体温度的升高而 ( )

( 1 )增大;( 2 )减小;( 3 )不变;( 4 )不定。

30、其它条件不变,液体雷诺数随温度的增大而() ( 1 )增大;( 2 )减小;( 3 )不变;( 4 )不定。

31、谢才系数C 与沿程水头损失系数λ的关系为() ( 1 ) C 与λ成正比;( 2 ) C 与1/λ成正比;( 3 ) C 与λ2 成正比;( 4 ) C 与λ

1成正比。

32、A、B 两根圆形输水管,管径相同,雷诺数相同,A管为热水,B管为冷水,则两管流量() ( 1 )qvA > qvB ; ( 2 )qvA =qvB ; ( 3 )qvA < qvB ;( 4 )不能确定大小。

33、圆管紊流附加切应力的最大值出现在( )

( 1 )管壁;( 2 )管中心;( 3 )管中心与管壁之间;( 4 )无最大值。34、粘滞底层厚度δ随Re 的增大而( )

( 1 )增大;( 2 )减小;( 3 )不变;( 4 )不定。

35、管道断面面积均为A (相等),断面形状分别为圆形、方形和矩形,其中水流为恒定均匀流,水力坡度J

相同,则三者的边壁切应力

τ的相互关系如下,如果沿程阻力系数λ也相等,则三管道通过的流量的相互关系如下:()

( 1 )τ

0圆>

τ

0方>

τ

0矩,

q

v圆>

q

v方>

q

v矩;

( 2 )τ

0圆<

τ

0方<

τ

0矩,

q

v圆<

q

v方<

q

v矩;

( 3 )τ

0圆>

τ

0方>

τ

0矩,

q

v圆<

q

v方<

q

v矩;

( 4 )τ

0圆<

τ

0方<

τ

0矩,

q

v圆>

q

v方>

q

v矩。

36、圆管均匀层流与圆管均匀紊流的( )

( 1 )断面流速分布规律相同;( 2 )断面上切应力分布规律相同;

( 3 )断面上压强平均值相同;( 4 )水力坡度相同。

37、紊流内部结构分区的判别参数是( )

( 1 )管壁绝对粗糙度;( 2 )管壁相对粗糙度;

( 3 )粘滞底层厚度与管壁绝对粗糙度之比;( 4 )雷诺数。

38、图示两管道的管长L 、管径d 、流量qv 及水温均相同,但测压管水面差h1 >h2 ,则两管糙率n1 与n2 的关系为()

( 1 )n1 > n2;( 2 )n1 < n2 ;( 3 )n1 = n2 ;( 4 )无法确定。

39、谢才系数 C 的量纲是:()

( 1 ) L ; ( 2 ) 121-T L ; ( 3 ) 2

11T L -; ( 4 ) [ 1] 无量纲量。

40、如图A 、B 二种截面管道,已知二管长度相同,通过流量相同,沿程水头损失系数相同,则二管道的

沿

程水头损失 ( )

( 1) hfA > hfB ; ( 2) hfA = hfB ; ( 3) hfA < hfB ; ( 4) 尚不能确定大小。

41、边界层的外边界线可看成是 ( )

( 1) 一条流线 ; ( 2) 一条迹线 ; ( 3) 有旋流动与有势流动的分界线; ( 4) 层流与紊流的分界线。

42、紊流附加切应力y

x u u ''-=ρτ等号右端的负号是由于_____________________________。 43、圆管沿程水头损失系数 λ 的影响因素分别是:

层流 λ=f ( ) 紊流光滑区 λ=f ( )

紊流过渡区 λ=f ( ) 紊流粗糙区 λ=f ( )

44、水流临界雷诺数可以作为判别流动形态的准则数。圆管流的临界雷诺数Re=_________________,明槽

流的临界雷诺数 Re=_________________。

45、在紊流光滑区,沿程水头损失系数 λ 与相对粗糙度无关的原因是

______________________________________________________________.。

46、紊流形态可分为三个流区,其判别标准是:光滑区________________,过渡区__________________, 粗

糙区 _________________________。

第五章 量纲分析和液流相似原理

1、模型中测得闸孔收缩断面处的平均流速v m =1.5m/s ,采用的长度比尺λl =25,则原型中收缩断面处的平

流速v p =37.5m/s 。 ( )

2、沿程水头损失系数λ

的量纲与谢才系数c 的量纲相同。

( )

3、水流在紊流粗糙区时,要做到模型与原型流动的重力和阻力相似,只要模型与原型的相对粗糙度相等,

进行模型设计时就可用 ( )

(1) 雷诺相似准则 (2) 佛汝德相似准则 (3) 欧拉相似准则 (4) 韦伯相似准则

4、佛汝德相似准则考虑起主导作用的力是 ( )

(1)重力 (2)表面张力 (3)粘滞阻力 (4)紊动阻力

5、雷诺相似准则考虑起主要作用的力是 ( )

(1)重力 (2)压力 (3) 粘滞阻力 (4) 紊动阻力

6、某模型按雷诺相似准则设计,模型长度比尺 λl =10,选用的模型液体与原型相同。若测得模型某断面

平均流速 v m =100 cm /s ,则原型中相应的平均流速 vP=____________________________。

7、某溢洪道按重力相似准则设计模型,模型长度比尺 λl=50。如原型流量 q vP =1500 m 3/s ,则模型流量

q m =______________________。

8、根据雷诺相似准则导出流速、流量、时间、力、切应力等物理量比尺的表达式。

9、根据重力相似准则导出流速、流量、时间、力、压强等物理量比尺的表达式。

10、何谓量纲和谐性?试说明下列各式是否满足量纲和谐性?(1)τ=μdu /dy ; (2)V = c RJ ;(3) q v =1.4

H 2.5

11、某水闸泄水流量v q =120s /m 3,拟进行模型试验。已知实验室最大供水流量为 0.75 s /m 3,则可选

用的模型长度比尺λl 的最小值为多少?又测得模型闸门上的作用力 F=2.8 N ,则原型闸门上的作用力为多

少?

(61.7lmin =λ;N 1234F p =)

12、按基本量纲为[L 、T 、M]推导出动力粘性系数μ,体积弹性系数κ,表面张力系数σ,切应力τ,线

变形率ε,角变形率θ,旋转角速度ω,势函数?,流函数ψ的量纲。

13、将下列各组物理量整理成为无量纲数:(1)ρτ,,v ;(2)γρ?,,,v p ;(3)ρ,,,v l F ;(4)ρσ,,,v l 。

14、试用雷利法分析自由落体在重力影响下降落距离S 的公式为2kgt S =,假设S 和物体质量m ,重力加

速度g 和时间t 有关。

15、作用于沿圆周运动物体上的里F 与物体的质量m ,速度v 和圆的半径R 有关。试用雷利法证明F 与

R mv /2成正比。

16、假定影响孔口泄流流量Q 的因素有孔口尺寸a ,孔口内外压强差p ?,液体的密度ρ,动力粘度μ,又

假定容器甚大,其它边界条件的影响可以忽略不计,试用π定理确定孔口流量公式的正确形式。

(Q=m gH 2a 2

) 17、圆球在粘性流体中运动所受的阻力F 与流体的密度ρ,动力粘度μ,圆球与流体的相对运动速度v ,

球的直径D 等因素有关,试用量纲分析方法建立圆球受到流体阻力F 的公式形式。 (222D v C F d ρ=)

18、用π定理推导鱼雷在水中所受阻力D F 的表示式,它和鱼雷的速度v 、鱼雷的尺寸l 、水的粘度μ及水

的密度ρ有关。鱼雷的尺寸l 可用其直径或长度代表。 (F D =ρv 2l 2

f(R e ) )

19、水流围绕一桥墩流动时,将产生绕流阻力,该阻力和桥墩的宽度b (或柱墩直径d )、水流速度v 、水

的密度ρ和粘度μ及重力加速度g 有关。试用π定理推导绕流阻力表示式。 (F D =ρb 2v 2

f(R e ,F r )) 20、试用π定理分析管流中的阻力表达式。假设管流中阻力F 和管道长度l 、管径d 、管壁粗糙度?、管

流断面平均流速v 、液体密度ρ和粘度μ等有关。 (τ0=2),(v R d

f e ρ?) 21、试用π定理分析管道均匀流动的关系式。假设流速v 和水力坡度J 、水力半径R 、边界绝对粗糙度?、

水的密度ρ、粘度μ有关。 (J=),(e R R

f ?) 22、试用π定理分析堰流关系式。假设堰上单宽流量q 和重力加速度

g 、堰高P 、堰上水头H 、粘度μ、密

度ρ及表面张力系数σ等有关。 (q=m g 2 H 1.5

)

第六章 恒定管流

1、并联管道中各支管的单位机械能损失相同,因而各支管水流的总机械能也应相等。

( )

2、图示虹吸管中B 点的压强小于大气压强

( )

3、恒定管流的总水头线沿流程下降,而测压管

答案

第一章 导 论

1、( √ )

2、( × )

3、( × )

4、( 1 )

5、( 2 )

6、等于;相同;相反。

7、L/T 2 ;L 2/T ;M/LT 或FT/L 2。

8、变形; 弹性。9、直线; 渠底。10、连续介质。11、相反;相同。

12、解:等速直线运动;

F ∑=mgsin θ-τA=0 ; sin θ=13

55125

22=+; A =0.40×0.45 ; τ =μd d u y =μu δ

; μ=m g A u sin θδ

=0.1047 Pa ·s ;ν=μρ=1.102×10-4m 2/s 第二章 水静力学

1、 ( ? )

2、( ? )

3、( ? )

4、( ? )

5、( ? )

6、( √ )

7、( ? )

8、( ? )

9、( ? ) 10、( √ )

11、( 3 ) 12、( 3 ) 13、( 4 ) 14、( 3 ) 15、 ( 4 )

16、( 2 ) 17、( 4 ) 18、( 2 ) 19、( 1 ) 20、( 2 )

21、单位重量液体的总势能 22、单位重量液体的位置势能;单位重

量液体的压强势能 。23、0 ; 当地大气压强。 24、0.1 。

26、解:

27、解:

28、解:

29、解:

30、解: h p g

==ρ200.H O 2

32、解: h p p g

=-a 0ρ= 0.663 m 第三章 水动力学基础

1、 ( √ )

2、( × )

3、 ( × )

4、 ( √ )

5、 ( × )

6、( × )

7、( × )

8、( √ )

9、( × ) 10、( √ )

11、( √ ) 12、( √ ) 13、( × ) 14、( √ ) 15、( × )

16、( × ) 17、( √ ) 18、( 3 ) 19、( 2 ) 20、( 3 )

21、( 1 ) 22、( 3 ) 23、( 4 ) 24、( 1 ) 25、( 2 ) 26、( 2 ) 27、()∑-=1122v v q F v ββρ 其物理意义为作用于液体外力合力

等于单位时间内液体动量的变化。

28、液流从总流断面1流到断面2时单位重量液体的机械能损失的平

均值。其量纲是长度。

29、小于;低于。

30、总流过水断面上平均单位动能;长度。

31、不变;减小。

32、1─1与3─3和 1─1与 2─2 ; 2─2与 3─3。

33、0.014m 。

34、p A = p B ; p A > p B 。

35、渐变流;急变。

36、0.008 m 。

37、8.85 m /s 。

38、h 2 > h 1 。

39、v A = v B = v C =2g H hw ()-。

40、渐变流断面上 z + p /ρg =C ; 动水压强或动水总压力。

第四章 层流和紊流及水流阻力和水头损失

1、(√)

2、(?)

3、(√)

4、(?)

5、(√)

6、(?)

7、(?)

8、(√)

9、(?) 10、(?) 11、(√) 12、(√) 13、(?) 14、(?)

15、(√) 16、(?) 17、(?) 18、(?) 19、(√) 20、(?) 21、(√) 22、(√) 23、(?) 24、(?) 25、(√) 26、(√)

27、(3)28、(1) 29、(2) 30、(1) 31、(4) 32、(3) 33、(3) 34、(2) 35、(1) 36、(2) 37、(3) 38、(1) 39、(2) 40、(3) 41、( 3) 42、''u u x y ,的符号相反的机率很大,而τ取正值。 43、层流 :λ=f (Re );紊流光滑区 :λ=f ( Re );紊流过渡区:λ=f (Re, ?0r );紊流粗糙区:λ=f (?0r ) 44、

Re c =νd v cr ; Re c =ν

R v cr 。 45、粘滞底层厚度δ比绝对粗糙度? 大得多,粘滞底层把壁面粗糙完全掩盖,以致壁面粗糙对水流运动不起影响作用。 46、光滑区 (

4.00<δ? ); 过渡区 (64.00<δ?< );粗糙区 (60>δ? )。 第五章 量纲分析和液流相似原理

1、(×)

2、(×)

3、( 2 )

4、( 1 )

5、( 3 )

6、10 cm /s 。

7、0.085 m 3/s 。

8、 1v -=l λλ ;

l q λ=λ;=λt 2l λ;1F =λ;2l -τλ=λ 9、21l v λ=λ;5.2l q λ=λ; 21l t λ=λ;3

l F λ=λ;l P λ=λ 10、凡是正确反映客观规律的物理方程,其各项的量纲必须相同,称为量纲诣和性。

(1) 满足;(2) 满足;(3) 不满足; 11、61.7lmin =λ;N 1234F p =5-2(1) τ=C f ρv 2 ,(2)Δp=C p ρ

v 2 (3)F=ρl 2v 2 ,(4)σ/ρ=e w 1

lv 2

5-5 Q=m gH 2 a 2

5-6 22d D 2

v C F ρ= 5-7 F D =ρv 2l 2

f(R e )

5-8 F D =ρb 2v 2f(R e ,F r ) 5-9 τ0=2e v )R ,d

(

f ρ? 5-10J=)R ,R (f e ?

水力学实验-参考答案

水力学实验1-参考答案 水力学实验 参考答案 静水压强实验 1.同一静止液体内的测压管水头线是根什么线?测压管水头指z?p,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当pB?0时,试根据记录数据,确定水箱内的真空区域。 pB?0,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定?0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由

式?whw??0h0 ,从而求得?0。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 h?4?cos? d? 式中,?为表面张力系数;?为液体容量;d为测压管的内径;h 为毛细升高。常温的水, ??0.073Nm,??0.0098Nm3。水与玻璃的浸润角?很小,可以认为cos??1.0。于是有 h?29.d (h、d均以mm计) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,?减小,毛细高度亦较净水小;当采用 有机下班玻璃作测压管时,浸润角?较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水 平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

水力学复习资料重点讲义资料

水力学复习资料 第零章绪论 0.1水力学的任务与研究对象(了解) 水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及 其实际应用.水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律?它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学. 0.2液体的粘滞性(理想液体与实际液体最大的差别) 粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力. 0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关. 即 0.4牛顿内摩擦定律的另一种表述(了解)P7 0.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高, 其值越小(液体的流动性是随温度的升高而增强的)

0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3) 0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑) 0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化) 0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面上.这就是物理学中所讲的毛细现象. 0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,5 0.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质) 0.12把液体看作连续介质的意义 如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的分析方法.

水力学实验报告思考题答案(供参考)

水力学实验报告 实验一流体静力学实验 实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 实验三不可压缩流体恒定流动量定律实验 实验四毕托管测速实验 实验五雷诺实验 实验六文丘里流量计实验 实验七沿程水头损失实验 实验八局部阻力实验 实验一流体静力学实验 实验原理 在重力作用下不可压缩流体静力学基本方程 或 (1.1) 式中:z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 据此可用仪器(不用另外尺)直接测得S0。 实验分析与讨论

1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 (h、d单位为mm)

水力学实验报告

水力学实验扳告 院: 级: 名: 号: 第三组同学: 姓名: 学号: 姓名: 学号: 姓名: 学号: 201 5、12、25

1平面静水总压力实验 1x 1实验目得 1、 掌握解析法及压力图法,测定矩形平而上得静水总压力. 2、 验证平而静水压力理论。 1x 2实验原理 作用在任意形状平面上得静水总压力P 等于该平而形心处得压强处与平而而积 A 得乘积: 方向垂宜指向受压而0 对于上、下边与水而平行得矩形平面上得静水总压力及其作用点得位置,可 采 用压力图法:静水总压力P 得大小等于压强分布图得面积与以宽度h 所构成得压 强分布体得体积。 若压强分布图为三角形分布、如图3—2,则 式中"一为三角形压强分布图得形心距底部得距离。 若压强分布图为梯形分布,如图3 -3,则 式中:0-为梯形压强分布图得形心距梯形底边得距离. 本实验设备原理如图3-4. 由力矩平衡原理。 图M fff 水压强分布图(三角 图1-2静水压强分布图{梯

英中: 求出平面静水总压力 1x 3实验设备 在自循环水箱上部安装一敞开得矩形容器,容器通过进水开关Kh放水开关& 与水箱连接。容器上部放置一与扇形体相连得平衡杆,如图3-5所示。

1、4实验步骤 U 熟悉仪器,测记有关常数。 2、用底脚螺丝调平,使水准泡居中。 3、调整平衡锤使平衡杆处于水平状态。 4、 打开进水阀门IC,待水流上升到一定高度后关闭. 5、 在天平盘上放置适量舷码。若平衡杆仍无法达到水平状态,可通过进水开 关进水 或放水开关放水来调节进放水量直至平衡。 6、 测记舷码质量及水位得刻度数。 7、重复步骤4",水位读数在loom m 以下做3次,以上做3次. 8、打开放水阀门K2?将水排净,并将舷码放入盒中,实验结朿。 1、5实验数据记录及处理 3、实验结果 C m 1、 有关常数记录: 天平臂距离“ cm,扇形体垂直距离(扇形半径)£=_cm. 扇形体宽h= _____ C m,矩形端面高5= 2、

水力学实验报告思考题答案(想你所要)..

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 成果分析及讨论 1.测压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w1-2, h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 2.流量增加,测压管水头线有何变化?为什么? 有如下二个变化: (1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头 ,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大, 就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减 小,故的减小更加显著。 (2)测压管水头线(P-P)的起落变化更为显著。 因为对于两个不同直径的相应过水断面有 式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。 3.测点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm), 表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。 下述几点措施有利于避免喉管(测点7)处真空的形成: (1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

水力学实验指导书

实验一伯努利方程实验 一、实验目的 1.验证流体恒定总流的能量方程; 2.通过对动水力学诸多水力现象的实验分析研讨,进一步掌握有压管流中动水力学的能量转换特征; 3.掌握流速、流量、压强等动水力学水力要素的实验测量技能。 二、实验属性 综合性试验。本实验涉及的《工程流体力学》课程知识是综合性的。内容有: 流体力学相似性原理和因次分析、流体力学连续性方程、能量方程及动量方程等。 1、自循环供水器; 2、实验台; 3、可控硅无级调速器; 4、溢流板; 5、稳水孔板; 6、恒压水箱; 7、测压计; 8、滑动测量尺; 9、测压管; 10、实验管道;11、测压点;12、毕托管;13、实验流量调节阀 四、实验要求 实验前应预习实验报告。 实验开始前,待一切实验准备工作就绪后,报告指导教师。在启动设备之前,必须经指导教师检查认可。 实验结束时,实验数据要经指导教师审阅、签字,并整理好实验现场后,按要求在实验记录本上填写有关内容,方可离去,严禁将实验室的任何物品带走。

实验完成后应按学校对实验报告的格式、纸张要求写出实验报告。实验报告描述应清楚、肯定,语言通顺,用语专业、准确;结构严谨、层次清晰。实验报告数据观察细致,记录及时、准确、真实,外文、符号、公式准确,使用统一规定的名词和符号。 实验报告的内容要求: 1.实验名称; 2. 实验目的; 3.实验原理; 4. 实验装置; 5.实验步骤; 6. 实验原始数据; 7.实验数据处理及结果; 8.思考题分析。 五、实验原理 在实验管路中沿管内水流方向取n 个过水断面。可以列出进口断面(1)至另一断面(i )的能量方程(i=1,2,3,……,n ) )1(22111 122i w i i i i h g v a p Z g v a p Z -+++=++γγ 取1a =2a =……n a =1选好基准面,从已设置的各断面的测压管中读出γ p Z + 值,测出 通过管路的流量,即可计算出断面平均流速v 及g av 22 ,从而即可得到各断面测管水头和总 水头。 六、实验步骤 1、熟悉实验设备,分清哪些测管是普通测压管,哪些是毕托管测压管,以及两者功能的区别。 2、打开开关供水,使水箱充水,待水箱溢流,检查调节阀关闭后所有测压管水面是否平齐。如不平则需要查明故障原因(例连接管受阻、漏气或夹气泡等)并加以排除,直至调平。 3、开阀13,观察思考: 1) 测压管水头线和总水头线的变化趋势; 2) 位置水头、压强水头之间的相互关系; 3) 测点(2)、(3)测管水头同否?为什么? 4) 测点(10)、(11)测管水头是否不同?为什么? 5) 当流量增加或减少时测管水头如何变化? 4、调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(毕

水力学2复习资料(长理港航)

水力学(二)复习资料 第一部分:判断题 1、当水头H 降低,宽顶堰可能转化为实用堰。( ) 2、堰流计算的特点是必须考虑局部水头损失j h 的影响。( ) 3、堰流自由出流的能力小于淹没出流的能力。 ( ) 4、消能池深的设计流量大于消能池长的设计流量( ) 5、均匀流一定是势流。 ( ) 6、做圆周运动的液体一定是有涡流。( ) 7、对明渠非恒定流而言,当0??S Q 时将产生涨水波。( ) 8、平面势流中,某根流线各点的流速势函数值均相等。 ( ) 9、流网中每个网格的对角线应该正交。 ( ) 10、边界层外的液体应视为实际液体,边界层内的液体可视为理想液体。 ( ) 11、边界层内的液体型态只能是紊流 ( ) 12、确定底流式消能池深,应该采用最大流量来计算。( ) 13、在其他情况相同的前提下,弧形闸门的过流能力强于平面闸门。 ( ) 14、理想液体的流动不一定是有势流动。 ( ) 15.只要下游水位不超过宽顶堰的堰顶,堰流就必然为自由出流。 ( ) 16.正坡地下河槽中的浸润线可存在于a 区或b 区。 ( ) 17.堰流水力计算时,水头损失必须同时考虑沿程与局部水头损失。 ( ) 18.只要是运动液体,则其任一点的动水压强各方向是不相等的。 ( ) 19.在远驱式水跃衔接的情况下,堰的过流能力按自由出流公式计算。 ( ) 20. 底流式消力池池深和池长的设计流量都采用最大流量。 ( ) 21.渗流系数及边界条件相同,作用水头不同,两者渗流流网相同。 ( ) 22.无旋运动必须满足y x u u x y ??=??。 ( ) 23.实际水深等于其相应的临界水深时的渗流,称为临界渗流。 ( ) 24.底流消能设计中,取最大流量作为设计流量时,消力池的深度也最大。 ( ) 25.堰顶厚度δ与堰上水头0H 之比0.67<0H δ <2.5时的堰流为实用堰流 。 ( )

工程流体力学及水力学实验报告(实验总结)

工程流体力学及水力学实验报告实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测 压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B <0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂 直高度h和h 0,由式,从而求得γ 。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm, =0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒

水力学复习资料汇总

第零章绪论 0.1水力学的任务与研究对象(了解) 水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及其实际应用. 水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律.它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学. 0.2液体的粘滞性(理想液体与实际液体最大的差别) 粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力. 0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的 内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关.即 . 0.4牛顿内摩擦定律的另一种表述(了解)P7 0.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高,其值越小(液体的流动性是随温度的升高而增强的) 0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3) 0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑) 0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化) 0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由 于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面 上.这就是物理学中所讲的毛细现象. 0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,5 0.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的 连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质) 0.12把液体看作连续介质的意义 如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和 时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的 分析方法.

水力学的实验报告

水力学的实验报告 水力学的实验报告 今天为大家收集资料整理回来了关于水力学实验报告,希望能够为大家带来帮助,希望大家会喜欢。 本学期我们进行了七周的水力学实验,从这些实验中我学到了很多。 例如,所有实验都是需要耐心地去测量一组一组的数据,还需要在实验后认真处理核对每一组数据。这些实验加强了我的动手能力,并且培养了我的独立思考能力。特别是在做实验报告时,因为在做数据处理时出现很多问题,如果不解决的话,将会很难的继续下去。 例如:数据处理时,遇到要进行数据获取,插入图表命令,这些就要求懂得excel软件一些基本操作。通过这几次的实验,我不仅学会了如何正确使用实验仪器,还学习到了认真严肃的科研精神,并且激发了我学习新事物的兴趣,这些我个人觉得都是极为可贵的。 在实验开始之前,我认为最为重要的就是提前预习实验内容:包括实验仪器、实验原理、实验步骤以及实验分析总结。我认为这里面需要我们花费很多心思去思考体会,想出自己对什么有疑问,以便上课时向老师提问寻求解答。 以我们的电拟实验为例:当时我们做这个实验时反复做了很多遍,也向老师提出了一些疑问。在开始时,仪器需要校准。因为上下游电势差不是10V,仅仅这一点我们就搞了很长时间。最终我们得出的误差原因是因为电笔接触不好影响实验进行,所以我们更换了其他不可使用仪器的完好的电笔,实验才得以进行。其次,实验分析阶段是培养我们自己独立思考、分析问题和解决问题的能力的阶段。

我认为培养这种能力的前题是你对每次实验的态度。如果我们每次对待实验都是随随便便的态度,抱着等老师教你怎么做,拿同学的报告去抄,必然会导致我们对待实验过程的懈怠。尽管可能也会的到好的成绩,但这对将来工作态度的养成是极为不利的。 最后,也是最为重要的就是关于实验的思考问题:哪些实验仪器能改进,哪些数据需要重新获取等都是我们要考虑的。像堰流实验,以为我们分析的实验误差很大,所以我和同组的王琦玮同学就去做了3遍才最终确定的数据,局部水头损失也是如此。关于动量方程实验仪器,做实验中砝码的固定和加载都是一项难题,同时这也对实验精确性产生了极大影响,对此,我想到是不是可以采用电磁体来代替人工加载(不知可不可行)。虽然没有对实验仪器改进产生正面意义,但是这促进了我深入思考,我想这便是让学生做实验的最终目的吧。

水力学实验1-参考答案

水力学实验 参考答案 静水压强实验 1.同一静止液体内的测压管水头线是根什么线? 测压管水头指p z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当0?B p 时,试根据记录数据,确定水箱内的真空区域。 0?B p ,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定0γ。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 γ θσd h cos 4= 式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。常温的水,

m N 073.0=σ,30098.0m N =γ。水与玻璃的浸润角θ很小,可以认为0.1cos =θ。于是有 d h 7.29= (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5和水箱中的液体而言,该水平面不是水平面。 6、用该实验装置能演示变液位下的恒定水流吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由C 进入水箱。这时阀门的出流就是变液位下的恒定水流。因为由观察可知,测压管1的液面始终与C 点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医学上称这为马利奥特容器的变液位下恒定流。

水力学期末复习整理

水力学期末复习整理 第一章绪论 1.液体质点:微观上充分大,宏观上充分小的液体微团。 2.连续介质:液体和气体充满一个空间时,分子间没有间隙,其物理性质和运动要素都是连续分布的。 3.液体的易流动性:静止时,液体不能承受切力及抵抗剪切变形的特性。 4.液体的粘滞性:在运动状态下,液体所具有抵抗剪切变形的能力。(理想液体无粘滞性) 5.作用在液体上的力按作用特点分为质量力(主力,惯性力)和表面力(压力,切力)。 6.牛顿液体:凡τ与 dy du 呈过原点的正比例关系的液体 第二章 水静力学基础 1.静水压强特点:①作用线垂直于作用面;②同一点处,静水压强各向等值。 2.等压面特性:质量力与等压面互相垂直。 常见等压面:自由液面;同种相连通液体水平面;不相混溶液体交接面。 3.位置水头z :计算点的位置高度,即计算点距计算基准面的高度。 第三章 水动力学基础 1.描述液体运动的两种方法:拉格朗日法;欧拉法。 2.欧拉法的基本概念: 流线:同一时刻与流场中各质点运动速度矢量相切的曲线。 流线的性质:①不相交或不突然转折;②光滑连续;③与恒定流流线重合;④与均匀流流线平行。 流管:在流场中取一封闭几何曲线,在此曲线上各点作流线,则可构成一管状流动界面。 流股:流管内的液流,又称为流束。 过水断面:垂直于流线簇所取的断面。 元流:过水断面无限小的流股。 总流:无数元流的总和。 3.流量Q :单位时间内流经过水断面的液体体积。Q<0流进;Q>0流出。 4.液流分类:①恒定流与非恒定流:运动要素不随时间变化的流动称为恒定流; ②均匀流与非均匀流:流线簇彼此呈平行直线的流动称为均匀流。 非均匀流中又分为渐变流和急变流。 ③有压流与无压流 5.毕托管测流速;文丘里管(有压管)测流量。 第四章 水流阻力与水头损失 1.水头损失类型:沿程水头损失hf ;局部水头损失hj 。 2.黏性底层:在实际液流中,由于液体与管壁间的附着力作用,在管壁上会有一层极薄的液体贴附在管壁上不动,其流速为零。厚度λ δRe 81.32d = 。 3.绝对粗糙度Δ:管壁粗糙突出的平均高度。 4.绝对粗糙度对水流运动的影响:①Δ<δ,管壁绝对粗糙度被黏性底层淹没,Δ对紊流结构基本上没有影响,黏性底层成了紊流流核的天然光滑壁面,称为“水力光滑管”;②Δ>δ,管壁绝对粗糙度突出于黏性底层之外,并深入到紊流的流核之中,可使液流产生旋涡,加剧紊流的脉动,称为“水力粗糙管”。 5.当量粗糙度:和工业管道沿程阻力系数相等的同直径人工均匀粗糙管道的绝对粗糙度。 6.局部边界条件急剧改变是引起局部水头损失的直接原因。 水流的影响有:①导致液流中产生旋涡,加大水流的紊乱与脉动,增大液流的能量损失;②造成液流断面流速重新分布,加大流速梯度及紊流附加切应力,导致局部较集中的水头损失。 第五章 有压管流与孔口﹑管嘴出流 1.有压管路的类型:简单管路;复杂管路(串联,并联,管网);长管与短管。 短管:必须同时计算管路沿程水头损失,局部水头损失及流速水头的管路。(L/d<1000) 长管:管路流速水头及局部水头损失可以忽略不计的管路。(L/d>1000) 第六章 明渠水流 1.棱柱形渠道:断面形状及尺寸沿程不变的渠道(过水面积只随水深h 变化,与断面位置无关); 非棱柱形渠道:断面形状及尺寸沿程变化的渠道(过水面积与水深h 及断面位置有关)。 2.明渠均匀流发生的条件:属于恒定流,流量沿程不变;长直形的棱柱形顺坡(i>0)渠道;渠道糙率n 及坡底i 沿程不变。 明渠均匀流的水力特性:是一种等深,等速直线运动,断面流速沿程不变;总水头线﹑测压管水头线及渠底线三者平行,因此水力坡度J ﹑测压管坡度Jp 及渠底坡度i 三者相等。 3.明渠底坡(渠道底坡i ):渠道沿程单位长度内的渠底高程变化值,又称比降。 按底坡几何特征分为:i>0,顺坡渠道;i=0,平坡渠道;i<0,逆坡渠道。 明渠水力最佳断面:渠道过水断面面积A ,糙率n 及渠道坡底一定时,Q 最大的断面形状。(A 一定,Q 最大;Q 一定,A 最小)

水力学第四版复习资料整理

水力学 一、概念 1.水力学:是一门技术学科,它是力学的一个分支。水力学的 任务是研究液体(主要是水)的平衡和机械运动的规律及其 实际应用。 2.水力学:分为水静力学和水动力学。 3.水静力学:关于液体平衡的规律,它研究液体处于静止(或 相对平衡)状态时,作用于液体上的各种力之间的关系。 4.水动力学:关于液体运动的规律,它研究液体在运动状态时, 作用于液体上的力与运动要素之间的关系,以及液体的运动 特性与能量转换等。 5.粘滞性:当液体处于运动状态时,若液体质点之间存在着相 对运动,则质点间要产生内在摩擦力抵抗其相对运动,这种 性质称为液体的粘滞性,此内摩擦力又称为粘滞力。 6.连续介质:一咱连续充满其所占据空间毫无空隙的连续体。 7.理想液体:就是把水看作绝对不可压缩、不能膨胀、没有粘 滞性、没有表面张力的连续介质。 8.质量力:通过所研究液体的每一部分质量而作用于液体的、 其大小与液体的质量与比例的力。如重力、惯性力。 9.单位质量力:作用在单位质量液体上的质量力。 10.绝对压强:以设想没有大气存在的绝对真空状态作为零点 计量的压强。p’>0

11.相对压强:把当地大气压Pa作为零点计量的压强。p 12.真空:当液体中某点的绝对压强小于当地压强,即其相对 压强为负值时,则称该点存在真空。也称负压。真空的大小用真空度Pk表示。 13.恒定流:在流场中任何空间点上所有的运动要素都不随时 间而改变,这种水流称为恒定流。 14.非恒定流:流场中任何空间点上有任何一个运动要是随时 间而变化的,这种水流称为非恒定流。 15.流管:在水流中任意取一微分面积dA,通过该面积周界上 的每一个点,均可作一根流线,这样就构成一个封闭的管状曲面,称为流管。 16.微小流束:充满以流管为边界的一束液流。 17.总流:有一定大小尺寸的实际水流。 18.过水断面:与微小流束或总流的流线成正交的横断面。 19.流量:单位时间内通过某一过水断面的液体体积。Q 20.均匀流:流线为相互平行的直线的水流 21.非均匀流:流线不是互相平行的直线的水流。按流线不平 行和弯曲的程度,可分为渐变流和急变流两种类型。 22.渐变流:当水流的流线虽然不是互相平行直线,但几乎近 于平行直线时称为渐变流(或缓变流)。所以渐变流的情况就是均匀流。 23.急变流:若水流的流线之间夹角很大或者流线的曲率半径

水力学实验报告思考题答案(想你所要)

水力学实验报告思考题答案(想你所要)

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 果分析及讨论 压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J恒为正,即J>水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w 失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 量增加,测压管水头线有何变化?为什么? 下二个变化: 流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头,任一 的总水头E及管道过流断面面积A为定值时,Q增大,就增大,则必减小。而且随流量的增加阻力损失亦 任一过水断面上的总水头E相应减小,故的减小更加显著。 测压管水头线(P-P)的起落变化更为显著。 对于两个不同直径的相应过水断面有 为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)化就更为显著。 点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm),表明均 上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的 几点措施有利于避免喉管(测点7)处真空的形成: 减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。 显然(1)、(2)、(3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实用意义。因为若管系落差不变,单单降往往就可完全避免真空。例如可在水箱出口接一下垂90弯管,后接水平段,将喉管的高程降至基准高程0—0,比位比压能p/γ得以增大(Z),从而可能避免点7处的真空。至于措施(4)其增压效果是有条件的,现分析如下:

水力学实验-1

水力学实验 指导书与报告 专业班级学号姓名 贵州大学土木建筑工程学院 水力学实验室

目录 1.实验一:流体静力学实验 2.实验二:不可压缩流体恒定流能量方程(伯诺里方程)实验4.实验三:雷诺实验 5.实验四:文丘里流量计实验

实验一:流体静力学实验 一、实验目的要求 1.掌握用测压管测量流体静压强的技能; 2。验证不可压缩流体静力学基本方程; 3.通过对诸多流体静力学现象的实验分析研讨,进一步提高解决静力学实 际问题的能力。 二、实验装置 本实验装置如图1.1所示 图1.1流体静力学实验装置图 1.测压管;2.带标尺测压管;3.连通管;4.真窄测压管;5.U 型测压管 6.通气阀;7.加压打气球;8.截止阀; 9.油柱;l0.水柱;11.减压放水阀。 三、实验原理 1.在重力作用下不可压缩流体静力学基本方程 p z const γ + = 或 0p p h γ=+ 式中: Z ——被测点在基准面以上的位置高度

p ——被测点的静水压强。用相对压强表示,以下同; 0p ——水箱中液面的表面压强; γ——液体容重; H ——被测点的液体深度 另对装有水油(图1.2及图1.3)U 型测管,应用等压面可得油的比重S 。有下列关系:01 012 h S h h ωγγ= = + 据此可用仪器(不用另外尺)直接测得S 。 2、采用加压法、减压法来测定各断面的压强,油的容重 四、实验方法与步骤 1.搞清仪器组成及其用法。 包括: 1)各阀门的开关; 2 )加压方法 关闭所有阀门(包括截止阀),然后用打气球充气; 3 )减压方法 开启筒底阀ll 放水; 4 )检查仪器是否密封,加压后检查测管1、2、5液面高程是否恒定。 若下降,表明漏气,应查明原因并加以处理。 2.记录仪器号No .及各常数(记入表1.1)。 3.量测点静压强(各点压强用厘米水柱高表示)。 1)打开通气阀6(此时0P =O),记录水箱液面标高?。和测管2液面标高H ? (此时0?=h ?); 2)关闭通气阀6及截止阀8,加压使之形成0P >O ,测记0?及h ? “;

工程水力学复习资料

工程水力学 复习要点 液体的主要物理性质 连续介质、密度、粘滞性、压缩性、表面张力 一、水跃复习要点 1.棱柱体水平明渠的水跃方程 2.共轭水深的计算 3.水跃跃长的计算 1、一、水跃的概念 水跃(hydraulic jump):是明槽水流从急流状态过渡到缓流状态时水面突然跃起的局部水力现象。 水跃的分区旋滚区:水跃区域的上部呈饱搀空气的表面旋滚似的水涡。 主流区:水跃区域下部为在铅直平面内急剧扩张前进的水流。 水跃区的几个要素 跃前水深——跃前断面(表面旋滚起点所在过水断面)的水深; 跃后水深——跃后断面(表面旋滚终点所在过水断面)的水深;水跃高度a=h“-h’水跃长度——跃前断面与跃后断面之间的距离 二、水跃的基本方程 1. 水跃函数

2.水跃的基本方程 式中、分别为跃前水深、跃后水深,称为共轭水深,即对于某一流量Q,具有相 同的水跃函数的那两个水深,即为共轭水深 三、水跃的形式 临界水跃:当时,水跃的跃首刚好发生在收缩断面上,跃后水深等于下游水深,称为临界水跃。 远离式水跃:当时,水跃发生在收缩断面之后,跃后水深大于下游水深,称为远离式水跃。 淹没水跃:当时,当下游水深大于临界水跃的跃后水深时,水跃淹没收缩断面,称为淹没水跃。 二、堰流及闸孔出流复习要点 1、概述 堰和堰流:无压缓流经障壁溢流时,上游发生壅水,然后水面跌落,这一局部水力现象称为堰流(Weir Flow);障壁称为堰。 堰流的基本特征量 1.堰顶水头H;

2.堰宽b; 3.上游堰高P、下游堰高P1; 4.堰顶厚度δ; 5.上、下水位差z; 6.堰前行近流速υ0。 堰的分类 堰流及孔流的界限 堰流:当闸门启出水面,不影响闸坝泄流量时。 孔流:当闸门未启出水面,以致影响闸坝泄流量时。 堰流和孔流的判别式 2、堰流的基本公式 式中:m——堰流流量系数,m= 堰流公式 式中: ——淹没系数,≤1.0; ——侧收缩系数,≤1.0 。 m0——计及行近流速的流量系数。

水力学实验总结报告

水力学实验总结报告 经过八个星期的学习与实验,我学到了很多相关的知识,也对水力学实验部分有了自认为较为清醒的体会与感悟。 因为之前有做过大学物理实验,明白在实验过程的注意事项和实验结束后的数据处理在实验的整个过程尤为重要,于是在水力学实验开课之前我仔细阅读了水力学实验课本第^一章和第十二章关于测量误差及精度分析与实验数据的处理的内容,从中学到了很多需要在实验时与实验后处理时特别注意的方面,这对我后续所有实验的进行起了很好的指导作用。 在每一次实验前,老师都会向我们讲解实验的大概原理与操作步骤,因为有两个班和很多组的关系,老师的讲解我们也不是能听的很清楚,这就要求我们在实验准备阶段仔细的弄清实验原理与可能得出的实验结果,以便我们在做实验的过程中及时判断实验数据的准确性,从而避免因错误的实验操作导致的错误结果。当然在这一部分我们做的相对并不是很好,有时甚至在上课 前并未对实验原理及过程进行很好的预习。在做实验的过程中,我们不能简单的按照实验步骤来操作,在实验的过程中应仔细分析每一次得出的结果(当然,太固执与每一次的结果是无益的。),及时验算并发现错误,以便后续实验步骤的进行。 实验中要注意的事项有很多,一个小小的疏忽就很有可能导致整个实验的失败。我们也吃了这方面的亏,做第一个实验静水

压强实验时没有很好的理解装置的原理与应该特别注意的细节, 得出来的实验结果也不是特别的令人满意,在后续处理数据的时 候发现有一个实验结果得出的误差很大,效果很不好。开始时我 们打算舍弃所有的数据等到第二周重做,可是后来我们在分析思考题时发现在用实验数据来计算油的密度来验算结果时,有一项 结果是具有前后联系的,因而它的变化范围也是具有一定区间的,所以我们发现实验的误差来源于我们数据读数的估读位的误差,然后我们将这一数据的估读位做了一小幅度的调整,得出的 结果便相对十分准确了。从中我们便明白了一个实验并不是说实验结束了,数据处理完了,它就结束了,相反,在一个实验结束后对它的结果的思考与理解却是整个实验中最关键的一环。 而对于我来说,对一个实验最好的理解无益于在处理实验数据的时候了,有时候通过对计算公式的理解,对结果的分析,对思考题的解读,确实促进了我对水力学每一相关部分的认识。相对于以前需要无数次死记硬背的部分,难以理解的公式,通过对 水力学实验这一阶段的学习,我发现再去理解与记忆他们变得容易多了,这确实是一份难得的收获与体会。 当然,在处理实验数据与得出结果的过程中,也并不总是一 帆风顺的,我们也遇到了很多难题,最让我印象深刻的是水电比拟实验中流网的绘制与计算。因为实验时仪器总是并不能满足中线附近不能满足电压等于5V的缘故,我们5V的等势线偏向左边0.9厘米左右,这就造成了我们的等势线的左右不对称,给我们

相关文档
最新文档