几种排序算法流程图

合集下载

冒泡法排序流程图

冒泡法排序流程图

冒泡法排序流程图冒泡排序是一种基本的排序算法,它的原理是相邻的元素之间两两比较,如果顺序错误就进行交换,这样一轮比较下来,最大(或最小)的元素就会移动到最后(或最前)的位置。

冒泡排序的流程图如下:```开始设置列表list,列表长度n循环i从0到n-1嵌套循环j从0到n-i-1比较list[j]和list[j+1]如果list[j] > list[j+1],则交换list[j]和list[j+1]的位置结束内层循环结束外层循环输出排序后的列表list结束```下面我们通过一个例子来解释冒泡排序的具体流程:假设我们有一个列表 [5, 3, 8, 6, 4] 需要进行排序。

第一轮比较:比较 5 和 3,5 > 3,交换位置,列表变为 [3, 5, 8, 6, 4]比较 5 和 8,5 < 8,不交换位置,列表不变比较 8 和 6,8 > 6,交换位置,列表变为 [3, 5, 6, 8, 4]比较 8 和 4,8 > 4,交换位置,列表变为 [3, 5, 6, 4, 8]第一轮比较后,最大的元素 8 移动到了列表的最后。

第二轮比较:比较 3 和 5,3 < 5,不交换位置,列表不变比较 5 和 6,5 < 6,不交换位置,列表不变比较 6 和 4,6 > 4,交换位置,列表变为 [3, 5, 4, 6, 8]第二轮比较后,第二大的元素 6 移动到了列表的倒数第二个位置。

第三轮比较:比较 3 和 5,3 < 5,不交换位置,列表不变比较 5 和 4,5 > 4,交换位置,列表变为 [3, 4, 5, 6, 8]第三轮比较后,第三大的元素 5 移动到了列表的倒数第三个位置。

第四轮比较:比较 3 和 4,3 < 4,不交换位置,列表不变第四轮比较后,第四大的元素 4 移动到了列表的倒数第四个位置。

经过四轮比较和交换操作,列表已经完全有序,最后输出的排序后的列表为 [3, 4, 5, 6, 8]。

排序的实验报告范文

排序的实验报告范文

排序的实验报告范文数据结构实验报告实验名称:实验四排序学生姓名:班级:班内序号:学号:日期:2022年12月21日实验要求题目2使用链表实现下面各种排序算法,并进行比较。

排序算法:1、插入排序2、冒泡排序3、快速排序4、简单选择排序5、其他要求:1、测试数据分成三类:正序、逆序、随机数据。

2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。

3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)。

4、对2和3的结果进行分析,验证上述各种算法的时间复杂度。

编写测试main()函数测试线性表的正确性。

2、程序分析2.1存储结构说明:本程序排序序列的存储由链表来完成。

其存储结构如下图所示。

(1)单链表存储结构:结点地址:1000HA[2]结点地址:1000H1080H……头指针地址:1020HA[0]头指针地址:1020H10C0H……地址:1080HA[3]地址:1080HNULL……地址:10C0HA[1]地址:10C0H1000H……(2)结点结构tructNode{intdata;Node某ne某t;};示意图:intdataNode某ne某tintdataNode某ne某t2.2关键算法分析一:关键算法(一)直接插入排序voidLinkSort::InertSort()直接插入排序是插入排序中最简单的排序方法,其基本思想是:依次将待排序序列中的每一个记录插入到一个已排好的序列中,直到全部记录都排好序。

(1)算法自然语言1.将整个待排序的记录序列划分成有序区和无序区,初始时有序区为待排序记录序列中的第一个记录,无序区包括所有剩余待排序的记录;2.将无须去的第一个记录插入到有序区的合适位置中,从而使无序区减少一个记录,有序区增加一个记录;3.重复执行2,直到无序区中没有记录为止。

(2)源代码voidLinkSort::InertSort()//从第二个元素开始,寻找前面那个比它大的{Node某P=front->ne某t;//要插入的节点的前驱while(P->ne某t){Node某S=front;//用来比较的节点的前驱while(1){if(P->ne某t->data<S->ne某t->data)//P的后继比S的后继小则插入{inert(P,S);break;}S=S->ne某t;if(S==P)//若一趟比较结束,且不需要插入{P=P->ne某t;break;}}}}(3)时间和空间复杂度最好情况下,待排序序列为正序,时间复杂度为O(n)。

快速排序算法c语言实验报告

快速排序算法c语言实验报告

快速排序算法c语言实验报告冒泡法和选择法排序C程序实验报告实验六:冒泡法排序物理学416班赵增月F12 2011412194日期:2013年10月31日一·实验目的 1.熟练掌握程序编写步骤;2.学习使用冒泡法和选择法排序;3.熟练掌握数组的定义和输入输出方法。

二·实验器材1.电子计算机;2.VC6.0三·实验内容与流程1.流程图(1)冒泡法(2)选择法 2.输入程序如下:(1)冒泡法#includestdio.h void main() { int a[10]; int i,j,t; printf(请输入10个数字:\n); for(i=0;i10;i++)scanf(%d,&amp;a[i]); printf(\n); for(j=0;j9;j++)for(i=0;i9-j;i++) if(a[i]a[i+1]) { t=a[i]; a[i]=a[i+1]; a[i+1]=t; } printf(排序后如下:\n); for(i=0;i10;i++) printf(%d,a[i]); printf(\n); }(2)选择法#includestdio.h void main() { int a[10]; int i,j,t,k; printf(请输入10个数字:\n); for(i=0;i10;i++)scanf(%d,&amp;a[i]);printf(\n); for(i=0;i9;i++) {k=i;for(j=i+1;j10;j++) if (a[k]a[j])k=j;t=a[i];a[i]=a[k];a[k]=t; }printf(排序后如下:\n); for(i=0;i10;i++)printf(%d,a[i]); printf(\n); }四.输出结果(1冒泡法)请输入10个数字:135****2468排序后如下:12345678910 (2)选择法输出结果请输入10个数字:135****6810排序后如下:12345678910五.实验反思与总结1.冒泡法和选择法是一种数组排序的方法,包含两层循环,写循环时,要注意循环变量的变化范围。

算法与程序框图(算法流程图)

算法与程序框图(算法流程图)

程序框图的发展趋势
可视化编程
随着可视化技术的发展,程序框 图成为一种直观的编程方式。通 过图形化的方式描述程序逻辑, 降低了编程难度,提高了开发效 率。
交互式编程
交互式编程让用户在编程过程中 能够实时查看程序运行结果,及 时调整代码。这种编程方式提高 了开发效率和程序质量。
智能生成与自动优

基于机器学习和人工智能技术, 程序框图可以自动生成和优化程 序代码。这大大减少了编程工作 量,提高了开发效率。
算法的复杂度分析
随着计算机科学的发展,算法的复杂度分析越来越受到重 视。人们不断探索更高效的算法,以提高计算效率和准确 性。
机器学习与人工智能算法
随着人工智能的兴起,机器学习与人工智能算法成为研究 热点。这些算法能够从大量数据中自动提取有用的信息, 为决策提供支持。
并行计算与分布式算法
为了处理大规模数据和复杂问题,并行计算和分布式算法 成为研究重点。这些算法能够充分利用多核处理器和分布 式系统的优势,提高计算性能。
算法的表示方法
01
自然语言描述
用简洁明了的文字描述算法的步骤。
流程图
用图形符号表示算法的步骤和流程。
03
02
伪代码
用类似于编程语言的简化和结构化 形式描述算法。
程序代码
用编程语言实现算法的具体代码。
04
算法的复杂度分析
时间复杂度
评估算法执行时间随输入规 模增长的情况,表示为 O(f(n))。
空间复杂度
选择结构是根据条件判断选择不同的执行路径的程序框图 结构。它使用判断框来表示条件判断,根据条件的结果选 择不同的执行路径。选择结构可以有效地处理具有多个分 支的情况,提高程序的灵活性和适应性。

排序算法的程序实现PPT精品文档

排序算法的程序实现PPT精品文档
next i
•.
•3
练习1、下表中的原始数据是一组学生的军训打靶成绩, 若采用冒泡排序算法对其进行排序,则第1~4遍的排序 结果分别是()
原始数据 98 95 85 93 88
第1遍
第2遍
第3遍
第4遍
•.
•4
2、陈晓峰和同学们去农科院开展研究性学习,大家都收获很大, 晓峰设计了一个Visual Basic程序,他把同学们收集到的水稻亩 产量和同学姓名已分别保存在数组a和数组b中,第i个同学收集 的亩产量保存在a(i)中,对应的同学姓名保存在b(i)中,最后按 亩产量从高到低进行排序。
Dim b(1 To n) As String
Private Sub Command1_Click()
Dim i As Integer, j As Integer, c As Single, t As String
For i = 1 To n

' 设共有n名同学
For j = n To i + 1 ①
8.0
7.0
9.0
k
8.5
8.0
7.0 8.0
k 8.5
9.0
7.0
7.0
i=3
8.0
8.0
8.5
k 8.5
9.0
9.0
•.
•9
程序:
for i=1 to 3 k=i for j=i+1 to 4 if d(k)>d(j) then k=j next j if k<>i then t=d(i) d(i)=d(k) d(k)=t endif
next i
•.
•10
练习1、下表中的原始数据是一组学生的军训打靶成绩, 若采用选择排序算法对其进行排序,则第1~4遍的排序 结果分别是()

优先级详细步骤流程图

优先级详细步骤流程图

将优先级最高的进 程的CPU时间加 1,所需时间数减1, 优先级减少5,然后 重新按照优先级排 序 判断改进程是 否已经完成 pro[0].need_tim e != 0?
继续按照优先级大 小排序
否 pro[0].need_time!= 0
是 pro[0].need_time == 0
将已经完成的进程 标记为’F’并移 出队列counting--
优先级为100减去 所需时间,并将进 程其他数据初始化, 保留count的值 (pro[i].cpu0 pro[i].need_time;pro [i].status = 'W';)

判断所有进程 是否完成 counting == 0? 否
开始
输入算法选择(P ||R)
输入进程数量 (count) 输入进程号和所需 时间 (pro[i].id,pro[i].need _time])
P 判断输入的值 是P还是R
结束 通过结构体快排按 照优先级从高到低 排序然后按照标记 每个进程的顺序 (qsort(pro, count, sizeof(struct progress), cmp);pro[i].sequenc e = i;) 将优先级最高的状 态标记为‘R’排 序后的所有进程信 息输出pro[0].status = 'R'

电力系统潮流分析与计算设计(P Q分解法)

电力系统潮流分析与计算设计(P Q分解法)

电力系统潮流分析与计算设计(P Q分解法)电力系统潮流分析与计算设计(p-q分解法)摘要潮流排序就是研究电力系统的一种最基本和最重要的排序。

最初,电力系统潮流排序就是通过人工手算的,后来为了适应环境电力系统日益发展的须要,使用了交流排序台。

随着电子数字计算机的发生,1956年ward等人基本建设了实际可取的计算机潮流排序程序。

这样,就为日趋繁杂的大规模电力系统提供更多了极其有力的排序手段。

经过几十年的时间,电力系统潮流排序已经发展得十分明朗。

潮流排序就是研究电力系统稳态运转情况的一种排序,就是根据取值的运转条件及系统接线情况确认整个电力系统各个部分的运转状态,例如各母线的电压、各元件中穿过的功率、系统的功率损耗等等。

电力系统潮流排序就是排序系统动态平衡和静态平衡的基础。

在电力系统规划设计和现有电力系统运转方式的研究中,都须要利用电力系统潮流排序去定量的比较供电方案或运转方式的合理性、可靠性和经济性。

电力系统潮流计算分为离线计算和在线计算,离线计算主要用于系统规划设计、安排系统的运行方式,在线计算则用于运行中系统的实时监测和实时控制。

两种计算的原理在本质上是相同的。

实际电力系统的潮流技术主要使用pq水解法。

1974年,由scottb.在文献(@)中首次提出pq分解法,也叫快速解耦法(fastdecoupledloadflow,简写为fdlf)。

本设计就是使用pq水解法排序电力系统潮流的。

关键词:电力系统潮流排序pq水解法第一章概论1.1详述电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它是根据给定的运行条件及系统接线情况确定整个电力系统各个部分的运行状态,如各母线的电压、各元件中流过的功率、系统的功率损耗等等。

电力系统潮流计算是计算系统动态稳定和静态稳定的基础。

在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统潮流计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。

排序算法分析和比较

排序算法分析和比较

一、设计思想排序是数据处理中使用频率很高的一种操作,是数据查询之前需要进行的一项基础操作。

它是将任意序列的数据元素(或记录)按关键字有序(升序或降序)重新排列的过程。

排序的过程中有两种基本操作:一是比较两个关键字的值;二是根据比较结果移动记录位置。

排序的算法有很多种,这里仅对插入排序、选择排序、希尔排序、归并排序和快速排序作了比较。

直接插入排序算法基本思路:直接插入排序时将一个元素插入已排好的有序数组中,从而得到一个元素个数增加1的新的有序数组。

其具体实现过程是,将第i个元素与已经排好序的i-1个元素依次进行比较,再将所有大于第i个元素的元素后移一个位置,直到遇到小于或等于第i个元素,此时该元素的后面一个位置为空,将i元素插入此空位即可。

选择排序算法基本思路:定义两个数组sela[]和temp[],sela[]用来存放待排序数组,temp[]用来存放排好序的数组。

第一趟,将sela[]数组中n个元素进行比较,找出其中最小的元素放入temp[]的第一个位置,同时将sela[]中将该元素位置设置为无穷大。

第二趟,将sela[]数组中n个元素进行比较,找出其中最小的元素放入temp[]的第二个位置,同时将sela[]中将该元素位置设置为无穷大。

以此类推,n趟后将sela[]中所有元素都已排好序放入temp[]数组中。

希尔排序算法基本思路:希尔排序又称为变长步径排序,它也是一种基于插入排序的思想。

其基本思路是,定义一个步长数组gaps[1,5,13,43……],先选取合适的大步长gap将整个待排序的元素按步长gap分成若干子序列,第一个子序列的元素为a[0]、a[0+gap]、a[0+2gap]……a[0+k*gap];第二列为a[1]、a[1+gap]、a[1+2gap]……a[1+k*gap];……。

然后,对这些子序列分别进行插入排序,然后将gap按gaps[]数组中的步长缩小,按缩小后的步长再进行子序列划分排序,再减小步长直到步长为1为止。

五年级《信息科技》第17课《选择排序轻松做》课件

五年级《信息科技》第17课《选择排序轻松做》课件

第17课 学习活动
义务教育信息科技课程资源
一、描述选择排序的算法
问题分析 在排序算法中,如何将五个无序的数进行排序呢?
最大数
12345
次大数
12345
第17课 学习活动
义务教育信息科技课程资源
一、描述选择排序的算法
基本步骤
第1步:用前一课所学方法,找出最大数的卡片所在盒子。 第2步:把写着最大数的卡片与1号盒子里的卡片进行交换。 第3步:以此类推,在2号到5号盒子里,用“找出最大数” 的方法,继续查找其中最大数的卡片,找到后与对应盒子里的卡 片进行交换。
i = i+1
# 进入下一个数的排序
print('排序后的数:', data) # 输出排序后的列表
第17课 学习活动
义务教育信息科技课程资源
三、验证选择排序的算法
循环结构
大致了解程序与算法的对应 关系,找到其中的循环结构。
第17课 学习活动
义务教育信息科技课程资源
三、验证选择排序的算法
程序修改 尝试修改第一行参与排序的数据个数,保存程序后再次运行,观察 输出结果的变化。
第17课 拓展与提升
义务教育信息科技课程资源
在Python中,可以使用sorted( )函数来进行排序,编程验证与实 现算法时更加简单便捷。
打开配套资源中的参考程序,观察并运行,体会用程序实现算 法的多样性,感受多途径解决问题的过程。
第17课 学习活动
义务教育信息科技课程资源
三、验证选择排序的算法
算法实现
在上一课的学习中,用程序实现并验证了“找出最大数”的算法。 找到最大数后,通过多次比较和交换,可以把列表中的数按照从 大到小或从小到大的顺序排列,从而实现排序。

index排序

index排序

void BubbleSort(Elem R[ ], int n)
{ i = n; // i 指示无序序列中最后一个记录的位置 while (i >1)
{ lastExchangeIndex = 1; for (j = 1; j < i; j++) if (A[j+1] < A[j]) { Swap(A[j],A[j+1]); lastExchangeIndex = j; } i = lastExchangeIndex;
10.3 交换排序
交换排序的基本思想是:两两比较待排序记录的关键 码,如果发生逆序(即排列顺序与排序后的次序正好 相反),则交换之,直到所有记录都排好序为止。
交换排序的主要算法有:
1) 冒泡排序 2) 快速排序
1) 冒泡排序
基本思路:每趟不断将记录两两比较,并按“前小后大” (或“前大后小”)规则交换。 优点:每趟结束时,不仅能挤出一个最大值到最后面位置, 还能同时部分理顺其他元素;一旦下趟没有交换发 生,还可以提前结束排序。 前提:顺序存储结构
1
2
21
08
25
16
3 49
21
4
25*
25*
16
49
08
25
( 08 ,16 ) Low=high=3,本趟停止,将 支点定位并返回位置信息
21
( 25* ,
*
49, 25 )
25 跑到了前面,不稳定!
编程说明: ①每一趟子表的形成是采用从两头向中间交替式逼近法; ②由于每趟中对各子表的操作都相似,主程序可采用递归算法。
例:关键字序列 T=(21,25,49,25*,16,08),请写出 冒泡排序的具体实现过程。

算法实例选择排序法

算法实例选择排序法

2.选择排序算法的程序实现 选择排序的程序同样采用双重For循环嵌套来实现,外 循环来控制是第几遍加工,内循环用来控制数组内进行排序 元素的下标变化范围。在每一遍加工结束,都需要用一个变 量来存储这一遍加工中所找出的最小(或最大)的数据在数组 内的下标。 现有n个数据,分别存放在数组变量a(1 To n)当中,采用 选择排序算法程序实现其从小到大的程序结构如下:
【例2】(浙江省2012年9月高考)实现某排序算法的部分VB程序如下: For i = 1 To 6 k=i 找出最小的 For j = i + 1 To 7 If a(j) < a(k) Then k = j Next j If i <> k Then 小的不在前面就交换 t = a(i): a(i) = a(k): a(k) = t End If Next i 在排序过程中,经过某一遍排序“加工”后,数组元素a(1)到a(7)的数据依次为“10,41, B 75,12,63,11,85”。则下一遍排序“加工”后数组元素a(1)到a(7)的数据依次是( ) A. 10, 11, 41, 75, 12, 63, 85 B. 10, 11, 75, 12, 63, 41, 85 C. 10, 11, 12, 75, 63, 41, 85 D. 10, 11, 12, 41, 63, 75, 85
上虞区小越中学信息技术组
【例1】在2015年秋季学校运动会上,男生第一组6位选手的110米栏成绩(单位:秒) 分别是“18.4、17.3、16.9、18.8、18.1、16.7”,若使用选择排序法将该组的成绩按第 一名、第二名、第三名……的顺序排序,则第一次交换数据后的顺序是 ( B ) A.18.8 18.4 17.3 16.9 18.1 16.7 B.16.7 17.3 16.9 18.8 18.1 18.4 C.18.8 17.3 16.9 18.4 18.1 16.7 D.16.7 18.4 17.3 16.9 18.8 18.1

冒泡排序算法演示PPT

冒泡排序算法演示PPT

;) )
i++ 是 i <=6
否 结束
}
9
按照这种画法第二趟、第三趟、第四趟排序的流程图 怎样画?怎样把整个冒泡排序的流程图画出来?
开始
i=0


rR[i[]1>]>r[Ri +[21]]
tt==Rr[[i2]]
rR[i[1]=]=r[Ri [+21]]
rR[i[+21]=]=t t
分析:后面的排序只要 按照这种方法不断进行就 行了。
for(i=0;i<7-j;i++) if(r[i]>r[i+1]) {t=r[i]; r[i]=r[i+1]; r[i+1]=t;}
printf("The sorted numbers:\n"); for(i=0;i<8;i++) printf("%4d",r[i]); system("pause"); }
不断的这样画下去要画多少个
类似的选择结构?
8

二.画出第一趟排序的算法流程图: 用简洁的循环结构进行表示 根据流程图完善程序:
开始
i=0
是 r[ri[]0>]>r[ri[+1]1] 否 tt==rr[[i0]] r[Rir[]01=]=r[rRi[+[12]1]] r[ir[+11]]==t t
for( ; if ( {
我们预计最多一共要经过多少趟排序呢?
5
初始
序号
1
2
3
4
5
6
7
8
数据 49

算法流程图(循环结构)

算法流程图(循环结构)
算法流程图(循环结 构)
目录
• 循环结构的概述 • 循环流程图的绘制 • 常见的循环结构算法 • 循环结构的应用场景 • 循环结构的注意事项 • 案例分析
01
循环结构的概述
循环结构的定义
循环结构是算法流程图中的一种基本结构,用于 01 重复执行一段代码,直到满足某个条件为止。
循环结构由三个基本部分组成:初始化、循环体 02 和终止条件。
详细描述
在for循环中,首先定义一个计数器变量和循环次数,然后在每次循 环中执行指定的操作,直到计数器达到设定的循环次数为止。
示例
以下是一个简单的for循环算法,用于计算1到10的累加和
for循环算法
```
sum = sum + i
for i = 1 to 10 do
for循环算法
end for ```
VS
详细描述
for循环通常用于已知循环次数的情况, 它包含三个基本部分:初始化、条件和后 续操作。在流程图中,for循环通常以矩 形表示,并在其中标明循环变量、初始值 、条件表达式和增量。例如,计算1到10 的累加和可以使用以下for循环实现
for循环的案例分析
```
for (int i = 1; i <= 10; i) {
控制条件的绘制
01 绘制一个菱形,标注为“条件”,表示循环的控
制条件。
02
在条件菱形内标注判断的具体内容,如“i<10” 。
循环次数的表示
使用一个数字标注在控制条件旁边,表示循环的 次数。
如果循环次数是动态变化的,可以使用变量代替 数字,如“n”。
03
常见的循环结构算法
for循环算法
总结词
for循环是一种预先设定循环次数的循环结构,通常用于已知循环次 数的情况。

VB冒泡法排序原理

VB冒泡法排序原理
回到流程图


本次课主要内容: 1.冒泡法基本思想,通过n-1趟排序把n个待排序数 大的元素象石头一样往下沉(放在最后),小的元素 象气泡一样往上浮。 2.冒泡法的流程图 3.冒泡法程序 4.冒泡法中swap变量的作用 5.简述了选择法排序,要求回去预习选择法排序。
例1:用冒泡排序法对8个整数{6,8,5,4,6,9,3,2}进行从小到 大排序.
看图示
冒泡法原理
第二:再对a[0]到a[N-2]的范围内再进行一趟冒泡,又将该范 围内的最大值换到了a[N-2]中. 看图示二 第三:依次进行下去,最多只要进行N-1趟冒泡,就可完成排序.
看图示三
第四:如果在某趟冒泡过程中没有交换相邻的值,则说明排序 已完成,可以提前结束处理.
for(i=0;i<8;i++) printf("%d,",a[i]); printf("\n"); }
注:对n个元素冒泡 排序第i趟排序的待排序 元素是a[0]到a[n-i-1]。 这里的i表示数组的下标.
上一页
回到第四点
流程图 比较
冒泡法
swap 变量的作用
如果在某趟冒泡过程中没有交换相邻的值,则说明排序 已完成,可以提前结束处理. 比如:为原始数列:8、15、27、96、32、65、78、79 这个序列用冒泡法排序,一趟之后就得到升序结果, 而之后的六趟都可以不要进行。 所以,swap变量就是用来标识如果某趟排序之后已经 得到最终结果,则多余的次数就无须进行。
Swap变量作用
看流程
冒泡法排序
现假设有8个随机数已经在数组中,开始排序
初始状态: 第一趟排序: 第一趟最后结果: 两两相邻比较: 6 数组a

冒泡排序算法

冒泡排序算法
把相临的两个数两两进行比较
即A[1]和A[2]比较
比较完后A[2]再与A[3]比较
......最后是A[9]和A[10]比较
(2)在每次进行比较的过程中
如果前一个数比后一个数大
则对调两个数
也就是说把较大的数调到后面
较小的调到前面
比如在第一次的比较中
如果A[1]比A[2]大则A[1]和A[2]的值就互换
begin
writeln('INPUT 10 integer num:');
for I:=1 to n do
read(a[I]);
readln;
for j:=1 to n-1 do
N
A[I]>A[I+1]
A[I]与A[I+1]对调 Y
I:=I+1
通过上述算法可以写出插入排序算法的程序流程图
如图5所示:
开 始
读入一个数到X中;I:=1
A[I]>X
var
a:colarr;I,j,p,t:integer;
begin
writeln('input 10 integer num:');
for I:=1 to n do
read(a[I]);
for j:=1 to n-1 do
又名起泡排序
冒泡排序可用图3所示的流程图表示:
开 始
J:=1
I:=1
再把A[P]与A[3]对调......此过程重复N-1次后
就把A数组中N个数按从小到大的顺序排好了
这种排序的方法就是选择排序法
以上算法可以用图4表示:

冒泡排序算法流程图

冒泡排序算法流程图

冒泡排序算法流程图冒泡排序是一种简单的排序算法,它也是一种稳定排序算法。

其实现原理是重复扫描待排序序列,并比较每一对相邻的元素,当该对元素顺序不正确时进行交换。

一直重复这个过程,直到没有任何两个相邻元素可以交换,就表明完成了排序。

一般情况下,称某个排序算法稳定,指的是当待排序序列中有相同的元素时,它们的相对位置在排序前后不会发生改变。

假设待排序序列为(5,1,4,2,8),如果采用冒泡排序对其进行升序(由小到大)排序,则整个排序过程如下所示:1) 第一轮排序,此时整个序列中的元素都位于待排序序列,依次扫描每对相邻的元素,并对顺序不正确的元素对交换位置,整个过程如图1 所示。

图1 第一轮排序(白色字体表示参与比较的一对相邻元素)从图1 可以看到,经过第一轮冒泡排序,从待排序序列中找出了最大数8,并将其放到了待排序序列的尾部,并入已排序序列中。

2) 第二轮排序,此时待排序序列只包含前4 个元素,依次扫描每对相邻元素,对顺序不正确的元素对交换位置,整个过程如图2 所示。

图2 第二轮排序可以看到,经过第二轮冒泡排序,从待排序序列中找出了最大数5,并将其放到了待排序序列的尾部,并入已排序序列中。

3) 第三轮排序,此时待排序序列包含前3 个元素,依次扫描每对相邻元素,对顺序不正确的元素对交换位置,整个过程如图3 所示。

图3 第三轮排序经过本轮冒泡排序,从待排序序列中找出了最大数4,并将其放到了待排序序列的尾部,并入已排序序列中。

4) 第四轮排序,此时待排序序列包含前2 个元素,对其进行冒泡排序的整个过程如图4 所示。

图4 第四轮排序经过本轮冒泡排序,从待排序序列中找出了最大数2,并将其放到了待排序序列的尾部,并入已排序序列中。

5) 当进行第五轮冒泡排序时,由于待排序序列中仅剩1 个元素,无论再进行相邻元素的比较,因此直接将其并入已排序序列中,此时的序列就认定为已排序好的序列(如图5 所示)。

图5 冒泡排序好的序列冒泡排序的实现代码为(C 语言):1.#include<stdio.h>2.//交换 a 和 b 的位置的函数3.#define N 54.int a[N]={5,1,4,2,8};5.void swap(int*a,int*b);6.//这是带输出的冒泡排序实现函数,从输出结果可以分析冒泡的具体实现流程7.void BubSort_test();8.//这是不带输出的冒泡排序实现函数,通过此函数,可直接对数组 a 中元素进行排序9.void BubSort_pro();10.int main()11.{12.BubSort_test();13.return0;14.}15.void swap(int*a,int*b){16.int temp;17. temp =*a;18.*a =*b;19.*b = temp;20.}21.22.//这是带输出的冒泡排序实现函数,从输出结果,可以看到冒泡的具体实现流程23.void BubSort_test(){24.for(int i =0; i < N; i++){25.//对待排序序列进行冒泡排序26.for(int j =0; j +1< N - i; j++){27.//相邻元素进行比较,当顺序不正确时,交换位置28.if(a[j]> a[j +1]){29.swap(&a[j],&a[j +1]);30.}31.}32.//输出本轮冒泡排序之后的序列33.printf("第%d轮冒泡排序:", i +1);34.for(int i =0; i < N; i++){35.printf("%d ", a[i]);36.}37.printf("\n");38.}39.}40.41.//这是不带输出的冒泡排序实现函数,通过此函数,可直接对数组 a 中元素进行排序42.void BubSort_pro(){43.for(int i =0; i < N; i++){44.//对待排序序列进行冒泡排序45.for(int j =0; j +1< N - i; j++){46.//相邻元素进行比较,当顺序不正确时,交换位置47.if(a[j]> a[j +1]){48.swap(&a[j],&a[j +1]);49.}50.}51.}52.}运行结果为:。

数据结构课程设计

数据结构课程设计

课程设计说明书课程名称:数据结构和算法设计题目:多种排序院系:计算机科学与信息工程学院学生姓名:学号:专业班级:计科嵌入式(12-1)指导教师:年月日课程设计任务书多种排序摘要:排序是算法中最基础的问题之一,经典的排序算法是前人不断总结得到的,基于比较的方法是比较直观的方式,主要存在插入法排序、堆排序、希尔排序、归并排序、快速排序,每一种排序算法都有自己的优缺点,比如插入法排序适用于那些长度短的排序,要是长的话,有些爱莫能助啦,堆排序主要是依据了二叉堆的特性,但是创建堆的过程也是一个复杂的问题,希尔排序的过程是一个不断精确的过程,但是目前也只是一个经验方式。

归并排序是一个递归的问题,采用分治的思想实现,但是这种算法需要额外的存储空间,快速排序虽然是实践中比较常用的算法,但是对于有序的数组采用快速排序就是灾难。

比较型算法的时间复杂度最优也只能到达O(NlogN)。

关键词:归并排序快排排序选择排序冒泡排序插入排序堆排序希尔排序内部排序目录1. 设计背景 (3)1.1问题描述 (4)1.2 问题分析 (4)2.设计方案 (4)2.1 算法设计 (4)2.2 功能模块分析 (6)3.主要算法流程图 (15)4. 结果与结论 (16)4.1正确结果 (16)4.2错误信息 (18)5. 算法复杂度以及稳定性分析 (18)6. 收获与致谢 (19)7. 参考文献 (19)8. 附件 (20)1. 设计背景1.1问题描述利用随机函数产生N个随机整数(10000以上),对这些数进行多种方法进行排序。

包括:插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序。

1.2 问题分析经典的排序算法是前人不断总结得到的,基于比较的方法是比较直观的方式,主要存在插入法排序、堆排序、希尔排序、归并排序、快速排序,每一种排序算法都有自己的优缺点。

2.设计方案2.1 算法设计(1)选择排序在待排序的一组数据元素中,选出最小的一个数据元素与第一个位置的数据元素交换;然后在剩下的数据元素当中再找最小的与第二个位置的数据元素交换,循环到只剩下最后一个数据元素为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Key=a(j)


return i “a(i)=key”
“not found”
6、折半查找 开始
Input key
l=1,r=n M=(r+l)/2
Key<a(l)
Binary_search=0
l<=r
是 否
Key>a(m)
否 是
Key>a(m)


r=m-1 m=(l+r)/2
l=m+1 m=(l+r)/2
三、Shell 排序法 待排序的数据:source=>23,54,8,25,61,77,13,10,66,9 排序后的数据:sort=>0 8,9,10,13,23,25,54,64,66,77
四、快速排序法 待排序的数据:source=>56,10,94,99,42,83,56,89,31,73 排序后的数据:sort=>0 10,31,42,56,56,73,83,89,94,99
1、冒泡法 开始
i=n-1,n=10
i>0

i--
j=1

j++
j<i+1
是 否

a(j)<a(j+1)

temp=a(j) a(j)=a(j+1) a(j+1)=temp
结束
2、选择排序法 开始
i=1,n=10
i=n

i++
min=a(i),j=i+1

j--
j>0
是 否

min>a(j)

temp=a(j) a(j)=a(i) a(i)=temp min=a(i)
结束
3、shell 排序
开始
n=10,k=n/2
k>0

i=k+1

i<n+1
是 否
j=i-1 temp=a(i)
j==0,a(i)=temp

i++


a(j+1)=a(j)
j-a(j+1)=temp
k=k/2
结束
4、 (流程图不会画) 5、顺序查找 开始
Input key
i=1
i<n=1 i++
binary_sea rch = m
结束
五、顺序查找法 source=>6,2,8,4,0,9,3,5,1,7 input key: 0 a<5>=0 六、折半查找法 Source=>2,5,7,9,10,11,13,17,21,23 Input key: 13 a<7>=13
观察得知,利用 fortran 语言以上几种排序法均可完成数据的排序,五六的查找法也可找到 数据在数组中的位置。
一、冒泡排序法 待排序的数据 source=>6,2,8,4,0,9,3,5,1,7 排序后的数据 sort=>0,1,2,3,4,5,6,7,8,9
二、选择排序法 待排序的数据:source=>12,54,65,2,3,40,91,7,321,50 排序后的数据:sort=>0 2,3,7,12,40,50,54,65,91,321
相关文档
最新文档