人教版-第6章平方根教学设计(共8课时).

合集下载

人教版七年级数学下册6.1.1《算术平方根》教案

人教版七年级数学下册6.1.1《算术平方根》教案

人教版七年级数学下册6.1.1《算术平方根》教案一. 教材分析《算术平方根》是人教版七年级数学下册第六章第一节的内容。

本节课主要让学生掌握算术平方根的定义,理解求一个数的算术平方根的方法,以及熟练运用算术平方根解决实际问题。

教材通过引入大量的生活实例,激发学生的学习兴趣,引导学生探究、发现算术平方根的规律,培养学生的抽象思维能力。

二. 学情分析七年级的学生已经掌握了实数的概念,具备了一定的数学基础。

但在计算能力和数学思维方面,学生之间存在较大差异。

因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。

三. 教学目标1.理解算术平方根的定义,掌握求一个数的算术平方根的方法。

2.能够运用算术平方根解决实际问题,提高学生的应用能力。

3.培养学生的抽象思维能力,提高学生的计算能力。

4.激发学生的学习兴趣,培养他们积极探究数学规律的精神。

四. 教学重难点1.算术平方根的定义及其求法。

2.运用算术平方根解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现算术平方根的规律。

2.探究教学法:引导学生积极参与课堂讨论,自主发现算术平方根的求法。

3.练习法:通过大量练习,巩固学生对算术平方根的理解和运用。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.练习题:准备适量的一定难度的练习题,用于课堂练习和课后作业。

3.教学道具:准备一些实物,如正方形、长方形等,用于直观展示。

七. 教学过程1.导入(5分钟)利用生活实例,如衣服的尺码、房屋面积等,引导学生思考:如何快速找到一个数的平方根?从而引出本节课的主题——算术平方根。

2.呈现(10分钟)介绍算术平方根的定义,并通过PPT展示一些图片,让学生直观地感受算术平方根的应用。

3.操练(10分钟)让学生分组讨论,探索如何求一个数的算术平方根。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

平方根人教版数学七年级下册教案

平方根人教版数学七年级下册教案

平方根一、教学目标1.知识与技能:理解平方根的概念,掌握平方根的性质,会求一个正数的平方根。

2.过程与方法:通过自主探究、合作交流,发展学生的推理能力和解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生学好数学的信心。

二、教学重难点1.重点:平方根的概念和性质。

2.难点:求一个正数的平方根。

三、教学过程1.导入新课师:同学们,我们已经学习了算术平方根,那么什么是平方根呢?今天我们就来学习平方根。

2.自主探究(1)写出下列各数的平方根:1,4,9,16。

(2)观察上面的结果,你发现了什么规律?生1:我发现,一个正数有两个平方根,它们互为相反数。

生2:我还发现,0的平方根是0,而负数没有平方根。

3.例题讲解例1:求下列各数的平方根:(1)49(2)0.01(3)0.25师:请同学们先独立思考,然后和同桌交流一下。

生1:对于(1)49,我们可以直接写出它的平方根为±7。

生2:对于(2)0.01,我们可以先求出它的算术平方根,再写出它的平方根为±0.1。

生3:对于(3)0.25,我们同样可以先求出它的算术平方根,再写出它的平方根为±0.5。

生1:一个正数有两个平方根,它们互为相反数。

生2:0的平方根是0。

生3:负数没有平方根。

5.练习巩固师:请同学们完成下面的练习题,巩固平方根的知识。

(1)求下列各数的平方根:①64②0.04③1(2)判断题:①9的平方根是3。

()②0的平方根是0。

()③负数有平方根。

()6.课堂小结师:今天我们学习了平方根,大家掌握得怎么样?请同学们分享一下自己的收获。

生1:我学会了平方根的概念和性质。

生2:我会求一个正数的平方根了。

生3:我对平方根有了更深的理解。

7.作业布置(1)教材P20习题1、2。

(2)预习下一节内容:立方根。

四、课后反思重难点补充:1.重点:平方根的概念和性质师:同学们,我们之前学过平方,比如2的平方是4,那么你们能告诉我,哪个数的平方是4吗?生:2的平方是4。

人教版《平方根》教案设计

人教版《平方根》教案设计

人教版《平方根》教案设计一、教学目标1、知识与技能目标(1)理解平方根的概念,能正确地表示一个数的平方根。

(2)掌握平方根的性质,会求一个非负数的平方根。

2、过程与方法目标(1)通过对平方根概念的探究,培养学生的数学思维能力和探究精神。

(2)通过平方根的计算,提高学生的运算能力和解题技巧。

3、情感态度与价值观目标(1)让学生在学习过程中体验数学的严谨性和逻辑性,培养学生对数学的兴趣和热爱。

(2)通过小组合作学习,培养学生的团队合作意识和交流能力。

二、教学重难点1、教学重点(1)平方根的概念和性质。

(2)求一个非负数的平方根。

2、教学难点(1)对平方根概念的理解,特别是负数没有平方根的理解。

(2)平方根与算术平方根的区别与联系。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过复习算术平方根的概念,引出平方根的问题。

例如,已知正方形的面积为 9 平方厘米,那么它的边长是多少?如果正方形的面积是16 平方厘米呢?如果面积是 a 平方厘米呢?从而引出本节课的主题——平方根。

2、讲授新课(1)平方根的概念如果一个数的平方等于 a ,那么这个数叫做 a 的平方根。

即如果 x²= a ,那么 x 叫做 a 的平方根。

例如,因为 3²= 9 ,所以 3 是 9 的平方根;因为(-3)²= 9 ,所以-3 也是 9 的平方根。

(2)平方根的表示方法一个正数 a 的平方根记作±√a ,读作“正负根号a ”,其中√a 叫做 a 的算术平方根。

例如,9 的平方根记作±√9 = ±3 。

(3)平方根的性质①一个正数有两个平方根,它们互为相反数。

② 0 的平方根是 0 。

③负数没有平方根。

(4)平方根与算术平方根的区别与联系区别:①个数不同:一个正数的算术平方根只有一个,而平方根有两个。

②表示方法不同:正数 a 的算术平方根记作√a ,正数 a 的平方根记作±√a 。

人教版七年级数学下册 教学设计6.1 第2课时《平方根》

人教版七年级数学下册 教学设计6.1 第2课时《平方根》

人教版七年级数学下册教学设计6.1 第2课时《平方根》一. 教材分析本节课的教学内容是《平方根》,这是人教版七年级数学下册第六章第一节的一部分。

在此之前,学生已经学习了有理数、实数等基础知识,对数的运算也有一定的了解。

本节课主要让学生掌握平方根的定义、性质和求法,以及了解平方根在实际问题中的应用。

二. 学情分析七年级的学生已经具备了一定的数学基础,但部分学生在实数方面的理解还不够深入。

在导入新课环节,教师需要通过生活中的实例激发学生的学习兴趣,让学生感受到平方根在实际生活中的重要性。

在教学过程中,要注意引导学生主动探索、发现和总结平方根的性质,提高学生的数学思维能力。

三. 教学目标1.知识与技能:让学生掌握平方根的定义、性质和求法,能够运用平方根解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生探究数学问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.重点:平方根的定义、性质和求法。

2.难点:平方根在实际问题中的应用。

五. 教学方法1.启发式教学:教师通过提问、引导,激发学生的思考,让学生主动探索平方根的性质。

2.情境教学:结合生活实例,让学生感受平方根在实际问题中的应用。

3.小组合作:引导学生进行合作交流,共同探讨平方根的问题。

六. 教学准备1.教学课件:制作课件,展示平方根的相关知识点。

2.实例材料:准备一些实际问题,用于引导学生运用平方根解决。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如测量土地面积、计算物体高度等,引导学生思考这些实际问题与平方根的关系,激发学生的学习兴趣。

2.呈现(10分钟)教师引导学生回顾实数的相关知识,然后给出平方根的定义,并通过PPT展示平方根的性质。

同时,教师可以通过讲解、举例等方式,让学生了解平方根的求法。

3.操练(10分钟)教师提出一些有关平方根的问题,让学生独立解答。

(人教版)七年级数学下册第六章第1节《平方根》教案(2份)

(人教版)七年级数学下册第六章第1节《平方根》教案(2份)

13.1平方根(一)教学目标:1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:算术平方根的概念。

教学难点:根据算术平方根的概念正确求出非负数的算术平方根。

教学过程设计:一、情境导入请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少dm?如果这块画布的面积是212dm?这个问题实际上是已知一个正数的平方,求这个正数的问题?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.二、导入新课:1、提出问题:(书P68页的问题)你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)这个问题相当于在等式扩=25中求出正数x的值.一般地,如果一个正数x的平方等于a,即2x=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式2x=a (x≥0)中,规定x =a.12=144说出144的算术平方根是多少吗?并 2、试一试:你能根据等式:2用等式表示出来.3、想一想:下列式子表示什么意思?你能求出它们的值吗?建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如25表示25的算术平方根。

4、例1 求下列各数的算术平方根:(1)100;(2)1;(3)6449;(4)0.0001 三、练习P69练习 1、2四、探究:(课本第69页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?方法1:课本中的方法,略;方法2:可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢? 大正方形的边长是2,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗? 建议学生观察图形感受2的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.五、小结:1、这节课学习了什么呢?2、算术平方根的具体意义是怎么样的?3、怎样求一个正数的算术平方根六、课外作业:P75习题13.1复习巩固第1、2、3题教学反思:6.1平方根(二)学习目标:1、会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.2、能用逼近法求一个数的算术平方根的近似值.3、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数。

人教版数学七下6.1《平方根》教案

人教版数学七下6.1《平方根》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平方根的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对平方根的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
a.能够理解平方根的概念及其与平方运算的关系;
b.能够运用逻辑推理判断一个数是否有平方根。
2.培养学生数学运算能力:让学生掌握求解平方根的方法,提高数学运算速度和准确性。
a.学会直接开平方和分解质因数等方法求解平方根;
b.能够准确快速地进行平方根运算。
3.培养学生实际问题解决能力:将平方根知识应用于实际问题中,提高学生解决实际问题的能力。
3.重点难点解析:在讲授过程中,我会特别强调平方根的定义和求解方法这两个重点。对于难点部分,如非完全平方数的平方根求解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平方根相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平方根的基本原理,如利用直尺和量角器测量正方形对角线长度。
b.平方根的求解:学生在求解平方根时可能遇到困难,尤其是对于不是完全平方数的平方根。举例:求解8的平方根,需要通过分解质因数8=2×2×2,得到2√2,这个过程可能让学生感到困惑。
c.平方根在实际问题中的应用:学生可能不知道如何将实际问题转化为数学问题,进而运用平方根求解。举例:在解决一个长方形面积问题时,需要学生先将面积公式中的边长平方项求解,然后使用平方根得到边长。

人教版七年级下册6.1.1《算术平方根》(教学设计)

人教版七年级下册6.1.1《算术平方根》(教学设计)

人教版七年级下册6.1.1《算术平方根》(教学设计)一. 教材分析《算术平方根》是人教版七年级下册数学教材第六章第一节的内容。

本节课主要介绍了算术平方根的概念、性质及其求法。

通过学习本节课,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够应用算术平方根解决实际问题。

教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了有理数、整数、分数等基础知识,具备了一定的逻辑思维能力和运算能力。

但部分学生对平方根的概念可能还比较模糊,需要通过实例和练习来进一步理解。

此外,学生可能对算术平方根的求法存在一定的困惑,需要通过教师的引导和同学的讨论来掌握。

三. 教学目标1.知识与技能目标:理解算术平方根的概念,掌握求算术平方根的方法,能够熟练运用算术平方根解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。

四. 教学重难点1.重点:算术平方根的概念及其求法。

2.难点:算术平方根在实际问题中的应用。

五. 教学方法1.启发式教学:通过问题引导,激发学生的思考,培养学生的探究能力。

2.合作学习:学生进行小组讨论,促进学生之间的交流与合作,共同解决问题。

3.实例教学:通过具体的例子,让学生更好地理解算术平方根的概念和求法。

4.练习巩固:通过适量练习,巩固所学知识,提高学生的应用能力。

六. 教学准备1.教材:人教版七年级下册数学教材。

2.课件:制作课件,包括算术平方根的定义、性质、求法及应用等内容。

3.练习题:准备一些有关算术平方根的练习题,用于课堂练习和巩固。

4.板书:准备黑板,用于书写重要概念和步骤。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的平方根知识,为新课的学习做好铺垫。

例如:“请大家回忆一下,平方根的概念是什么?我们已经学习了哪些求平方根的方法?”2.呈现(10分钟)教师展示课件,介绍算术平方根的定义、性质和求法。

人教版教材七年级数学第6章第一节《算术平方根》教学设计

人教版教材七年级数学第6章第一节《算术平方根》教学设计

重点:算术平方根概念的理解。

难点:根据算术平方根的概念正确求出非负数的算术平方根。

七、教具安排PPT、视频八、课件使用说明本课件采用微软件幻灯片制作软件Microsoft Office PowerPoint 2007制作,安装Microsoft Office PowerPoint 2007或该软件更高版本可以正常运行。

双击PPT文件即可进入本课件进行授课。

九、教学过程1.明确目标课前导学出示学习目标(课标要求);围绕学习目标,课前学生自主阅读教材P40-41。

设计意图:明确本节所学的内容,让学生对本节课知识有个大体认识,产生疑惑课堂答疑。

2.提出问题引入新课提出问题:能否用两个面积为1dm2的正方形拼成一个面积为2dm2的大正方形?边长为多少?(设边长为xdm,可列方程x2=2,引出概念)设计意图:从现实生活中提出数学几何问题,能够使学生积极主动地投入到数学活动中去,动手操作,师生共探,培养学生动手能力和学习兴趣,发散学生思维,同时为学习算术平方根提供实际背景和生活素材。

3.解决问题学会算法解决问题:实际问题(正方形画布已知面积求边长)填入表格PPT展示对比;提问:加法、减法、乘法、除法、乘方这五种运算中那些是互逆运算呢?得出平方与开平方互为逆运算,配套练习教师点拨思考方法及书写。

设计意图:通过填表活动,从数学几何问题抽象为代数问题,总结归纳规律,解决生活实际问题,并在归纳中加深学生对平方与开平方互逆运算的认识,理解算术平方根的算法。

4.生成问题提炼性质符号表示:强调a的算术平方根符号表示,配套三个练习巩固。

生成新问题:负数有算术平方根吗?中的a可以取任何数吗?总结性质(双非负性-PPT展示)。

初步了解无理数:√a是什么数?(视频播放有多大)得出结论,两种情况考虑。

2配套习题,归纳性质。

设计意图:巩固练习,强化符号和文字的转换,加强符号意识。

通过三个新问题的提出和解决,总结性质;通过数学故事的视频播放,初步了解无理数,感受无理数的发展史;最后通过配套的习题,师生凝练性质,记忆符号表达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版-第6章平方根教学设计(共8课时).6.1平方根(二)(第二课时)学习目标:1、会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.2、能用夹值法求一个数的算术平方根的近似值.3、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数。

教学重点:夹值法及估计一个(无理)数的大小。

教学难点:夹值法及估计一个(无理)数的大小的思想。

一学习准备我们已经知道:正数x满足2x=a,则称x是a的.当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如,16=;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?例如课本第161页的大正方形的边长2等于多少呢?二自主学习p41~44探究:1.怎样用两个面积为1的正方形拼成一个面积为2的大正方形2 . 有多大呢?3 .(提出问题):你对正数a的算术平方根a的结果有怎样的认识呢?a的结果有两种情:当a是完全平方数时,a是一个;当a不是一个完全平方数时,a是一个4、例2 用计算器求下列各式的值:(1)3136(2)2(精确到0.001)例3 .估计大小:写出所有符合下列条件的数小于11的所有整数; (2) 绝对值小于18的所有整数.(1) 大于17例3 小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为3∶2.不知能否裁出来,正在发愁.小明见了说“别发愁,一定能用一块面积大的裁出一块面积小的纸片”,你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?分析:要注意是否弄清了题意;然后分析解题思路:能否裁出符合要求的纸片,就是要比较两个图形的边长,而由题意,易知正方形的边长是20 cm ,所以只需求出长方形的边长,设长方形的长和宽分别是3xcm 和2xcm,求得长方形的长为350cm 后,接下来的问题是比较350和20的大小.探究:被开方数扩大(或缩小)与它的平方根扩大(或缩小)的规律是怎样的呢? 若1.1001.102=,则=±0201.1___________.三、练习:课本P44的练习 1、2(3).已知a ,b-1是400的算术平方根,(4).某农场有一块长30米,宽20米的场地,要在这块场地上建一个鱼池为正方形,使它的面积为场地面积的一半,问能否建成?若能建成,鱼池的边长为多少?(精确到0.1米)四、小结:1、利用计算器可以求出任意正数的算术平方根的近似值.2、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?3、怎样的数是无限不循环小数?五、作业课本:P47-48习题13.1 第5、6、7、12题;6.1平方根(三)(第三课时)学习目标1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别.2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系.教学重点:平方根的概念和求数的平方根。

教学难点:平方根和算术平方根的联系与区别一、学习准备:1、什么数的平方是49?2、平方得81的数有几个?分别是什么?3、一对互为相反数的平方有什么关系?总结:由问题出发,认识到平方得一个正数的数有个,并且互为二、合作交流,解读探究自主探索:独立看书,自学教材p44~46想一想:到底什么是平方根,它和我们已经认识的算术平方根有何关系?⑴什么叫一个数的平方根?如何用符号表示?⑵根据平方根的定义,只有什么数才有平方根?⑶什么叫开方?[⑴如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,用符号表示为:若2,x a x==则;⑵只有非负数才有平方根;⑶求一个数a的平方根的运算叫做开平方运算。

]练一练:求下列数的平方根⑴100 ⑵916⑶0.25 ⑷16-⑸ 0三、总结归纳:1、正数有平方根,它们互为0的平方根是负数讨论:平方根与算术平方根之间有什么关系?总结:1、平方根与算术平方根之间的区别⑴定义不同:如果2x a=,那么x叫做a的平方根。

一个正数有两个平方根,它们互为相反数;0有一个平方根,是0本身;负数没有平方根。

如果2x a=,并且0x≥,那么x叫做a的算术平方根。

一个正数的算术平方根只有一个,非负数的算术平方根一定是非负数⑵表示方法不同:正数a的平方根表示为a⑶平方根等于本身的数是0;算术平方根等于本身的数是0或12、平方根与算术平方根之间的联系3、⑴二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中的非负的那一个⑵存在条件相同,非负数才有平方根和算术平方根 ⑶0的平方根和0的算术平方根都是0四 、 应用迁移,巩固提高例1 说出下列各数的平方根⑴0.04 ⑵81121⑶ ⑷164例2 说出下列各数的平方根各是什么?⑴64 ⑵0 ⑶()20.4- ⑷2213⎛⎫- ⎪⎝⎭ ⑸16- ⑹()34-例3 计算⑴ ⑶五、课堂跟踪反馈 练习课本P46 练习1、2、3补充:1、____,=⑵____,=⑶____,=⑷____=27=,则_____x =,x 的平方根是_____3 ) A. 94± B. 94 C. 32± D. 32 4、给出下列各数:49, 22,3⎛⎫- ⎪⎝⎭ 0, 4,- 3,-- ()3,-- ()45--,其中有平方根的数共有( ) A. 3个 B. 4个 C. 5个 D. 6个5、若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,试求a b+的平方根。

选作题:(1)如果一个正数的两个平方根为1a +和27a -,请你求出这个正数(2) 已知13705a b -++=,求:()a b a -的平方根 (3)请你试着求等式()2162810x +-=中的x 值.(4)x 的取值范围是______________作业 P47-48习题6.1第3、4、8、11、12题。

13.1 平方根训练题(第四课时):一.选择题:1、下列命题中,正确的个数有( )①1的算术平方根是1;②(-1)2的算术平方根是-1;③一个数的算术平方根等于它本身,这个数只能是零;④-4没有算术平方根.A.1个B.2个C.3个D.4个2、一个自然数的算术平方根是x,则下一个自然数的算术平方根是( )D.x+13、设)2那么xy 等于( )A.3B.-3C.9D.-94、(-3)2的平方根是( )A.3B.-3C.±3D.±95、x 是16的算术平方根,那么x 的算术平方根是( )A.4B.2C.D.±4二、填空:6、36的算术平方根是______,36的平方根是_____.7、如果a 3=3,那么a=______. =3,那么a=_______.8、一个正方体的表面积是78,则这个正方体的棱长是_______.9、算术平方根等于它本身的数是_______.11、的算术平方根是________.三、解答题:12、求满足下列各式的x 的值:(1)169x 2=121 (2)x 2-3=013 求下列各式的值(1)144, (2)-81.0, (3)196121±(4)256,()25614 、 322a -和23a -都是m 的平方根,求a 和m 的值.15.已知21a -的平方根为3±,31a b +-的平方根为4±,求2a b +的平方根.16 已知a ,b 满足1310a b a ++--=,求25b a -的平方根17 一个开口的长方体盒子,是从一块正方形的马口铁的每个角剪掉一个36cm 2的正方形后,再把它的边折起来做成的,如图,量得这个盒子的容积是150cm 2,求原正方形的边长是多少?1.由题意可知剪掉正方形的边长为______________cm .2.设原正方形的边长为x cm ,请你用x 表示盒子的容积.________________________________.3.由1,2的分析,请你列出方程,并解答,求原正方形的18 已知20092010a a a -+-=,求2200915a -+的值.1.由式子2010a -可以得出a 的取值范围是什么?_________________________________________________________2.由1,你能将等式20092010a a a -+-=中的绝对值去掉吗?___________________________________________________________3.由2,你能求出22009a -的值吗?___________________________________________________________4.讨论总结:求2200915a -+的值._______________________________________________________________________.6.2 立方根 (第五课时)学习目标:了解立方根的概念,会用符号表示一个数的立方根教学重点:了解立方根的概念,用立方运算求某些数的立方根;3a =,会用计算器求某些数的立方根教学难点:明确平方根与立方根的区别,能熟练地求某些数的立方根 一 学习准备1.问题:要制作一种容积为27 m 的正方体形状的包装箱,这种包装箱的边长应该是多少?2 在学习平方根的运算时,首先是找出一些数的平方值,然后才根据其逆运算过程确定某数的平方根,同样,我们先来算一算一些数的立方.23=____ ;(-2)3=_____0.53=___;(-0.5)3=____;(23)3=_____;-(23)3•=_____ ;03=______.(1)经计算发现正数,0,负数的立方值与平方值有何不同之处?二 自主学习p49-511什么是立方根2、探究: 根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点 因为328=,所以8的立方根是( ) 因为()30.50.125=,所以0.125的立方根是( ) 因为()300=,所以0的立方根是( )因为()328-=-,所以8的立方根是( ) 因为328327⎛⎫-=- ⎪⎝⎭,所以8的立方根是( )【总结归纳】 一个正数有 立方根 ,一个负数有 立方根, 0的立方根是 ,任何数都有 立方根一个数a “三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。

273=表示27-3=-.3、探究: ____,____,== =____,____==利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,)0a =>。

相关文档
最新文档