苏教版初中数学七年级下册--教案(全册)

合集下载

苏科版数学七年级下册《7.1 探索直线平行的条件》教学设计

苏科版数学七年级下册《7.1 探索直线平行的条件》教学设计

苏科版数学七年级下册《7.1 探索直线平行的条件》教学设计一. 教材分析《7.1 探索直线平行的条件》这一节内容,主要让学生掌握探索直线平行的条件,通过观察、实验、探究等活动,引导学生发现并证明两直线平行的条件。

教材中设置了丰富的活动,让学生在实践中掌握知识,提高学生的动手操作能力和思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的基本概念,并对平行线有一定的认识。

但学生对直线平行的条件还没有深入的了解,需要通过本节课的学习,让学生在已有知识的基础上,进一步探索直线平行的条件,提高学生的数学思维能力。

三. 教学目标1.让学生掌握探索直线平行的条件。

2.培养学生观察、实验、探究的能力。

3.提高学生的动手操作能力和数学思维能力。

四. 教学重难点1.探索直线平行的条件。

2.如何引导学生发现并证明两直线平行的条件。

五. 教学方法1.观察法:让学生观察直线平行的特点,发现直线平行的条件。

2.实验法:让学生动手操作,验证直线平行的条件。

3.探究法:引导学生通过小组合作,共同探讨直线平行的条件。

4.讲解法:教师对直线平行的条件进行讲解,让学生加深理解。

六. 教学准备1.准备直线平行的相关图片,用于导入和呈现。

2.准备直线平行的实验材料,如直尺、三角板等。

3.准备直线平行的证明教案,用于讲解和引导学生探究。

七. 教学过程1.导入(5分钟)利用多媒体展示直线平行的图片,让学生观察直线平行的特点,引发学生的思考。

同时,提出问题:“你们认为直线平行有哪些条件?”让学生发表自己的看法。

2.呈现(10分钟)展示直线平行的实验材料,让学生动手操作,观察直线平行的条件。

在实验过程中,引导学生发现并总结直线平行的条件。

3.操练(10分钟)让学生进行直线平行的实践活动,运用所学知识,验证直线平行的条件。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)利用例题和练习题,让学生进一步巩固直线平行的条件。

教师讲解例题,引导学生运用所学知识解决问题。

苏科版七年级数学下册全册教案

苏科版七年级数学下册全册教案

⑴.如图,直线 a 、 b 被直线 c 所截,下列说法正确的是(
);(第⑴题)
(A)当 1 2 时,一定有 a // b
(B)当 a // b 时,一定有 1 2
(C)当 a // b 时,一定有 1 2 180(D)当 a // b 时,一定有 1 2 90
⑵.如图,直线 l1∥l2,则 α 为(
D
C
E
B
5
1
2
1
A
B
图1
43 2 图2
4. 下列所示的四个图形中, 1和 是同.位.角.的是( )
1 1
2
2
1 1
2 2




A. ②③
B. ①②③ C. ①②④ D. ①④
5. 如图 3 所示,点 E 在 AC 的延长线上,下列条件中能.判.断.AB// CD ( )
B
D
13
2 4
A
CE
图3
A. 3 4 B. 1 2 C. D DCE D. D ACD 180
通过折一张半透明的纸得到的(如图 4(1)~(4) ): 从图中可知,小敏画平行线的依据有( )
①两直线平行,同位角相等;
③同位角相等,两直线平行;
A.①②
B.②③
图4
②两直线平行,内错角相等;
④内错角相等,两直线平行.
C.③④
D.①④
五、课堂小结 梳理认知 判定两直线平行的条件有哪些,它们之间的联系是什么?
同位角
,两直线
5、课堂检测
。如何应用呢?
(1)、知识梳理、提升
如图 1,同位角有 对,能判定 a∥b 吗,为什么?要使 a∥b,满足什么条件?

(完整版)苏教版初中数学七年级下册教案(全册)

(完整版)苏教版初中数学七年级下册教案(全册)

苏华世七年级数学教学体系7.1探索直线平行的条件7.2探索平行线的性质7.3图形的平移7.4认识三角形第八章幂的运算8.1同底数幂的乘法8.2幂的乘方和积的乘方8.3同底数幂的除法第九章从面积到乘法公式9.1单项式乘单项式9.2单项式乘多项式9.3多项式乘多项式9.4乘法公式9.5单项式乘多项式法则的再认识)9.6乘法公式的再认识-因式分解(二)二元一次方程组10.1二元一次方程10.2二元一次方程组10.3解二元一次方程组10.4用方程组解决问题5.1相交线[教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索[教学设计]一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二.认识邻补角和对顶角,探索对顶角性质 1.学生画直线AB 、CD 相交于点O ,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用 几何语言准确表达延长线它们的另一边互为反向有一条公共边与OA ,AOD AOC ∠∠; BOD AOC ∠∠与有公共的顶点O ,而且AOC ∠的两边分别是BOD ∠两边的反向延长线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系? (学生得出结论:相邻关系的两个角互补,对顶的两个角相等) 3学生根据观察和度量完成下表: 两条直线相交所形成的角分类 位置关系数量关系教师提问:如果改变AOC∠的大小,会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念和对顶角的性质三.初步应用练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩固运用例题:如图,直线a,b相交,∠,求4401=∠的度数。

苏教版初中数学七年级下教案全集

苏教版初中数学七年级下教案全集

若∠1=∠2,则 a∥b.
应用格式:
∵∠1=∠2(已知)
∴a∥b(内错角相等,两直线平行)
2、同旁内角互补,两直线平行
即直线 a,b 被直线 c 所截,所得的两对同旁内角中,若有一
对互补,则 a∥b.如图若∠1+∠2=180,则 a∥b
应用格式:
∵∠1+∠2=180( 已知)
∴a∥b(同旁内角互补,两直线平行)
动手操作 合作探究
通过操作发现, 让学生进一步 体会数学美的 乐趣。
(四)做一做:
三、巩固提高
如图,将一张长方形纸片沿 EF 折叠 后,点 D、C 分别落在点 I、H 的位 置,EI 的延长线与 BC 交于点 G.若 ∠EFG=50°,求∠1、∠2 的度数
E
A
D
1
I
2
B
C
G
F
H
独立思考 讨论合作
让学生通过练 习加深对平行 线的理解,学会 知识适时迁移。
板演 …… …… …… …… ……




课题
第七章 平面图形的认识(二) 8.1 探索直线平行的条件(2)

时 本课(章节)需 2 课时
分 本 节 课 为 第 2 课时
配 为 本 学期总第
课时
会用内错角相等判定二条直线平行 教学目标
会用同旁内角互补判定二条直线平行
重 点 推导的过程
难 点 证明推理
7,∠7 与∠8,∠8 与∠5。
还有同位角,内错角,同旁内角。 (1)同位角:两条直线被第三条直线所截,在二条直线的同侧, 且在第三条直线的同旁的二个角叫同位角。 如图中的∠1 与∠5 分别在直线 AB CD 的上侧,又在第三条直线 EF 的右侧,所以∠1 与∠5 是同位角,它们的位置相同,在图中还 有∠2 与∠6,∠4 与∠8,∠3 与∠7 也是同位角。 (2)内错角:两条直线被第三条直线所截,在二条直线的内侧, 且在第三条直线的两旁的二个角叫内错角。 如上图中∠2 与∠8 在直线 AB、CD 的内侧(既 AB 、CD 之间), 且在 ED 的两旁,所以∠2 与∠8 是内错角。同理,∠3 与∠5 也是内 错角。 (3)同旁内角:两条直线被第三条直线所截,在两条直线的你 侧,且在第三条直线的同旁的两个角叫同旁内角。 如上图中的∠2 与∠5 在直线 AB CD 内侧又在 EF 的同旁,所以 ∠2 与∠5 是同安排能够内角,同理,∠3 与∠8 也是同旁内角。 因此,两条直线被第三条直线所截,共得 4 对同位角,2 对内 错角,2 对同旁内角。

苏教版七年级下册数学全册教案

苏教版七年级下册数学全册教案

新课引入——思情想景,导获入得:数学结论的过程.
如图在一块小木板上面画一条线段 AB,你能通过测量图中哪些角的大 小来判断木板的上、下边缘是否平行?
A
B
“议一议”: 1.如图 1,直线 a、b 被直线 c 所截,∠2=∠3.直线 a 与直线 b 平行
吗?试说明理由. 2.如图 2,直线 a、b 被直线 c 所截,∠2
第 16 页 共 201 页
辨一辨、议一议:
在以下现象中,属于平移的是 (

① 在荡秋千的小朋友;
② 打气筒打气时,活塞的运动;
③ 钟摆的摆动;
④ 传送带上,瓶装饮料的移动.
A.①②
B.①③ C.②③
D.②④
例 1 如图,4 个小三角形都是等边三角形,边
F
长为 1.3cm.你能通过平移△ABC 得到其他三角形
教学目 标:
7.3 图形的平移 1.认识平移的概念及平移的不变性,理解平移图形中对应线段 平行且相等的性质; 2.能按要求作出简单平面图形平移后的图形,能用平移的性质 解决实际问题.
教学重 理解图形平移的基本性质,并能按要求作出简单平面图形平移
点:
后的图形.
教学难 点:
能运用平移的性质解决实际问题.
结论? 2.平行线的性质与平行线的判定有何区
别与联系? 3.你能用三种语言表示平行线的性质与
判定吗? 4.判定角相等的方法有哪些?
课后作业: 1.课本 P16-17 习题 7.2 第 2、3、4、5 题; 2.思考题(选做). 已知:如图∠1=∠2,∠A=∠C,说明:AE∥BC.
第 15 页 共 201 页
第 10 页 共 201 页
课后作业: 1.课本 P15 练一练第 1、2 题; 2.思考题(选做): 已知:如图,AB∥CD,∠1=∠2,则 GP 与 QH 的位置关系是什么?

苏科版数学七年级下册9.1《单项式乘单项式》教学设计

苏科版数学七年级下册9.1《单项式乘单项式》教学设计

苏科版数学七年级下册9.1《单项式乘单项式》教学设计一. 教材分析《单项式乘单项式》是苏科版数学七年级下册第9.1节的内容,本节课的主要内容是让学生掌握单项式乘单项式的运算法则。

在此之前,学生已经学习了有理数的乘法、整式的加减等知识,为本节课的学习打下了基础。

本节课的内容对于学生来说较为抽象,需要通过实例讲解和练习来帮助学生理解和掌握。

二. 学情分析七年级的学生在学习过程中,对于数学知识的接受程度和理解能力各有不同。

有的学生可能对整式的乘法有一定的理解,但大部分学生可能还较为陌生。

因此,在教学过程中,需要关注学生的个体差异,针对不同的学生进行有针对性的讲解和指导。

三. 教学目标1.理解单项式乘单项式的运算法则。

2.能够熟练地进行单项式乘单项式的计算。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.单项式乘单项式的运算法则。

2.如何将实际问题转化为单项式乘单项式的形式。

五. 教学方法1.实例讲解:通过具体的例子,让学生理解单项式乘单项式的运算法则。

2.小组讨论:让学生分组讨论,共同解决问题,培养学生的合作能力。

3.练习巩固:通过大量的练习题,让学生巩固所学知识。

4.问题引导:教师提出问题,引导学生思考,培养学生的数学思维能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和练习题。

2.练习题:准备一定数量的练习题,用于课堂练习和巩固。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出单项式乘单项式的概念。

例如:已知苹果的价格为每千克3元,香蕉的价格为每千克2元,求购买2千克苹果和3千克香蕉需要多少钱?2.呈现(10分钟)讲解单项式乘单项式的运算法则,并通过PPT展示相关的实例。

让学生跟随老师的讲解,一起动手计算,加深对运算法则的理解。

3.操练(10分钟)让学生进行单项式乘单项式的计算练习。

教师巡回指导,针对学生的错误进行讲解和纠正。

苏教版初中数学七年级下册教案(全册)

苏教版初中数学七年级下册教案(全册)

苏教版初中数学七年级下册教案(全册) 第一章平面直角坐标系
课时1 相识坐标系
教学目标
1.了解平面直角坐标系的概念和相关法则。

2.学习在平面直角坐标系内表示点和图形的方法。

3.掌握在平面直角坐标系内求距离和中点的方法。

教学重点
1.平面直角坐标系的概念和相关法则。

2.平面直角坐标系内表示点和图形的方法。

3.在平面直角坐标系内求距离和中点的方法。

教学难点
掌握在平面直角坐标系内求距离和中点的方法。

教学过程
一、导入新课
通过展示例子,了解直角坐标系在日常生活中的应用,引出平面直角坐标系的概念和相关法则。

二、新课内容
1.平面直角坐标系的概念和性质。

2.在平面直角坐标系内表示点和图形的方法。

3.在平面直角坐标系内求距离和中点的方法。

三、训练
1.通过练习,巩固平面直角坐标系的相关法则和表示点和图形的方法。

2.练习在平面直角坐标系内求距离和中点的方法。

四、课堂小结
通过课堂小结,今天所学的知识点,并强调在日常生活中的应用。

五、作业布置
布置相关作业。

教学反思
本节课通过引入例子,让学生了解到直角坐标系在日常生活中的应用,进而引入平面直角坐标系的概念和相关法则。

通过训练,巩固了平面直角坐标系内表示点和图形的方法,并掌握了在平面直角坐标系内求距离和中点的方法。

最后通过本节课的,强调了所学知识在日常生活中的应用。

苏教版初中数学七年级下教案全集

苏教版初中数学七年级下教案全集
1
2
。由理明说试 �吗
行平 b 线直与 a 线直。3∠=2∠�截所 c 线直被 b�a 线直�图如 1
议一议请 。行平线直两麽那�等相角位同的得截果如 、 。角内旁同�角 错内�角位同有中角个八的成形�截所线直条三第被线直条两 答回生学 动 活 生 学
仪影投
�入引 动
课授新


教 法方学教 点 点 难 重
果结出说 考思察观
。性极积的 习学与乐 �与参 主自生学发激 算运、作操、考 思、察观过通
A
入导境情、一
�mc 少多为离距的移平 A 体 物的上带送传�时角的°021 过转 轮动转的 mc03 为径半当 �图如 �击点识知�一� 图 意 计 设 动活生学 动 活 师 教 程 过 学 教 板角三、体媒多 究探导引 识知关有形角三及以图作移平形图面平握掌和解理 念概关有的形角三�质性和件条的行平线直解理 。识意义主国爱透渗 �务服而活生的好美更造创为又 �活生于源来学数会体 �标目感情 妙奇 的学数受感生学让�性造创和性阔广的维思生学练训�力能新创 、力能流交、作操�维思理推、维思理条的生学养培�标目力能 。用应 中活生际实在线行平条两会体�系联的间之段线角、边解理�质 性及件条的行平线直两了索探�动活等践实作操过通�标目识知 课习练 型 课 标目学教 备准具教 式形学教 点难学教 点重学教 节环学教
A
�么
什为�行平相互线些那中图�081=EDB∠+B∠�2∠=1∠�图如 �1 题例
�行平线直两�补互角内旁同�b∥a∴ �知已 �081=2∠+1∠∵ �式格用应 b∥a 则�081=2∠+1∠若图如.b∥a 则�补互对 一有若�中角内旁同对两的得所�截所 c 线直被 b,a 线直即 行平线直两�补互角内旁同、2 �行平线直两�等相角错内�b∥a∴ �知已�2∠=1∠∵ �式格用应 .b∥a 则�2∠=1∠若 图如,b∥a 麽那�等想对
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏华世七年级数学教学体系7.1探索直线平行的条件7.2探索平行线的性质7.3图形的平移7.4认识三角形第八章幂的运算8.1同底数幂的乘法8.2幂的乘方和积的乘方8.3同底数幂的除法第九章从面积到乘法公式9.1单项式乘单项式9.2单项式乘多项式9.3多项式乘多项式9.4乘法公式9.5单项式乘多项式法则的再认识)9.6乘法公式的再认识-因式分解(二)二元一次方程组10.1二元一次方程10.2二元一次方程组10.3解二元一次方程组10.4用方程组解决问题5.1相交线[教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索[教学设计]一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二.认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达AOD∠;AOC∠有一条公共边与OA,延长线它们的另一边互为反向∠与有公共的顶点O,而且AOCBODAOC∠∠两边的反向延长线∠的两边分别是BOD2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)3学生根据观察和度量完成下表:两条直线相交所形成的分类位置关系数量关系角教师提问:如果改变AOC∠的大小,会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念和对顶角的性质三.初步应用练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩固运用例题:如图,直线a,b相交,∠,求4401=∠的度数。

∠,3,2∠[巩固练习]已知,如图,80=AOC,求:DOF∠COF,35=∠∠和的度数AOD∠[小结]邻补角、对顶角.[备选题]一判断题:如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( ) 二填空题1如图,直线AB 、CD 、EF 相交于点O ,AOE ∠的对顶角是 ,COF ∠的邻补角是若AOC ∠:AOE ∠=2:3, 130=∠EOD ,则BOC ∠=2如图,直线AB 、CD 相交于点O30,90=∠=∠=∠AOC FOB COE 则=∠EOF5.1.2 垂线[教学目标] 1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

2. 掌握点到直线的距离的概念,并会度量点到直线的距离。

3.掌握垂线的性质,并会利用所学知识进行简单的推理。

[教学重点与难点]1.教学重点:垂线的定义及性质。

ABCDO2.教学难点:垂线的画法。

[教学过程设计] 一. 复习提问: 1、 叙述邻补角及对顶角的定义。

2、对顶角有怎样的性质。

二.新课: 引言:前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

(一)垂线的定义当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线AB 、CD 互相垂直,记作CD AB ⊥,垂足为O 。

请同学举出日常生活中,两条直线互相垂直的实例。

注意:1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:(如上图).(90(垂直定义)已知),︒=∠=∠=∠=∠∴⊥AOD BOD COB AOC CD AB反之,POABC(二)垂线的画法 探究:1、用三角尺或量角器画已知直线l 的垂线,这样的垂线能画出几条?2、经过直线l 上一点A 画l 的垂线,这样的垂线能画出几条?3、经过直线l 外一点B 画l 的垂线,这样的垂线能画出几条? 画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

(三)垂线的性质经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:性质1 过一点有且只有一条直线与已知直线垂直。

探究:如图,连接直线l 外一点P 与直线l 上各点O , A,B,C ,……,其中l PO ⊥(我们称PO 为点P 到直线l 的垂线段)。

比较线段PO 、PA 、PB 、P C ……的长短,这些线段中,哪一条最垂直定义)已知)((90CD AB AOC ⊥∴︒=∠BO FEDCBA 短?性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成: 垂线段最短。

(四)点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如上图,PO 的长度叫做点 P 到直线l 的距离。

例1则下列结论:垂足为如图,,,,90D BC AD BAC ⊥︒=∠(1)AB 与AC 互相垂直; (2)AD 与AC 互相垂直;(3)点C 到AB 的垂线段是线段AB ; (4)点A 到BC 的距离是线段AD; (5)线段AB 的长度是点B 到AC 的距离; (6)线段AB 是点B 到AC 的距离。

其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 解:A例2 如图,直线AB,CD 相交于点O,的度数。

和求AOC BOE DOF AB OF CD OE ∠∠︒=∠⊥⊥,65,,例3 如图,一辆汽车在直线形公路AB 上由ACBA向B 行驶,M,N 分别是位于公路两侧的村庄, 设汽车行驶到点P 位置时,距离村庄M 最近,行驶到点Q 位置时,距离村庄N 最近,请在图中公路AB 上分别画出P,Q 两点位置。

即为所求。

则点垂足分别为两点分别作解:如图所示,过Q P Q P AB NQ AB MP N M ,,,,,,⊥⊥练习: 1.为钝角。

中,如图,已知BAC ABC ∠∆的距离是多少?到)点(的垂线;点画)过(的垂线段;到)画出点(AC B BC A AB C 321小结:1. 要掌握好垂线、垂线段、点到直线的距离这几个概念;2. 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;3. 垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。

5.2.1 平行线[教学目标]1.理解平行线的意义,了解同一平面内两条直线的位置关系; 2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;4.了解平行线在实际生活中的应用,能举例加以说明.[教学重点与难点]1.教学重点:平行线的概念与平行公理;2.教学难点:对平行公理的理解.[教学过程]一、复习提问相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b 平行,记作a∥b.(画出图形)2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.4.平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).四、平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.五、三线八角由前面的教具演示引出.如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.六、课堂练习1.在同一平面内,两条直线可能的位置关系是.2.在同一平面内,三条直线的交点个数可能是.3.下列说法正确的是()A.经过一点有且只有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行4.若∠α与∠β是同旁内角,且∠α=50°,则∠β的度数是()A.50°B.130°C.50°或130°D.不能确定5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是()A.1 B.2 C.3 D.46.如图,直线AB,CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角.如果∠5=∠1,那么∠1 ∠3.七、小结让学生独立总结本节内容,叙述本节的概念和结论.八、课后作业1.画图说明在同一平面内三条直线的位置关系及交点情况.[补充内容]1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)5.2.2 直线平行的条件(第2课时)一.教学目标(1) 使学生进一步理解并掌握判定两条直线平行的方法; (2) 了解简单的逻辑推理过程. 二.教学重点与难点重点:判定两条直线平行方法的应用; 难点:简单的逻辑推理过程. 三.教学过程 复习提问:1.判定两条直线平行的方法有哪些? 2.如图(1)(1) 如果∠1=∠4,根据_________________,可得AB ∥CD ; (2) 如果∠1=∠2,根据_________________,可得AB ∥CD ; (3) 如果∠1+∠3=1800,根据______________,可得AB ∥CD .3.如图(2)(1) 如果∠1=∠D ,那么______∥________; (2) 如果∠1=∠B ,那么______∥________; (3) 如果∠A+∠B=1800,那么______∥________; (4) 如果∠A+∠D=1800,那么______∥________;新课:如图(2) A B CDEF12 3 4 如图(1)例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?答:这两条直线平行. 如图所示理由如下: ∵b ⊥a ,c ⊥a∴∠1=∠2=900(垂直定义) ∴b ∥c (同位角相等,两直线平行)思考:这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?例2 如图所示,∠1=∠2,∠BAC=200,∠ACF=800. (1) 求∠2的度数;(2) FC 与AD 平行吗?为什么?ab c┐1 ┐2巩固练习1. 教科书19页练习2. 如图所示,如果∠1=470,∠2=1330,∠D=470,那么BC 与DE 平行吗?AB 与CD 平行吗?3. 如图所示,已知∠D=∠A ,∠B=∠FCB ,试问ED 与CF 平行吗?4. 如图,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出图中互相平行的直线.AB CD E1 2E D C FA B1 2345mnlab5.2.2直线平行的条件(一)[教学目标]3.借助用直尺和三角板画平行线的过程,,得出直线平行的条件.4.会用直线平行的条件来判定直线平行.5.激发学生学习数学的兴趣.[教学重点与难点]重点: 理解直线平行的条件.难点: 直线平行的条件的应用[教学设计]提问复习题:1.如图,已知四条直线AB、AC、DE、FG(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.(2) ∠3与∠2是直线_____和直线____被直线________所截而成的________角.(3) ∠5与∠6是直线_____和直线____被直线________所截而成的________角.(4) ∠4与∠7是直线_____和直线____被直线________所截而成的________角.(5) ∠8与∠2是直线_____和直线____被直线________所截而成的________角.2.下面说法中正确的是( ).(1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种(2) 在同一平面内, 不垂直的两条直线必平行(3) 在同一平面内, 不平行的两条直线必垂直(4) 在同一平面内,不相交的两条直线一定不垂直3.如果a∥b ,b ∥c ,那么_______,理由是_____________________.导言:上节课我们学习了平行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理,在此基础上,我们再来研究直线平行的条件.新课:直线平行的条件演示用直尺和三角板画平行线的过程,如果∠4+∠2=180°, a∥b吗?例题已知:如图,直线AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,试说明CD ∥EF.解:因为∠1=∠2,所以AB ∥CD.又因为∠3+∠1=180°,所以AB ∥EF.从而CD ∥EF (为什么?).课堂练习:1.下列判断正确的是( ).A.因为∠1和∠2是同旁内角,所以∠1+∠2=180°B.因为∠1和∠2是内错角,所以∠1=∠2C.因为∠1和∠2是同位角,所以∠1=∠2D.因为∠1和∠2是补角,所以∠1+∠2=180°2.如图:(1) 已知∠1=65°, ∠2=65°,那么DE与BC 平行吗?为什么?(2)如果∠1=65°, ∠3=115°,那么AB与DF平行吗? 为什么?(3) )如果∠4=60°, ∠2=65°,那么DE与BC平行吗?为什么?4.如图所示:(1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________;(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________;(3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________;(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,因此可知∠4+∠5= ____,所以可确定___________∥______,其理由是__________________;(5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________.第4题图第5题图5.如图,(1)如果∠1=________,那么DE∥AC;(2) 如果∠1=________,那么EF∥BC;(3)如果∠FED+ ∠________=180°,那么AC∥ED;(4) 如果∠2+ ∠________=180°,那么AB∥DF.课后作业:习题5.2 第1,2,4题.补充练习:已知:如图,AB ∥CD,EF分别交AB、CD于E、F,EG平分∠AEF ,FH平分∠EFD EG与FH平行吗?为什么?§5.3平行线的性质(一)教学目标1.使学生理解平行线的性质和判定的区别.2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.重点难点重点:平行线的三个性质.难点:平行线的三个性质和怎样区分性质和判定.关键:能结合图形用符号语言表示平行线的三条性质.教学过程一、复习1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?二、新授1.实验观察,发现平行线第一个性质请学生画出下图进行实验观察.设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?平行线性质1(公理):两直线平行,同位角相等.2.演绎推理,发现平行线的其它性质(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.求证:∠1= ∠2.(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°.在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”.3.平行线判定与性质的区别与联系投影:将判定与性质各三条全部打出.(1)性质:根据两条直线平行,去证角的相等或互补.(2)判定:根据两角相等或互补,去证两条直线平行.联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的. 三、例题例2如图所示,AB ∥CD ,AC ∥BD .找出图中相等的角与互补的角.87654132此题一定要强调,哪两条直线被哪一条直线所截.答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC +∠ACD =180°,∠ABD +∠CDB =180°,∠CAB +∠DBA =180°,∠ACD +∠BDC =180°.相等的角还有:∠ACD =∠ABD ,∠BAC =∠BDC .(同角的补角相等) 例3如图所示.已知:AD ∥BC ,∠AEF =∠B ,求证:AD ∥EF . 分析:(执果索因)从图直观分析,欲证AD ∥EF ,只需∠A +∠AEF =180°, (由因求果)因为AD ∥BC ,所以∠A +∠B =180°,又∠B =∠AEF ,所以∠A +∠AEF =180°成立.于是得证. 证明:因为 AD ∥BC ,(已知)所以 ∠A +∠B =180°.(两直线平行,同旁内角互补)FED CBA AB CD因为 ∠AEF =∠B ,(已知)所以 ∠A +∠AEF =180°,(等量代换)所以 AD ∥EF .(同旁内角互补,两条直线平行) 四、练习:1.如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD . 求证:∠1+∠2=90°. 证明:因为 AB ∥CD , 所以 ∠BAC +∠ACD =180°,又因为 AE 平分∠BAC ,CE 平分∠ACD , 所以112BAC ∠=∠,122ACD ∠=∠,故001112()1809022BAC ACD ∠+∠=∠+∠=⨯=.即 ∠1+∠2=90°.2.如图所示,已知:∠1=∠2, 求证:∠3+∠4=180°. 分析:(让学生自己分析) 证明:(学生板书) 小结我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系. 作业:1.如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.5.3平行线性质(二)[教学目标]6.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力7.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论8.能够综合运用平行线性质和判定解题[教学重点与难点]重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念难点:平行线性质和判定灵活运用[教学设计]一.复习引入1.平行线的判定方法有哪些?2.平行线的性质有哪些?3.完成下面填空已知:BE是AB的延长线,AD//BC,AB//CD,若∠D则EBC100=,∠,C∠A∠4.b c b a ⊥⊥,那么a ,c 的位置关系如何? 二.新课1.例1,已知a//c,,b a ⊥直线b 与c 垂直吗?为什么?例2如图是一块梯形铁片的残余部分,量得 115,100=∠=∠B A ,梯形另外两个角分别是多少度?2.实践 与探究(1)学生操作:用三角尺和直尺画平行线,做成一张55⨯ 个格子的方格纸。

相关文档
最新文档